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Brief Announcement: Routing the Internet with Very Few Entries *
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This paper investigates compact routing schemes that are very efficient with respect to the memory used to store routing tables in internet-like graphs. We propose a new compact name-independent routing scheme whose theoretically proven average memory per node is upper-bounded by n γ , with constant γ < 1/2, while the maximum memory of any node is bounded by √ n and the maximum stretch of any route is bounded by 5. These bounds are given for the Random Power Low Graphs (RPLG) and hold with high probability. Moreover, we experimentally show that our scheme is very efficient in terms of stretch and memory in internet-like graphs (CAIDA and other maps). We complete this study by comparing our analytic and experimental results to several compact routing schemes. In particular, we show that the average memory requirements is better by at least one order of magnitude than previous schemes for CAIDA maps on 16K nodes.

INTRODUCTION

To achieve the routing task, a routing protocol typically uses routing tables stored at each node in order to find a path in the network. These tables are computed beforehand by what is usually called a routing scheme. One of the main goals in the context of routing is to reduce the storage of the routing information at each node (to allow quick routing decisions, fast updates, and scalability), while maintaining routes along paths as short as possible.

A routing scheme that guarantees a sub-linear1 routing table size at each node is qualified to be compact. There is a trade-off between the route efficiency (measured in terms of stretch) and the memory requirements (measured by the size or the number of entries in the routing tables). An extra desirable property of a routing scheme is to use arbitrary routing addresses (say based on processor IDs or MAC addresses) and thus independent of any topological information. Such routing schemes are called name-independent, in contrast with labeled routing schemes for which nodes are labeled by poly-logarithmic size addresses that do depend on the graph and can be freely designed to help routing decisions. In practical use, a labeled routing scheme has to use a location service that maps local information to labels, which could be a bottle-neck in regards to routing scalability, mobility and multi-homing.

Trade-offs between stretch and memory for routing in arbitrary graphs are well known, and optimal nameindependent algorithms exist (see for example [START_REF] Abraham | Compact name-independent routing with minimum stretch[END_REF]). Nevertheless for some types of routing, like routing in the AS-internet graph, optimizations can be done and trade-offs are still barely known. Indeed, this network, like many others, exhibits several structural properties that can help a lot for routing.

Routing in internet-like graphs has already received some attention in the literature. In particular [START_REF] Chen | A compact routing scheme and approximate distance oracle for power-law graphs[END_REF] and [START_REF] Tang | HDLBR: A name-independent compact routing scheme for power-law networks[END_REF] respectively studied labeled and nameindependent compact routing scheme for internet-like graphs. They both proved that the average number of entries in the routing tables for Random Power Low Graphs (RPLG, see Fig. 1) can be significantly lower than for arbitrary graphs, and they both confirmed experimentally their analytic results on large CAIDA and "BC" maps2 .

RESULTS

Our contributions are the following. First we present a new stretch-5 name-independent routing scheme, that guar-Figure 1: The largest connected component of a graph sampled from RPLG(n, τ ) for n = 300 and power-law exponent τ = 2.9. This component has 216 nodes (whose size is depicted proportional to their degree), 280 edges, and maximum degree 19.

antees, in internet-like graphs, to produce compact routing tables of very small average size at every node.

Theorem 1. For any n-node graph sampled from RPLG(n, τ ) with power-low exponent τ ∈ (2, 3), within its largest connected component, the name-independent routing scheme CLUSTER has w.h.p.3 the following properties:

1. the maximal size of the routing tables is O(

√ n ); 2. the average size of the routing tables is 4 Õ(n γ ) with γ = 1 2 • τ -2 τ -1 for τ ≤ 2.5, and γ = (τ -2) 2 τ -1
otherwise; 3. the stretch factor is at most 5; 4. every routing decision takes constant time; and 5. headers have poly-logarithmic size.

Actually, Properties 3,4,5 hold for every connected graph.

Secondly we experimentally compare our scheme to AGMNT [START_REF] Abraham | Compact name-independent routing with minimum stretch[END_REF], DCR [START_REF] Gavoille | On the communication complexity of distributed name-independent routing schemes[END_REF], HDLBR [START_REF] Tang | HDLBR: A name-independent compact routing scheme for power-law networks[END_REF], and TZ + [START_REF] Chen | A compact routing scheme and approximate distance oracle for power-law graphs[END_REF]. In particular, Table 1 shows that our scheme, CLUSTER, improves significantly the routing table sizes on a CAIDA map (sampled from the AS network [Cai]) and on a BC graph, even though TZ + (a specialized variant of Thorup-Zwick routing scheme) is a labeled routing scheme. Moreover, TZ + scheme makes the assumption that τ is known whereas our scheme does not need this parameter. We have provided a fully distributed implementation for the schemes DCR, HDLBR, CLUSTER, and proved that each one generates all the routing tables in Õ(n 3/2 ) messages. No distributed implementation within o(n 2 ) messages is known for AGMNT.

OUR SCHEME

Preliminaries.

Similarly to TZ + and HDLBR, our algorithm is based on a set of landmark nodes positioned in the "center" of the graph. In our case, the k landmarks are composed of the highest degree node 1 plus its k -1 neighbors of highest degree, where k -1 = min{ √ n , deg( 1)}. Moreover, every landmark node i, i ∈ {1, . . . , k}, is provided with a distinct color c( i) ∈ {1, . . . , k}. Landmark nodes also share a balanced (w.h.p.) hash function h, as in [START_REF] Abraham | Compact name-independent routing with minimum stretch[END_REF], mapping in constant time all node identifiers to the color set {1, . . . , k}.

Routing tables.

Any landmark node i stores one entry per node v whose hash value is equal to the color of i, namely c( i). This entry corresponds to the path from i to v in some fixed shortest-path spanning tree T rooted at 1. Each path of T can be compressed into a poly-logarithmic size entry, e.g. by using the classical labeled compact routing scheme for trees from [START_REF] Fraigniaud | Routing in trees. 28th ICALP[END_REF]. This adds one entry to every node. Every landmark also stores one entry for each color c. This entry corresponds to the next-hop from i to the landmark with color c along a shortest path in the subgraph induced by the landmarks, a diameter two subgraph. As the hash function is balanced, the number of entries for landmark routing tables is at most k + n/k + O(1).

For every non-landmark node u, we define its vicinity ball Bu as the set of all nodes that are strictly closer to u than u, where u is a landmark closest to u. For every node v in Bu ∪ N (u) ∪ { u}, node u stores the next-hop on a shortest path to v, where N (u) denotes the neighbors of u. Thus, the number of entries for the routing table of u is at most |Bu| + deg(u) + O(1). However, for each node u with no landmark neighbors, N (u) ⊆ Bu.

Routing from u to v.

If u has an entry for v, then u can route directly to v. Otherwise u forwards the packet to u, its closest landmark. At this point, u computes the hash value h(v) of node v and forwards the packet to the landmark h of color h(v). Finally, the information stored in the entry corresponding to v in the routing table of h is used to route the packet to its final destination v via the tree T .

SKETCH OF THE PROOF

The proof of our main theorem is based on topological observations done on RPLG(n, τ ) graphs [START_REF] Chung | The Average Distance in a Random Graph with Given Expected Degrees[END_REF]. Those graphs are defined as follows. With each node vi, i ∈ {1, . . . , n}, we assign a weight wi = (n/i) 1/(τ -1) . There is an edge between node vi and vj with probability min{1, wiwj/σ}, where σ = i wi.

Memory size analysis.

The first step is to show that, w.h.p., k = √ n , i.e., the highest degree node 1 is larger than √ n. This implies that landmark routing tables have at most 2 √ n entries, and contributes to at most k • 2 √ n = 2n to the total number of entries. The degree of every non-landmark u is also lower than √ n. So, the maximum number of entries in a routing table is dominated by maxu |Bu| + √ n. And, the average number of entries is bounded by 1 n u |Bu| + O(1) since the average degree is O(σ/n) = O(1), the main component has Ω(n) nodes, and the landmark routing tables contribute to only 2n/Ω(n) = O(1) entries on the average.

Next we show that the sum of the weights, called the volume, of the set of nodes inside the cluster is polynomial, depends on τ ∈ (2, 3), but is always much larger than √ n. Then, we use one lemma from [START_REF] Chung | The Average Distance in a Random Graph with Given Expected Degrees[END_REF] [START_REF] Tang | HDLBR: A name-independent compact routing scheme for power-law networks[END_REF] that the route length for HDLBR is at most 2d + 2δ(τ ) where d is the source-destination distance and δ(τ ) the inter-landmark distance. We note that, w.h.p., δ(2.1) > 1, and from this observation one can derive that the maximum stretch is at least 6. We ran our own (distributed) version of HDLBR since results for AS and BC maps were not available. TZ + is not a name-independent routing scheme, and we have not implemented it. Thus, we have some unknown experimental values for this algorithm.

or intersect. This implies that the volume of every vicinity ball is upper bounded by a small polynomial. The last part consists in exhibiting a strong relationship between the volume and the number of nodes in the vicinity balls. We use the facts, shown in [START_REF] Chen | A compact routing scheme and approximate distance oracle for power-law graphs[END_REF], that the volume of a set of nodes is likely to be equal to the sum of their degrees, and that two balls of radius r and r + 1 do not differ too much in terms of their number of nodes.

Stretch analysis.

From the routing algorithm from u to v taken from the main connected component of G, we derive that the route length is either the distance d = dG(u, v) if v ∈ Bu, or bounded by dG(u, u)+dG( u, h )+dT ( h , v) otherwise. (Recall that the route goes first from u to u along a shortest path in G, then to h using the landmark subgraph, and then to v using T .) If w denotes the closest ancestor of v in T in the cluster, then the length of the route from h to v can be bounded by dT ( h , v) ≤ dT ( h , w) + dT (w, v) ≤ dG( v , v) + 2 by definition of v and T . Since dG( u, h ) ≤ 2, the route length is at most dG(u, u) + dG(v, v ) + 4. Note also that dG(v, v ) ≤ dG(v, u) + dG(u, u) = d + dG(u, u) since otherwise u would be a closer landmark for v than v . Assuming that v / ∈ Bu (otherwise the stretch is 1), it turns out also that dG(u, u) ≤ d. Overall, combining these inequalities, the route length is at most 3d + 4. However, if u is a landmark, the route length is at most dG

(u, u) + dG(v, v ) + 4 ≤ dG(u, u) + [d + dG(u, u)] + 4 = d + 4 since in this case u = u.
To summarize, either u is a landmark and the stretch is at most (d + 4)/d = 1 + 4/d ≤ 5, or u is not a landmark and the stretch is at most (3d + 4)/d = 3 + 4/d. This is at most 5 if d ≥ 2. On the other hand, if d = 1 then the stretch is only 1 since each non-landmark node u has the entries for N (u). Thus, the stretch factor of our scheme is at most 5 for all connected graphs.

Optimization.

For our experimentations, we proceed to several optimizations for the CLUSTER scheme. In particular, for every nonlandmark node u, we remove every entry for w ∈ Bu such that the shortest-path routing from u to w can actually be achieved by routing from u to its landmark u. In other words, we can clean Bu by removing every node w such that dG(u, w) = 1 + dG(u , w) where u is the next-hop to reach u from u. Another optimization addresses the landmark routing tables. For a landmark i, the set of entries to each node v with h(v) = c( i) is partionned into: 1) the entries for nodes at distance at most r = log n/ log log n from i; and 2) the remaining entries (for further nodes). For these latter entries we store a routing label of log 2 n/ log log n = r log n bits used for the routing in T as described in [START_REF] Fraigniaud | Routing in trees. 28th ICALP[END_REF]. And, for the former entries we use a different routing label, still of r log n bits, composed of the first r next-hops on a shortest path from i to v. Overall, this improves the average route length without extra cost on the number of entries or their size.

Table 1 :

 1 which states that (w.h.p.) two sets of nodes with high volumes are adjacent According to[START_REF] Vázquez | Internet topology at the router and autonomous system level[END_REF] the AS power-law exponent τ can be estimated to 2.1. The main component of the BC graph has 7873 nodes, whereas the AS graph is connected. It is proved in

	Name-indep. AGMNT DCR HDLBR CLUSTER	RPLG(n, τ ) for τ = 2.1 Stretchmax Memavg Memmax 3 Õ( √ n ) Õ( √ n ) 7 Õ( √ n ) Õ( √ n ) ≥6 O( √ n ) Ω(n 1/2+ε ) 5 Õ(n 1/22 ) O( √ n )	AS graph (n = 16 301) Stretchavg Memavg Memmax Stretchavg Memavg Memmax BC graph (n = 10K, τ = 2.1) ?? 465 1 261 1.56 396 1 143 1.74 465 1 261 1.63 396 1 143 1.52 106 2 324 1.24 404 1 877 1.59 4.05 415 1.75 6.47 228
	Labeled									
	TZ +	5	O(n 1/12 )	O(n 1/12 )	??	??	??	1.30	55.2	??

W.r.t. the number of nodes in the graph.

The latter maps are the benchmark graphs used in the study of[START_REF] Brady | Compact routing on power law graphs with additive stretch[END_REF]. They are based on Power Low Random Graphs (a.k.a. PLRG) a model for internet-like graphs whose analytic study is less convenient than the RPLG model.

I.e., with probabilty at least 1 -1/n.

The notation Õ(f (n)) stands for O(f (n) • polylogf (n)).
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