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We consider a marking procedure of the vertices of a tree where each vertex is marked independently from the others with a probability that depends only on its out-degree. We prove that a critical Galton-Watson tree conditioned on having a large number of marked vertices converges in distribution to the associated sizebiased tree. We then apply this result to give the limit in distribution of a critical Galton-Watson tree conditioned on having a large number of protected nodes.

Introduction

In [START_REF] Kesten | Subdiffusive behavior of random walk on a random cluster[END_REF], Kesten proved that a critical or sub-critical Galton-Watson (GW) tree conditioned on reaching at least height h converges in distribution (for the local topology on trees) as h goes to infinity toward the so-called sized-biased tree (that we call here Kesten's tree and whose distribution is described in Section 3.2). Since then, other conditionings have been considered, see [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF][START_REF] Abraham | An introduction to Galton-Watson trees and their local limits[END_REF][START_REF] He | Local convergence of critical random trees and continuum condensation tree[END_REF] and the references therein for recent developments on the subject.

A protected node is a node that is not a leaf and none of its offsprings is a leaf. Precise asymptotics for the number of protected nodes in a conditioned GW tree have already been obtained in [START_REF] Devroye | Protected nodes and fringe subtrees in some random trees[END_REF][START_REF] Janson | Asymptotic normality of fringe subtrees and additive functionals in conditioned Galton-Watson trees[END_REF] for instance. Let A(t) be the number of protected nodes in the tree t. Remark that this functional A is clearly monotone in the sense of [START_REF] He | Local convergence of critical random trees and continuum condensation tree[END_REF] (using for instance (13)); therefore, using Theorem 2.1 of [START_REF] He | Local convergence of critical random trees and continuum condensation tree[END_REF], we immediately get that a critical GW tree τ conditioned on {A(τ ) > n} converges in distribution toward Kesten's tree as n goes to infinity. Conditioning on {A(τ ) = n} needs extra work and is the main objective of this paper. Using the general result of [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF], if we have the following limit [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF] lim n→+∞ P(A(τ ) = n + 1)

P(A(τ ) = n) = 1,
then the critical GW tree τ conditioned on {A(τ ) = n} converges in distribution also toward Kesten's tree, see Theorem 5.1.

In fact, the limit (1) can be seen as a special case of a more general problem: conditionally given the tree, we mark the nodes of the tree independently of the rest of the tree with a probability that depends only on the number of offsprings of the nodes. Then we prove that a critical GW tree conditioned on the total number of marked nodes being large converges in distribution toward Kesten's tree, see Theorem 3.3.

The paper is then organized as follows: we first recall briefly the framework of discrete trees, then we consider in Section 3 the problem of a marked GW tree and the proofs of the results are given in Section 4. In particular, we prove the limit (1) when A is the number of marked nodes in Lemma 4.2 and we deduce the convergence of a critical GW tree conditioned on the number of marked nodes toward Kesten's tree in Theorem 3.3. We finally explain in Section 5 how the problem of protected nodes can be viewed as a problem on marked nodes and deduce the convergence in distribution of a critical GW tree conditioned on the number of protected nodes toward Kesten's tree in Theorem 5.1.

Technical background on GW trees

2.1. The set of discrete trees.

We denote by N = {0, 1, 2, . . .} the set of non-negative integers and by N * = {1, 2, . . .} the set of positive integers.

If E is a subset of N * , we call the span of E the greatest common divisor of E. If X is an integer-valued random variable, we call the span of X the span of {n > 0; P(X = n) > 0}.

We recall Neveu's formalism [START_REF] Neveu | Arbres et processus de Galton-Watson[END_REF] for ordered rooted trees. Let U = n≥0 (N * ) n be the set of finite sequences of positive integers with the convention (N * ) 0 = {∅}. For u ∈ U, its length or generation |u| ∈ N is defined by u ∈ (N * ) |u| . If u and v are two sequences of U, we denote by uv the concatenation of the two sequences, with the convention that uv = u if v = ∅ and uv = v if u = ∅. The set of ancestors of u is the set

An(u) = {v ∈ U; ∃w ∈ U such that u = vw}.
Notice that u belongs to An(u). For two distinct elements u and v of U, we denote by u < v the lexicographic order on U i.e. u < v if u ∈ An(v) and u = v or if u = wiu ′ and v = wjv ′ for some i, j ∈ N * with i < j. We write u ≤ v if u = v or u < v.

A tree t is a subset of U that satisfies:

• ∅ ∈ t.

• If u ∈ t, then An(u) ⊂ t.

• For every u ∈ t, there exists k u (t) ∈ N such that, for every i ∈ N * , ui ∈ t iff 1 ≤ i ≤ k u (t). The vertex ∅ is called the root of t. The integer k u (t) represents the number of offsprings of the vertex u ∈ t. The set of children of a vertex u ∈ t is given by:

(2) C u (t) = {ui; 1 ≤ i ≤ k u (t)}. By convention, we set k u (t) = -1 if u ∈ t. A vertex u ∈ t is called a leaf if k u (t) = 0. We denote by L 0 (t) the set of leaves of t. A vertex u ∈ t is called a protected node if C u (t) = ∅ and C u (t) L 0 (t) = ∅,
that is u is not a leaf and none of its children is a leaf. For u ∈ t, we define F u (t), the fringe subtree of t above u, as

F u (t) = {v ∈ t; u ∈ An(v)} = {uv; v ∈ S u (t)} with S u (t) = {v ∈ U; uv ∈ t}.
Notice that S u (t) is a tree. We denote by T the set of trees and by T 0 = {t ∈ T; Card(t) < +∞} the subset of finite trees.

We say that a sequence of trees (t n , n ∈ N) converges locally to a tree t if and only if lim n→∞ k u (t n ) = k u (t) for all u ∈ U. Let (T n , n ∈ N) and T be T-valued random variables. We denote by dist(T ) the distribution of the random variable T and write

lim n-→+∞ dist(T n ) = dist(T )
for the convergence in distribution of the sequence (T n , n ∈ N) to T with respect to the local topology.

If t, t ′ ∈ T and x ∈ L 0 (t) we denote by

(3) t ⊛ x t ′ = {u ∈ t} ∪ {xv; v ∈ t ′ }
the tree obtained by grafting the tree t ′ on the leaf x of the tree t. For every t ∈ T and every x ∈ L 0 (t), we shall consider the set of trees obtained by grafting a tree on the leaf x of t:

T(t, x) = {t ⊛ x t ′ ; t ′ ∈ T}.
2.2. Galton Watson trees. Let p = (p(n), n ∈ N) be a probability distribution on N. We assume that (4) p(0) > 0, p(0) + p(1) < 1, and µ :=

+∞ n=0 np(n) < +∞.
A T-valued random variable τ is a GW tree with offspring distribution p if the distribution of k ∅ (τ ) is p and it enjoys the branching property: for n ∈ N * , conditionally on {k ∅ (τ ) = n}, the subtrees (F 1 (τ ), . . . , F n (τ )) are independent and distributed as the original tree τ .

The GW tree and the offspring distribution are called critical (resp. sub-critical, super-critical) if µ = 1 (resp. µ < 1, µ > 1).

Conditioning on the number of marked vertices

3.1. Definition of the marking procedure. We begin with a fixed tree t. We add marks on the vertices of t in an independent way such that the probability of adding a mark on a node u depends only on the number of children of u. More precisely, we consider a mark function q : N -→ [0, 1] and a family of independent Bernoulli random variables (Z u (t), u ∈ t) such that for all u ∈ t:

P(Z u (t) = 1) = 1 -P(Z u (t) = 0) = q(k u (t)).
The vertex u is said to have a mark if Z u (t) = 1. We denote by M(t) = {u ∈ t; Z u (t) = 1} the set of marked vertices and by M(t) its cardinal. We call (t, M(t)) a marked tree.

A marked GW tree with offspring distribution p and mark function q is a couple (τ, M(τ )), with τ a GW tree with offspring distribution p and conditionally on {τ = t} the set of marked vertices M(τ ) is distributed as M(t). Remark 3.1. Notice that for A ⊆ N, if we set q(k) = 1 {k∈A} , then the set M(t) is just the set of vertices with out-degree (i.e. number of offsprings) in A considered in [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF][START_REF] Rizzolo | Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set[END_REF]. Hence, the above construction can be seen as an extension of this case.

3.2. Kesten's tree. Let p be an offspring distribution satisfying Assumption (4) with µ ≤ 1 (i.e. the associated GW process is critical or sub-critical). We denote by p * = (p * (n) = np(n)/µ, n ∈ N) the corresponding size-biased distribution.

We define an infinite random tree τ * (the size-biased tree that we call Kesten's tree in this paper) whose distribution is described as follows:

There exists a unique infinite sequence

(v k , k ∈ N * ) of positive integers such that, for every h ∈ N, v 1 • • • v h ∈ τ * , with the convention that v 1 • • • v h = ∅ if h = 0. The joint distribution of (v k , k ∈ N *
) and τ * is determined recursively as follows. For each h ∈ N, conditionally given (v 1 , . . . , v h ) and {u ∈ τ * ; |u| ≤ h} the tree τ * up to level h, we have:

• The number of children (k u (τ * ), u ∈ τ * , |u| = h) are independent and distributed according to

p if u = v 1 • • • v h and according to p * if u = v 1 . . . v h . • Given {u ∈ τ * ; |u| ≤ h + 1} and (v 1 , . . . , v h ), the integer v h+1 is uniformly distributed on the set of integers {1, . . . , k v 1 •••v h (τ * )}. Remark 3.2.
Notice that by construction, a.s. τ * has a unique infinite spine. And following Kesten [START_REF] Kesten | Subdiffusive behavior of random walk on a random cluster[END_REF], the random tree τ * can be viewed as the tree τ conditioned on non extinction.

For t ∈ T 0 and x ∈ L 0 (t), we have:

P(τ * ∈ T(t, x)) = P(τ = t) µ |x| p(0) • 3.3. Main theorem.
Theorem 3.3. Let p be a critical offspring distribution that satisfies Assumption (4). Let (τ, M(τ )) be a marked GW tree with offspring distribution p and mark function q such that p(k)q(k) > 0 for some k ∈ N. For every n ∈ N * , let τ n be a tree whose distribution is the conditional distribution of τ given {M(τ ) = n}. Let τ * be a Kesten's tree associated with p. Then we have:

lim n→+∞ dist(τ n ) = dist(τ * ),
where the limit has to be understood along a subsequence for which P(M(τ ) = n) > 0.

Remark 3.4. If for every k ∈ N, 0 < q(k) < 1, then P(M(τ )) = n) > 0 for every n ∈ N, hence the above conditioning is always valid.

Proof of Theorem 3.3

Set γ = P(M(τ ) > 0). Since there exists k ∈ N with p(k)q(k) > 0, we have γ > 0. A sufficient condition (but not necessary) to have P(M(τ ) = n) > 0 for every n large enough is to assume that γ < 1 (see Lemma 4.3 and Section 4.4). Taking q = 1 A , see Remark 3.1 for 0 ∈ A ⊂ N implies γ = 1 and some periodicity may occur.

The following result is the analogue in the random case of Theorem 3.1 in [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF] and its proof is in fact a straighforward adaptation of the proof in [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF] by using:

(i) M(t) ≤ Card(t). (ii) For every t ∈ T 0 , x ∈ L 0 (t) and t ′ ∈ T, we have that M(t

⊛ x t ′ ) is distributed as M (t ′ ) + M(t) -1 {Zx(t)=1}
, where M (t ′ ) is distributed as M(t ′ ) and is independent of M(t). 

n-→+∞ P(M(τ ) ∈ [n + 1, n + 1 + n 0 ) P(M(τ ) ∈ [n, n + n 0 )) = 1, (5) lim 
we have:

lim n-→+∞ dist(τ |M(τ ) ∈ [n, n + n 0 )) = dist(τ * ).
Proof. According to Lemma 2.1 in [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF], a sequence (T n , n ∈ N) of finite random trees converges in distribution (with respect to the local topology) to some Kesten's tree τ * if and only if, for every finite tree t ∈ T 0 and every leaf x ∈ L 0 (t), ( 6) lim n→+∞ P (T n ∈ T(t, x) = P τ * ∈ T(t, x) and lim n→+∞ P(T n = t) = 0.

Let t ∈ T 0 and x ∈ L 0 (t). We set D(t, x) = M(t) -1 {Zx(t)=1} . Notice that D(t, x) ≤ Card(t) -1. Elementary computations give for every t ′ ∈ T 0 that:

P(τ = t ⊛ t ′ ) = 1 p(0) P(τ = t)P(τ = t ′ ) and P(τ * ∈ T(t, x)) = 1 p(0) P(τ = t).
As τ is a.s. finite, we have:

P(τ ∈ T(t, x), M(τ ) ∈ [n, n + n 0 )) = t ′ ∈T 0 P(τ = t ⊛ x t ′ , M(τ ) ∈ [n, n + n 0 )) = t ′ ∈T 0 P(τ = t ⊛ x t ′ )P(M(t ⊛ x t ′ ) ∈ [n, n + n 0 )) = t ′ ∈T 0 P(τ = t)P(τ = t ′ ) p(0) P( M (t ′ ) + D(t, x) ∈ [n, n + n 0 )) = P(τ * ∈ T(t, x)) P( M(τ ) + D(t, x) ∈ [n, n + n 0 )).
Notice that:

P( M (τ ) + D(t, x) ∈ [n, n + n 0 )) = Card(t)-1 k=0 P( M (τ ) + D(t, x) ∈ [n, n + n 0 ) | D(t, x) = k) P(D(t, x) = k) = Card(t)-1 k=0 P(M(τ ) ∈ [n -k, n + n 0 -k)) P(D(t, x) = k).
Then we obtain using Assumption (5) that:

lim n-→+∞ P( M(τ ) + D(t, x) ∈ [n, n + n 0 )) P(M(τ ) ∈ [n, n + n 0 )) = 1, that is lim n-→+∞ P(τ ∈ T(t, x) | M(τ ) ∈ [n, n + n 0 )) = P(τ * ∈ T(t, x)).
This proves the first limit of (6).

The second limit is immediate since, for every n ≥ Card(t),

P(τ = t | M(τ ) ∈ [n, n + n 0 )) = 0.
The main ingredient for the proof of Theorem 3.3 is then the following lemma.

Lemma 4.2. Let d be the span of the random variable M(τ ) -1. We have

(7) lim n→+∞ P(M(τ ) ∈ [n + 1, n + 1 + d)) P(M(τ ) ∈ [n, n + d)) = 1.
The end of this section is devoted to the proof of Lemma 4.2, see Section 4.4, which follows the ideas of the proof of Theorem 5.1 of [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF].

4.1.

Transformation of a subset of a tree onto a tree. We recall Rizzolo's map [START_REF] Rizzolo | Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set[END_REF] which from t ∈ T 0 and a non-empty subset A of t builds a tree t A such that Card(A) = Card(t A ). We will give a recursive construction of this map φ: (t, A) → t A = φ(t, A). We will check in the next section that this map is such that if τ is a GW tree then τ A will also be a GW tree for a well chosen subset A of τ . Figure 1 below shows an example of a tree t, a set A and the associated tree t A which helps to understand the construction.

For a vertex u ∈ t, recall C u (t) is the set of children of u in t. We define for u ∈ t:

R u (t) = w∈An(u)
{v ∈ C w (t); u < v} the vertices of t which are larger than u for the lexicographic order and are children of u or of one of its ancestors. For a vertex u ∈ t, we shall consider A u the set of elements of A in the fringe subtree above u:

(8) A u = A ∩ F u (t) = A ∩ {uv; v ∈ S u (t)}.
Let t ∈ T 0 and A ⊂ t such that A = ∅. We shall define t A = φ(t, A) recursively. Let u 0 be the smallest (for the lexicographic order) element of A. Consider the fringe subtrees of t that are rooted at the vertices in R u 0 (t) and contain at least one vertex in

A, that is (F u (t); u ∈ R A u 0 (t)), with R A u 0 (t) = {u ∈ R u 0 (t); A u = ∅} = {u ∈ R u 0 (t); ∃v ∈ A such that u ∈ An(v)} .
Define the number of children of the root of tree t A as the number of those fringe subtrees:

k ∅ (t A ) = Card(R A u 0 (t)). If k ∅ (t A ) = 0 set t A = {∅}. Otherwise let u 1 < . . . < u k ∅ (t A )
be the ordered elements of R A u 0 (t) with respect to the lexicographic order on U. And we define t A = φ(t, A) recursively by: (9)

F i (t A ) = φ (F u i (t), A u i ) for 1 ≤ i ≤ k ∅ (t A ).
Since Card(A u i ) < Card(A), we deduce t A = φ(t, A) is well defined and it is a tree by construction. Furthermore, we clearly have that A and t A have the same cardinal:

(10) Card(t A ) = Card(A). Let ((X i , Z i ), i ∈ N * ) be i.i.d. random variables such that X i is distributed according to p and Z i is conditionally on X i Bernoulli with parameter q(X i ). We define:

• G = inf{k ∈ N * ; k i=1 (X i -1) = -1}. • N = inf{k ∈ N * ; Z k = 1}.
• X a random variable distributed as 1+ N i=1 (X i -1) conditionally on {N ≤ G}. • Y a random variable which is conditionally on X binomial with parameter ( X, γ). We say that a probability distribution on N is aperiodic if the span of its support restricted to N * is 1. The following result is immediate as the distribution p of X 1 satisfies (4). Recall that for a tree t ∈ T 0 , we have:

(11) u∈t (k u (t) -1) = -1
and u∈t,u<v (k u (t)-1) > -1 for any v ∈ t. We deduce that G is distributed according to Card(τ ) and thus N is distributed like the index of the first marked vertex along the depth-first walk of τ . Then, we have:

(12) γ = P(N ≤ G).
Using Wald's equality and E[X i ] = 1, we get E N i=1 (X i -1) = 0 and thus using the definition of X as well as (12):

γE[ X] = γ + E N i=1 (X i -1)1 {N ≤G} = γ -E N i=1 (X i -1)1 {N >G} .
We have:

E N i=1 (X i -1)1 {N >G} = E G i=1 (X i -1)1 {N >G} + P(N > G)E N i=1 (X i -1) = -P(N > G) = γ -1,
where we used the strong Markov property of ((X i , Z i ), i ∈ N * ) at the stopping time G for the first equation, the definition of T and Wald's equality for the second, and (12) for the third. We deduce that E[Y ] = γE[ X] = 1, which ends the proof. 4.4. Proof of [START_REF] Neveu | Arbres et processus de Galton-Watson[END_REF]. According to Lemma 4.4 and (10), we have that M(τ 0 ) is distributed as the total size of a critical GW whose offspring distribution satisfies (4). The proof of Proposition 4.3 of [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF] (see Equation (4.15) in [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF]) entails that if τ ′ is a critical GW tree, then, if d denotes the span of the random variable Card(τ ′ ) -1, we have

lim n→∞ P(Card(τ ′ ) ∈ [n + 1, n + 1 + d)) P(Card(τ ′ ) ∈ [n, n + d)) = 1.

Protected nodes

Recall that a node of a tree t is protected if it is not a leaf and none of its offsprings is a leaf. We denote by A(t) the number of protected nodes of the tree t. Theorem 5.1. Let τ be a critical GW tree with offspring distribution p satisfying (4) and let τ * be the associated Kesten's tree. Let τ n be a random tree distributed as τ conditionally given {A(τ ) = n}. Then:

lim n-→+∞ dist(τ n ) = dist(τ * ).
Proof. Notice that P(A(τ ) = n) > 0 for all n ∈ N. Notice that the functional A satisfies the additive property of [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF], namely for every t ∈ T, every x ∈ L 0 (t) and every t ′ ∈ T that is not reduced to the root, we have (13) A(t ⊛ x t ′ ) = A(t) + A(t ′ ) + D(t, x)

where D(t, x) = 1 if x is the only child of its first ancestor which is a leaf (therefore this ancestor becomes a protected node in t ⊛ x t ′ ) and D(t, x) = 0 otherwise. According to Theorem 3.1 of [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF], to end the proof it is enough to check that (14) lim n→+∞ P(A(τ ) = n + 1)

P(A(τ ) = n) = 1.
Notice that the protected nodes of τ are exactly the nodes of τ 0 N * on which we did not add leaves i.e. for which W (u) = 0. If we set M(τ 0 N * ) = {u ∈ τ 0 N * , W (u) = 0}, we have M(τ 0 N * ) = A(τ ). Using (15), we get that the corresponding mark function q is given by:

q(k) = p(k)(1 -p(0)) k-1 p N * (k) 1 {k≥1} .
As τ is distributed as τ 0 , we have: As P(A(τ ) = n) = P(A(τ ) = n|k ∅ (τ ) > 0)P(k ∅ (τ ) > 0) and P(A(τ ) = n|k ∅ (τ ) > 0) = P(A(τ 0 ) = n) for n ≥ 2, we obtain (14) and hence end the proof.

Proposition 4 . 1 .

 41 Let n 0 ∈ N ∪ {∞}. Assume that P(M(τ ) ∈ [n, n + n 0 )) > 0 for n large enough. Then, if

Figure 1 . 4 . 2 .

 142 Figure1. Left: A tree t and the set A. Center: The fringe subtrees rooted at the vertices in R u 0 (t). Left: the tree t A . The labels have no signification, they only show which node of t corresponds to a node of t A

Lemma 4 . 3 .

 43 The distribution of Y satisfies (4) and if γ < 1 then it is aperiodic.

  lim n→+∞ P(A(τ 0 ) = n + 1) P(A(τ 0 ) = n) = lim n→+∞ P(A(τ ) = n + 1) P(A(τ ) = n) = lim n→+∞ P(M(τ 0 N * ) = n + 1) P(M(τ 0 N * ) = n) • As τ 0 N * is a critical GW tree, we deduce from Lemma 4.2 that lim n→+∞ P(M(τ 0 N * ) = n + 1) P(M(τ 0 N * ) = n) = 1.
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We denote by (τ 0 , M(τ 0 )) a random marked tree distributed as (τ, M(τ )) conditioned on {M(τ ) = ∅}. By construction, Card(τ 0 ) is distributed as G conditioned on {N ≤ G}. Lemma 4.4. Under the hypothesis of this section, we have that τ 0 M(τ 0 ) = φ(τ 0 , M(τ 0 )) is a critical GW tree with the law of Y as offspring distribution. Lemma 4.4. In order to simplify notation, we write τ for τ 0 M(τ 0 ) = φ(τ 0 , M(τ 0 )) and for u ∈ τ 0 , we set R u for R u (τ 0 ). Lemma 4.5. The random tree τ is a GW tree with offspring distribution the law of Y .

Proof of

Proof. Let u 0 be the smallest (for the lexicographic order) element of M(τ 0 ). The branching property of GW trees implies that, conditionally given u 0 and R u 0 , the fringe subtrees of τ 0 rooted at the vertices in R u 0 , (S u (τ 0 ), u ∈ R u 0 ) are independent and distributed as τ . Recall notation (8) so that the set of marked vertices of the fringe subtree rooted at u is M u (τ 0 ) = M(τ 0 ) F u (τ 0 ). Define Mu (τ 0 ) = {v; uv ∈ M u (τ 0 )} the corresponding marked vertices of S u (t). Then, the construction of the marks M(τ ) implies that the corresponding marked trees ((S u (τ 0 ), Mu (τ 0 )), u ∈ R u 0 ) are independent and distributed as (τ, M(τ )). Notice that for u ∈ R u 0 , the fringe subtree F u (τ 0 ) contains at least one mark iff u belongs to

Then by considering only the fringe subtrees containing at least one mark, we get that, conditionally on R

) are independent and distributed as (τ 0 , M(τ 0 )). We deduce from the recursive construction of the map φ, see (9), that τ is a GW tree. Notice that the offspring distribution of τ is given by the distribution of the cardinal of R M(τ 0 ) u 0

. We now compute the corresponding offspring distribution. We first give an elementary formula for the cardinal of R u (t). Let t ∈ T 0 and u ∈ t. Consider the tree t ′ = R u (t) {v ∈ t; v ≤ u}. Using (11) for t ′ , we get:

This gives Card(R u (t)) = 1 + v∈t; v≤u (k v (t ′ ) -1). We deduce from the definition of X that Card(R u 0 ) is distributed as X. We deduce from the first part of the proof that conditionally on Card(R u 0 ), the distribution of Card(R

) is binomial with parameter (Card(R u 0 (τ 0 )), γ). This gives that the offspring distribution of τ is given by the law of Y . Lemma 4.6. The GW tree τ is critical.

Proof. Since the offspring distribution is the law of Y we need to check that E[Y ] = 1 that is γE[ X] = 1 since Y is conditionally on X binomial with parameter ( X, γ).

Recall N has finite expectation as P(Z 1 = 1) > 0, is not independent of (X i ) i∈N * and is a stopping time with respect to the filtration generated by ((X i , Z i ), i ∈ N * ).

For a tree t = {∅}, let t N * = φ(t, t \ L 0 (t)) be the tree obtained from t by removing the leaves. Let τ 0 be a random tree distributed as τ conditioned to {k ∅ (τ ) > 0}. Using Theorem 6 and Corollary 2 of [START_REF] Rizzolo | Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set[END_REF] with A = N * (or Lemma 4.4 with q(k) = 1 {k>0} ), we have that τ 0 N * is a critical GW tree with offspring distribution:

Conditionally given {τ 0 N * = t}, we consider independent random variables (W (u), u ∈ t) taking values in N * whose distributions are given for all u ∈ t by P(W (u) = 0) = 0 for k u (t) = 0 and otherwise for k u (t) + n > 0 (remark that p N * (k u (t)) > 0), by

In particular for k u (t) > 0, we have:

Then, we define a new tree τ by grafting, on every vertex u of τ 0 N * , W (u) leaves in a uniform manner, see Figure 2. 

We also consider a family (i 1 , . . . , i k ) of integervalued random variables such that (i 1 , i 2 -i 1 , . . . , i k -i k-1 , W (u)+k+1-i k ) is a uniform positive partition of W (u) + k + 1. Then, for every j ≤ k such that j ∈ {i 1 , . . . , i k }, we set k j (τ ) = 0 i.e. these are leaves of τ . For every 1 ≤ j ≤ k, we set ψ(j) = i j and we apply to them the same construction as for the root and so on.

Lemma 5.2. The new tree τ is distributed as the original tree τ 0 . Proof. Let t ∈ T 0 . As P(τ = {∅}) = 0, we assume that k ∅ (t) > 0. Let t N * be the tree obtained from t by removing the leaves. Using (11), we have: