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LOCAL LIMITS OF GALTON-WATSON TREES CONDITIONED ON
THE NUMBER OF PROTECTED NODES

ROMAIN ABRAHAM, AYMEN BOUAZIZ, AND JEAN-FRANÇOIS DELMAS

Abstract. We consider a marking procedure of the vertices of a tree where each
vertex is marked independently from the others with a probability that depends only
on its out-degree. We prove that a critical Galton-Watson tree conditioned on having
a large number of marked vertices converges in distribution to the associated size-
biased tree. We then apply this result to give the limit in distribution of a critical
Galton-Watson tree conditioned on having a large number of protected nodes.

1. Introduction

In [6], Kesten proved that a critical or sub-critical Galton-Watson (GW) tree con-
ditioned on reaching at least height h converges in distribution (for the local topology
on trees) as h goes to infinity toward the so-called sized-biased tree (that we call here
Kesten’s tree and whose distribution is described in Section 3.2). Since then, other
conditionings have been considered, see [1, 2, 4] and the references therein for recent
developments on the subject.

A protected node is a node that is not a leaf and none of its offsprings is a leaf.
Precise asymptotics for the number of protected nodes in a conditioned GW tree have
already been obtained in [3, 5] for instance. Let A(t) be the number of protected
nodes in the tree t. Remark that this functional A is clearly monotone in the sense of
[4] (using for instance (13)); therefore, using Theorem 2.1 of [4], we immediately get
that a critical GW tree τ conditioned on {A(τ) > n} converges in distribution toward
Kesten’s tree as n goes to infinity. Conditioning on {A(τ) = n} needs extra work
and is the main objective of this paper. Using the general result of [1], if we have the
following limit

(1) lim
n→+∞

P(A(τ) = n+ 1)

P(A(τ) = n)
= 1,

then the critical GW tree τ conditioned on {A(τ) = n} converges in distribution also
toward Kesten’s tree, see Theorem 5.1.

In fact, the limit (1) can be seen as a special case of a more general problem: con-
ditionally given the tree, we mark the nodes of the tree independently of the rest of
the tree with a probability that depends only on the number of offsprings of the nodes.
Then we prove that a critical GW tree conditioned on the total number of marked
nodes being large converges in distribution toward Kesten’s tree, see Theorem 3.3.
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The paper is then organized as follows: we first recall briefly the framework of
discrete trees, then we consider in Section 3 the problem of a marked GW tree and the
proofs of the results are given in Section 4. In particular, we prove the limit (1) when
A is the number of marked nodes in Lemma 4.2 and we deduce the convergence of a
critical GW tree conditioned on the number of marked nodes toward Kesten’s tree in
Theorem 3.3. We finally explain in Section 5 how the problem of protected nodes can
be viewed as a problem on marked nodes and deduce the convergence in distribution
of a critical GW tree conditioned on the number of protected nodes toward Kesten’s
tree in Theorem 5.1.

2. Technical background on GW trees

2.1. The set of discrete trees.
We denote by N = {0, 1, 2, . . .} the set of non-negative integers and by N∗ = {1, 2, . . .}

the set of positive integers.
If E is a subset of N∗, we call the span of E the greatest common divisor of E. If X

is an integer-valued random variable, we call the span of X the span of {n > 0; P(X =
n) > 0}.

We recall Neveu’s formalism [7] for ordered rooted trees. Let U =
⋃

n≥0(N
∗)n be the

set of finite sequences of positive integers with the convention (N∗)0 = {∅}. For u ∈ U ,
its length or generation |u| ∈ N is defined by u ∈ (N∗)|u|. If u and v are two sequences
of U , we denote by uv the concatenation of the two sequences, with the convention
that uv = u if v = ∅ and uv = v if u = ∅. The set of ancestors of u is the set

An(u) = {v ∈ U ; ∃w ∈ U such that u = vw}.

Notice that u belongs to An(u). For two distinct elements u and v of U , we denote by
u < v the lexicographic order on U i.e. u < v if u ∈ An(v) and u 6= v or if u = wiu′

and v = wjv′ for some i, j ∈ N
∗ with i < j. We write u ≤ v if u = v or u < v.

A tree t is a subset of U that satisfies:

• ∅ ∈ t.
• If u ∈ t, then An(u) ⊂ t.
• For every u ∈ t, there exists ku(t) ∈ N such that, for every i ∈ N

∗, ui ∈ t iff
1 ≤ i ≤ ku(t).

The vertex ∅ is called the root of t. The integer ku(t) represents the number of
offsprings of the vertex u ∈ t. The set of children of a vertex u ∈ t is given by:

(2) Cu(t) = {ui; 1 ≤ i ≤ ku(t)}.

By convention, we set ku(t) = −1 if u 6∈ t.
A vertex u ∈ t is called a leaf if ku(t) = 0. We denote by L0(t) the set of leaves of t.

A vertex u ∈ t is called a protected node if Cu(t) 6= ∅ and Cu(t)
⋂

L0(t) = ∅, that is
u is not a leaf and none of its children is a leaf. For u ∈ t, we define Fu(t), the fringe
subtree of t above u, as

Fu(t) = {v ∈ t; u ∈ An(v)} = {uv; v ∈ Su(t)}

with Su(t) = {v ∈ U ; uv ∈ t}.
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Notice that Su(t) is a tree. We denote by T the set of trees and by T0 = {t ∈
T; Card(t) < +∞} the subset of finite trees.

We say that a sequence of trees (tn, n ∈ N) converges locally to a tree t if and only
if limn→∞ ku(tn) = ku(t) for all u ∈ U . Let (Tn, n ∈ N) and T be T-valued random
variables. We denote by dist(T ) the distribution of the random variable T and write

lim
n−→+∞

dist(Tn) = dist(T )

for the convergence in distribution of the sequence (Tn, n ∈ N) to T with respect to
the local topology.

If t, t′ ∈ T and x ∈ L0(t) we denote by

(3) t⊛x t
′ = {u ∈ t} ∪ {xv; v ∈ t′}

the tree obtained by grafting the tree t′ on the leaf x of the tree t. For every t ∈ T

and every x ∈ L0(t), we shall consider the set of trees obtained by grafting a tree on
the leaf x of t:

T(t, x) = {t⊛x t
′; t′ ∈ T}.

2.2. Galton Watson trees. Let p = (p(n), n ∈ N) be a probability distribution on
N. We assume that

(4) p(0) > 0, p(0) + p(1) < 1, and µ :=
+∞
∑

n=0

np(n) < +∞.

A T-valued random variable τ is a GW tree with offspring distribution p if the
distribution of k∅(τ) is p and it enjoys the branching property: for n ∈ N

∗, conditionally
on {k∅(τ) = n}, the subtrees (F1(τ), . . . , Fn(τ)) are independent and distributed as the
original tree τ .

The GW tree and the offspring distribution are called critical (resp. sub-critical,
super-critical) if µ = 1 (resp. µ < 1, µ > 1).

3. Conditioning on the number of marked vertices

3.1. Definition of the marking procedure. We begin with a fixed tree t. We add
marks on the vertices of t in an independent way such that the probability of adding
a mark on a node u depends only on the number of children of u. More precisely, we
consider a mark function q : N −→ [0, 1] and a family of independent Bernoulli random
variables (Zu(t), u ∈ t) such that for all u ∈ t:

P(Zu(t) = 1) = 1− P(Zu(t) = 0) = q(ku(t)).

The vertex u is said to have a mark if Zu(t) = 1. We denote by M(t) = {u ∈
t; Zu(t) = 1} the set of marked vertices and by M(t) its cardinal. We call (t,M(t)) a
marked tree.

A marked GW tree with offspring distribution p and mark function q is a couple
(τ,M(τ)), with τ a GW tree with offspring distribution p and conditionally on {τ = t}
the set of marked vertices M(τ) is distributed as M(t).
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Remark 3.1. Notice that for A ⊆ N, if we set q(k) = 1{k∈A}, then the set M(t) is just
the set of vertices with out-degree (i.e. number of offsprings) in A considered in [1, 8].
Hence, the above construction can be seen as an extension of this case.

3.2. Kesten’s tree. Let p be an offspring distribution satisfying Assumption (4) with
µ ≤ 1 (i.e. the associated GW process is critical or sub-critical). We denote by
p∗ = (p∗(n) = np(n)/µ, n ∈ N) the corresponding size-biased distribution.

We define an infinite random tree τ ∗ (the size-biased tree that we call Kesten’s tree
in this paper) whose distribution is described as follows:

There exists a unique infinite sequence (vk, k ∈ N
∗) of positive integers such that,

for every h ∈ N, v1 · · · vh ∈ τ ∗, with the convention that v1 · · · vh = ∅ if h = 0. The
joint distribution of (vk, k ∈ N

∗) and τ ∗ is determined recursively as follows. For each
h ∈ N, conditionally given (v1, . . . , vh) and {u ∈ τ ∗; |u| ≤ h} the tree τ ∗ up to level h,
we have:

• The number of children (ku(τ
∗), u ∈ τ ∗, |u| = h) are independent and dis-

tributed according to p if u 6= v1 · · · vh and according to p∗ if u = v1 . . . vh.
• Given {u ∈ τ ∗; |u| ≤ h + 1} and (v1, . . . , vh), the integer vh+1 is uniformly
distributed on the set of integers {1, . . . , kv1···vh(τ

∗)}.

Remark 3.2.
Notice that by construction, a.s. τ ∗ has a unique infinite spine. And following Kesten

[6], the random tree τ ∗ can be viewed as the tree τ conditioned on non extinction.
For t ∈ T0 and x ∈ L0(t), we have:

P(τ ∗ ∈ T(t, x)) =
P(τ = t)

µ|x|p(0)
·

3.3. Main theorem.

Theorem 3.3. Let p be a critical offspring distribution that satisfies Assumption (4).
Let (τ,M(τ)) be a marked GW tree with offspring distribution p and mark function
q such that p(k)q(k) > 0 for some k ∈ N. For every n ∈ N

∗, let τn be a tree whose
distribution is the conditional distribution of τ given {M(τ) = n}. Let τ ∗ be a Kesten’s
tree associated with p. Then we have:

lim
n→+∞

dist(τn) = dist(τ ∗),

where the limit has to be understood along a subsequence for which P(M(τ) = n) > 0.

Remark 3.4. If for every k ∈ N, 0 < q(k) < 1, then P(M(τ)) = n) > 0 for every n ∈ N,
hence the above conditioning is always valid.

4. Proof of Theorem 3.3

Set γ = P(M(τ) > 0). Since there exists k ∈ N with p(k)q(k) > 0, we have γ > 0.
A sufficient condition (but not necessary) to have P(M(τ) = n) > 0 for every n large
enough is to assume that γ < 1 (see Lemma 4.3 and Section 4.4). Taking q = 1A, see
Remark 3.1 for 0 ∈ A ⊂ N implies γ = 1 and some periodicity may occur.

The following result is the analogue in the random case of Theorem 3.1 in [1] and
its proof is in fact a straighforward adaptation of the proof in [1] by using:
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(i) M(t) ≤ Card(t).
(ii) For every t ∈ T0, x ∈ L0(t) and t′ ∈ T, we have that M(t⊛x t

′) is distributed

as M̂(t′) +M(t)− 1{Zx(t)=1}, where M̂(t′) is distributed as M(t′) and is inde-
pendent of M(t).

Proposition 4.1. Let n0 ∈ N ∪ {∞}. Assume that P(M(τ) ∈ [n, n + n0)) > 0 for n
large enough. Then, if

(5) lim
n−→+∞

P(M(τ) ∈ [n+ 1, n+ 1 + n0)

P(M(τ) ∈ [n, n+ n0))
= 1,

we have:

lim
n−→+∞

dist(τ |M(τ) ∈ [n, n+ n0)) = dist(τ ∗).

Proof. According to Lemma 2.1 in [1], a sequence (Tn, n ∈ N) of finite random trees
converges in distribution (with respect to the local topology) to some Kesten’s tree τ ∗

if and only if, for every finite tree t ∈ T0 and every leaf x ∈ L0(t),

(6) lim
n→+∞

P
(

(Tn ∈ T(t, x)
)

= P
(

τ ∗ ∈ T(t, x)
)

and lim
n→+∞

P(Tn = t) = 0.

Let t ∈ T0 and x ∈ L0(t). We set D(t, x) = M(t) − 1{Zx(t)=1}. Notice that
D(t, x) ≤ Card(t)− 1. Elementary computations give for every t′ ∈ T0 that:

P(τ = t⊛ t′) =
1

p(0)
P(τ = t)P(τ = t′) and P(τ ∗ ∈ T(t, x)) =

1

p(0)
P(τ = t).

As τ is a.s. finite, we have:

P(τ ∈ T(t, x),M(τ) ∈ [n, n + n0))

=
∑

t′∈T0

P(τ = t⊛x t
′,M(τ) ∈ [n, n + n0))

=
∑

t′∈T0

P(τ = t⊛x t
′)P(M(t⊛x t

′) ∈ [n, n+ n0))

=
∑

t′∈T0

P(τ = t)P(τ = t′)

p(0)
P(M̂(t′) +D(t, x) ∈ [n, n+ n0))

= P(τ ∗ ∈ T(t, x))P(M̂(τ) +D(t, x) ∈ [n, n+ n0)).

Notice that:

P(M̂(τ) +D(t, x) ∈ [n, n+ n0))

=

Card(t)−1
∑

k=0

P(M̂(τ) +D(t, x) ∈ [n, n + n0) | D(t, x) = k)P(D(t, x) = k)

=

Card(t)−1
∑

k=0

P(M(τ) ∈ [n− k, n+ n0 − k))P(D(t, x) = k).
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Then we obtain using Assumption (5) that:

lim
n−→+∞

P(M̂(τ) +D(t, x) ∈ [n, n+ n0))

P(M(τ) ∈ [n, n+ n0))
= 1,

that is
lim

n−→+∞
P(τ ∈ T(t, x) | M(τ) ∈ [n, n+ n0)) = P(τ ∗ ∈ T(t, x)).

This proves the first limit of (6).
The second limit is immediate since, for every n ≥ Card(t),

P(τ = t |M(τ) ∈ [n, n + n0)) = 0.

�

The main ingredient for the proof of Theorem 3.3 is then the following lemma.

Lemma 4.2. Let d be the span of the random variable M(τ)− 1. We have

(7) lim
n→+∞

P(M(τ) ∈ [n+ 1, n+ 1 + d))

P(M(τ) ∈ [n, n+ d))
= 1.

The end of this section is devoted to the proof of Lemma 4.2, see Section 4.4, which
follows the ideas of the proof of Theorem 5.1 of [1].

4.1. Transformation of a subset of a tree onto a tree. We recall Rizzolo’s map [8]
which from t ∈ T0 and a non-empty subset A of t builds a tree tA such that Card(A) =
Card(tA). We will give a recursive construction of this map φ: (t, A) 7→ tA = φ(t, A).
We will check in the next section that this map is such that if τ is a GW tree then
τA will also be a GW tree for a well chosen subset A of τ . Figure 1 below shows an
example of a tree t, a set A and the associated tree tA which helps to understand the
construction.

For a vertex u ∈ t, recall Cu(t) is the set of children of u in t. We define for u ∈ t:

Ru(t) =
⋃

w∈An(u)

{v ∈ Cw(t); u < v}

the vertices of t which are larger than u for the lexicographic order and are children of
u or of one of its ancestors. For a vertex u ∈ t, we shall consider Au the set of elements
of A in the fringe subtree above u:

(8) Au = A ∩ Fu(t) = A ∩ {uv; v ∈ Su(t)}.

Let t ∈ T0 and A ⊂ t such that A 6= ∅. We shall define tA = φ(t, A) recursively.
Let u0 be the smallest (for the lexicographic order) element of A. Consider the fringe
subtrees of t that are rooted at the vertices in Ru0

(t) and contain at least one vertex
in A, that is (Fu(t); u ∈ RA

u0
(t)), with

RA
u0
(t) = {u ∈ Ru0

(t); Au 6= ∅} = {u ∈ Ru0
(t); ∃v ∈ A such that u ∈ An(v)} .

Define the number of children of the root of tree tA as the number of those fringe
subtrees:

k∅(tA) = Card(RA
u0
(t)).
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If k∅(tA) = 0 set tA = {∅}. Otherwise let u1 < . . . < uk∅(tA) be the ordered elements
of RA

u0
(t) with respect to the lexicographic order on U . And we define tA = φ(t, A)

recursively by:

(9) Fi(tA) = φ (Fui
(t), Aui

) for 1 ≤ i ≤ k∅(tA).

Since Card(Aui
) < Card(A), we deduce tA = φ(t, A) is well defined and it is a tree by

construction. Furthermore, we clearly have that A and tA have the same cardinal:

(10) Card(tA) = Card(A).

1

4
2

3 5 7

6

41

2

5

63 7

41

2

5

63 7

Figure 1. Left: A tree t and the set A. Center: The fringe subtrees
rooted at the vertices in Ru0

(t). Left: the tree tA. The labels have no
signification, they only show which node of t corresponds to a node of
tA

4.2. Distribution of the number of marked nodes. Let (τ,M(τ)) be a marked
GW tree with critical offspring distribution p satisfying (4) and mark function q. Recall
γ = P(M(τ) > 0) = P(M(τ) 6= ∅).

Let ((Xi, Zi), i ∈ N
∗) be i.i.d. random variables such that Xi is distributed according

to p and Zi is conditionally on Xi Bernoulli with parameter q(Xi). We define:

• G = inf{k ∈ N
∗;

∑k

i=1(Xi − 1) = −1}.
• N = inf{k ∈ N

∗; Zk = 1}.
• X̃ a random variable distributed as 1+

∑N

i=1(Xi−1) conditionally on {N ≤ G}.

• Y a random variable which is conditionally on X̃ binomial with parameter
(X̃, γ).

We say that a probability distribution on N is aperiodic if the span of its support
restricted to N

∗ is 1. The following result is immediate as the distribution p of X1

satisfies (4).

Lemma 4.3. The distribution of Y satisfies (4) and if γ < 1 then it is aperiodic.

Recall that for a tree t ∈ T0, we have:

(11)
∑

u∈t

(ku(t)− 1) = −1

and
∑

u∈t,u<v(ku(t)−1) > −1 for any v ∈ t. We deduce that G is distributed according

to Card(τ) and thus N is distributed like the index of the first marked vertex along
the depth-first walk of τ . Then, we have:

(12) γ = P(N ≤ G).
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We denote by (τ 0,M(τ 0)) a random marked tree distributed as (τ,M(τ)) condi-
tioned on {M(τ) 6= ∅}. By construction, Card(τ 0) is distributed as G conditioned on
{N ≤ G}.

Lemma 4.4. Under the hypothesis of this section, we have that τ 0M(τ0) = φ(τ 0,M(τ 0))

is a critical GW tree with the law of Y as offspring distribution.

4.3. Proof of Lemma 4.4. In order to simplify notation, we write τ̃ for τ 0M(τ0) =

φ(τ 0,M(τ 0)) and for u ∈ τ 0, we set Ru for Ru(τ
0).

Lemma 4.5. The random tree τ̃ is a GW tree with offspring distribution the law of Y .

Proof. Let u0 be the smallest (for the lexicographic order) element of M(τ 0). The
branching property of GW trees implies that, conditionally given u0 and Ru0

, the
fringe subtrees of τ 0 rooted at the vertices in Ru0

, (Su(τ
0), u ∈ Ru0

) are independent
and distributed as τ . Recall notation (8) so that the set of marked vertices of the fringe

subtree rooted at u isMu(τ
0) = M(τ 0)

⋂

Fu(τ
0). Define M̃u(τ

0) = {v; uv ∈ Mu(τ
0)}

the corresponding marked vertices of Su(t). Then, the construction of the marks

M(τ) implies that the corresponding marked trees ((Su(τ
0),M̃u(τ

0)), u ∈ Ru0
) are

independent and distributed as (τ,M(τ)). Notice that for u ∈ Ru0
, the fringe subtree

Fu(τ
0) contains at least one mark iff u belongs to

RM(τ0)
u0

=
{

u ∈ Ru0
; ∃v ∈ M(τ 0) such that u ∈ An(v)

}

.

Then by considering only the fringe subtrees containing at least one mark, we get that,

conditionally on R
M(τ0)
u0

, the subtrees ((Su(τ
0),M̃u(τ

0)), u ∈ R
M(τ0)
u0

) are independent
and distributed as (τ 0,M(τ 0)). We deduce from the recursive construction of the map
φ, see (9), that τ̃ is a GW tree. Notice that the offspring distribution of τ̃ is given by

the distribution of the cardinal of R
M(τ0)
u0

. We now compute the corresponding offspring
distribution. We first give an elementary formula for the cardinal of Ru(t). Let t ∈ T0

and u ∈ t. Consider the tree t′ = Ru(t)
⋃

{v ∈ t; v ≤ u}. Using (11) for t′, we get:

−1 =
∑

v∈t′

(kv(t
′)− 1) =

∑

v∈t; v≤u

(kv(t
′)− 1) +

∑

v∈Ru(t)

(−1).

This gives Card(Ru(t)) = 1 +
∑

v∈t; v≤u(kv(t
′) − 1). We deduce from the definition

of X̃ that Card(Ru0
) is distributed as X̃ . We deduce from the first part of the proof

that conditionally on Card(Ru0
), the distribution of Card(R

M(τ0)
u0

) is binomial with
parameter (Card(Ru0

(τ 0)), γ). This gives that the offspring distribution of τ̃ is given
by the law of Y . �

Lemma 4.6. The GW tree τ̃ is critical.

Proof. Since the offspring distribution is the law of Y we need to check that E[Y ] = 1

that is γE[X̃ ] = 1 since Y is conditionally on X̃ binomial with parameter (X̃, γ).
Recall N has finite expectation as P(Z1 = 1) > 0, is not independent of (Xi)i∈N∗

and is a stopping time with respect to the filtration generated by ((Xi, Zi), i ∈ N
∗).
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Using Wald’s equality and E[Xi] = 1, we get E
[

∑N

i=1(Xi − 1)
]

= 0 and thus using the

definition of X̃ as well as (12):

γE[X̃ ] = γ + E

[

N
∑

i=1

(Xi − 1)1{N≤G}

]

= γ − E

[

N
∑

i=1

(Xi − 1)1{N>G}

]

.

We have:

E

[

N
∑

i=1

(Xi − 1)1{N>G}

]

= E

[

G
∑

i=1

(Xi − 1)1{N>G}

]

+ P(N > G)E

[

N
∑

i=1

(Xi − 1)

]

= −P(N > G)

= γ − 1,

where we used the strong Markov property of ((Xi, Zi), i ∈ N
∗) at the stopping time G

for the first equation, the definition of T and Wald’s equality for the second, and (12)

for the third. We deduce that E[Y ] = γE[X̃ ] = 1, which ends the proof. �

4.4. Proof of (7). According to Lemma 4.4 and (10), we have that M(τ 0) is dis-
tributed as the total size of a critical GW whose offspring distribution satisfies (4).
The proof of Proposition 4.3 of [1] (see Equation (4.15) in [1]) entails that if τ ′ is a
critical GW tree, then, if d denotes the span of the random variable Card(τ ′) − 1, we
have

lim
n→∞

P(Card(τ ′) ∈ [n + 1, n+ 1 + d))

P(Card(τ ′) ∈ [n, n + d))
= 1.

5. Protected nodes

Recall that a node of a tree t is protected if it is not a leaf and none of its offsprings
is a leaf. We denote by A(t) the number of protected nodes of the tree t.

Theorem 5.1. Let τ be a critical GW tree with offspring distribution p satisfying (4)
and let τ ∗ be the associated Kesten’s tree. Let τn be a random tree distributed as τ
conditionally given {A(τ) = n}. Then:

lim
n−→+∞

dist(τn) = dist(τ ∗).

Proof. Notice that P(A(τ) = n) > 0 for all n ∈ N. Notice that the functional A satisfies
the additive property of [1], namely for every t ∈ T, every x ∈ L0(t) and every t′ ∈ T

that is not reduced to the root, we have

(13) A(t⊛x t
′) = A(t) + A(t′) +D(t, x)

where D(t, x) = 1 if x is the only child of its first ancestor which is a leaf (therefore this
ancestor becomes a protected node in t ⊛x t

′) and D(t, x) = 0 otherwise. According
to Theorem 3.1 of [1], to end the proof it is enough to check that

(14) lim
n→+∞

P(A(τ) = n+ 1)

P(A(τ) = n)
= 1.
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For a tree t 6= {∅}, let tN∗ = φ(t, t \ L0(t)) be the tree obtained from t by removing
the leaves. Let τ 0 be a random tree distributed as τ conditioned to {k∅(τ) > 0}. Using
Theorem 6 and Corollary 2 of [8] with A = N

∗ (or Lemma 4.4 with q(k) = 1{k>0}), we
have that τ 0

N∗ is a critical GW tree with offspring distribution:

pN∗(k) =

+∞
∑

n=max(k,1)

p(n)

(

n

k

)

(p(0))n−k(1− p(0))k−1, k ∈ N.

Conditionally given {τ 0
N∗ = t}, we consider independent random variables (W (u), u ∈ t)

taking values in N
∗ whose distributions are given for all u ∈ t by P(W (u) = 0) = 0 for

ku(t) = 0 and otherwise for ku(t) + n > 0 (remark that pN∗(ku(t)) > 0), by

P(W (u) = n) =
p(ku(t) + n)

pN∗(ku(t))

(

ku(t) + n

n

)

p(0)n(1− p(0))ku(t)−1.

In particular for ku(t) > 0, we have:

(15) P(W (u) = 0) =
p(ku(t))

pN∗(ku(t))
(1− p(0))ku(t)−1.

Then, we define a new tree τ̂ by grafting, on every vertex u of τ 0
N∗ , W (u) leaves in a

uniform manner, see Figure 2.

Figure 2. The trees τ 0, τ 0
N∗ and τ̂

More precisely, given τ 0
N∗ and (W (u), u ∈ τ 0

N∗), we define a tree τ̂ and a random
map ψ : τ 0

N∗ 7−→ τ̂ recursively in the following way. We set ψ(∅) = ∅. Then, given
k∅(τ

0
N∗) = k, we set k∅(τ̂ ) = k+W (∅). We also consider a family (i1, . . . , ik) of integer-

valued random variables such that (i1, i2−i1, . . . , ik−ik−1,W (u)+k+1−ik) is a uniform
positive partition of W (u) + k + 1. Then, for every j ≤ k such that j 6∈ {i1, . . . , ik},
we set kj(τ̂ ) = 0 i.e. these are leaves of τ̂ . For every 1 ≤ j ≤ k, we set ψ(j) = ij and
we apply to them the same construction as for the root and so on.

Lemma 5.2. The new tree τ̂ is distributed as the original tree τ 0.

Proof. Let t ∈ T0. As P(τ̂ = {∅}) = 0, we assume that k∅(t) > 0. Let tN∗ be the tree
obtained from t by removing the leaves. Using (11), we have:

P(τ̂ = t) =
∏

u∈tN∗

pN∗(ku(tN∗))P(W (u) = ku(t)− ku(tN∗))
1

(

ku(t)
ku(t)−ku(tN∗)

)

=
P(τ = t)

1− p(0)

= P(τ 0 = t).
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Notice that the protected nodes of τ̂ are exactly the nodes of τ 0
N∗ on which we did

not add leaves i.e. for which W (u) = 0. If we set M(τ 0
N∗) = {u ∈ τ 0

N∗ , W (u) = 0}, we
have M(τ 0

N∗) = A(τ̂).
Using (15), we get that the corresponding mark function q is given by:

q(k) =
p(k)(1− p(0))k−1

pN∗(k)
1{k≥1}.

As τ̂ is distributed as τ 0, we have:

lim
n→+∞

P(A(τ 0) = n+ 1)

P(A(τ 0) = n)
= lim

n→+∞

P(A(τ̂) = n + 1)

P(A(τ̂) = n)
= lim

n→+∞

P(M(τ 0
N∗) = n+ 1)

P(M(τ 0
N∗) = n)

·

As τ 0
N∗ is a critical GW tree, we deduce from Lemma 4.2 that

lim
n→+∞

P(M(τ 0
N∗) = n + 1)

P(M(τ 0
N∗) = n)

= 1.

As P(A(τ) = n) = P(A(τ) = n|k∅(τ) > 0)P(k∅(τ) > 0) and P(A(τ) = n|k∅(τ) > 0) =
P(A(τ 0) = n) for n ≥ 2, we obtain (14) and hence end the proof. �
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