Empirical risk minimization is consistent with the mean absolute percentage error
Consistance de la minimisation du risque empirique pour l'optimisation de l'erreur relative moyenne
Abstract
We study in this paper the consequences of using the Mean Absolute Percentage Error (MAPE) as a measure of quality for regression models. We show that finding the best model under the MAPE is equivalent to doing weighted Mean Absolute Error (MAE) regression. We also show that, under some asumptions, universal consistency of Empirical Risk Minimization remains possible using the MAPE.
Nous nous intéressons au problème de la minimisation de l'erreur relative moyenne dans le cadre des modèles de régression. Nous montrons que l'optimisation de ce critère est équivalente à la minimisation de l'erreur absolue par régressions pondérées et que l'approche par minimisation du risque empirique est, sous certaines hypothèses, consistante pour la minimisation de ce critère.
Domains
Machine Learning [stat.ML]
Origin : Files produced by the author(s)
Loading...