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Modelling time evolving interactions in networks
through a non stationary extension of stochastic

block models

Marco Corneli, Pierre Latouche and Fabrice Rossi

Université Paris 1 Panthéon-Sorbonne - Laboratoire SAMM
90 rue de Tolbiac, F-75634 Paris Cedex 13 - France

Résumé. Le modèle à blocs stochastiques (SBM) décrit les interactions entre les som-
mets d’un graphe selon une approche probabiliste, basée sur des classes latentes. SBM fait
l’hypothèse implicite que le graphe est stationnaire. Par conséquent, les interactions entre
deux classes sont supposées avoir la même intensité pendant toute la période d’activité.
Pour relaxer l’hypothèse de stationnarité, nous proposons une partition de l’horizon tem-
porel en sous intervalles disjoints, chacun de même longueur. Ensuite, nous proposons
une extension de SBM qui nous permet de classer en même temps les sommets du graphe
et les intervalles de temps où les interactions ont lieu. Le nombre de classes latentes (K
pour les sommets, D pour les intervalles de temps) est enfin obtenu à travers la max-
imisation de la vraisemblance intégrée des données complétées (ICL exacte). Après avoir
testé le modèle sur des données simulées, nous traitons un cas réel. Pendant une journée,
les interactions parmi les participants de la conférence HCM Hypertext (Turin, 29 Juin –
1er Juillet 2009) ont été traitées. Notre méthodologie nous a permis d’obtenir une clas-
sifications intéressante des 24 heures: les moments de rencontre tels que les pauses café
ou buffets ont bien été détectés. La complexité de l’algorithme de recherche, linéaire en
fonction du nombre initial de clusters (Kmax et Dmax respectivement), nous oriente vers
l’utilisation d’instruments avancés de classification, pour réduire le nombre attendu de
classes latentes et ainsi pouvoir utiliser le modèle pour des réseaux de grand dimension.

Mots-clés. Graphes aléatoires, classification temporelle, modèles à blocs stochas-
tiques, vraisemblance classifiante intégrée

Abstract. In this paper, we focus on the stochastic block model (SBM), a probabilis-
tic tool describing interactions between nodes of a network using latent clusters. The SBM
assumes that the network has a stationary structure, in which connections of time varying
intensity are not taken into account. In other words, interactions between two groups are
forced to have the same features during the whole observation time. To overcome this
limitation, we propose a partition of the whole time horizon, in which interactions are
observed, and develop a non stationary extension of the SBM, allowing to simultaneously
cluster the nodes in a network along with fixed time intervals in which the interactions
take place. The number of clusters (K for nodes, D for time intervals) as well as the class
memberships are finally obtained through maximizing the complete-data integrated likeli-
hood by means of a greedy search approach. After showing that the model works properly
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with simulated data, we focus on a real data set. We thus consider the three days ACM
Hypertext conference held in Turin, June 29th - July 1st 2009. Proximity interactions
between attendees during the first day are modelled and an interesting clustering of the
daily hours is finally obtained, with times of social gathering (e.g. coffee breaks) recovered
by the approach. Applications to large networks are limited due to the computational
complexity of the greedy search which is dominated by the number Kmax and Dmax of
clusters used in the initialization. Therefore, advanced clustering tools are considered to
reduce the number of clusters expected in the data, making the greedy search applicable
to large networks.

Keywords. Random graphs, time event clustering, stochastic block models, inte-
grated classification likelihood.

1 Introduction

Since the interactions between nodes of a network generally have a time varying intensity,
the network has a non trivial time structure that we wish to infer. An example of this
complexity can be observed in Figure (1). On the vertical axis the aggregated number of
proximity face-to-face interactions (less than 1.5 meter) between attendees of the HCM
Hypertext conference (Turin, June 29th - July 1st, 2009) is given. On the horizontal axis,
a time line is reported, corresponding to the 24 hours of the first day of conference. The
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Figure 1: Aggregated number of interactions between conference attendees per quarter-hour.

day was partitioned in small time intervals of 20 seconds in the original data frame. We
considered 15 minutes time aggregations leading to a partition of the day made of 96
consecutive quarter-hours: each red point in the figure corresponds to one of them. If we
associate each attendee to a node and each interaction to an edge, the non stationarity
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of such a graph is clear. In the following section, after describing the general stochastic
block model, we illustrate the temporal evolution we propose.

2 A non stationary stochastic block model

We present here the SBM (Holland et al. [2]), using the same notations as in Wyse,
Friel, Latouche (2014). The set of nodes A = {a1, . . . , aN} is introduced. Undirected
links between nodes i and j from A are counted by the observed variable Xij, being the
component (i, j) of the N × N adjacency matrix X = {Xij}i≤N,j≤N . Nodes in A are
clustered in K disjointed subgroups respectively:

A = ∪k≤KAk, Al ∩ Ag = ∅, ∀l 6= g

Nodes in the same cluster in A have linking attributes of the same nature. We introduce
an hidden vector c = {c1, . . . , cN} labelling each node’s membership:

ci = k iff ai ∈ Ak, ∀k ≤ K.

In order to introduce a temporal dimension, consider now a sequence of equally spaced,
adjacent time steps {∆u := tu−tu−1}u≤U over the interval [0, T ] and a partition C1, . . . , CD
of the same interval1. We introduce furthermore a random vector y = {yu}u≤U , such that
yu = d if and only if Iu :=]tu−1, tu] ∈ Cd,∀d ≤ D. We attach to y a multinomial
distribution:

p(y|β, D) =
∏
d≤D

β
|Cd|
d ,

where |Cd| = #{Iu : Iu ∈ Cd}. Now we define N Iu
ij as the number of observed connections

between ai and aj, in the time interval Iu and we make the following crucial assumption:

p(N Iu
ij |ci = k, cj = g, yu = d) follows a Poisson(∆uλkgd), (1)

hence the number of interactions is conditionally distributed like a Poisson random vari-
able with parameter depending on k, g, d (∆u is constant).

Notation: In the following, for seek of simplicity, we will note:∏
k,g,d

:=
∏
k≤K

∏
g≤K

∏
d≤D

and
∏
ci

:=
∏
i:ci=k

and similarly for
∏

cj
and

∏
yu

.

1T and U are linked by the following relation: T = ∆uU .
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The adjacency matrix, noted N∆, has three dimensions (N ×N ×U) and its observed
likelihood can be computed explicitly:

p(N∆|Λ, c,y, K,D) =
∏
k,g,d

∆Skgd∏
ci

∏
cj

∏
yu
N Iu
ij !
e−∆λkgdRkgdλ

Skgd

kgd , (2)

where we noted Skgd :=
∑

ci

∑
cj

∑
yu
N Iu
ij and Rkgd := |Ak||Ag||Cd|2. The subscript u was

removed from ∆u to emphasize that time steps are equally spaced for every u.
Since c and y are not known, a multinomial factorizing probability density p(c,y|Φ, K,D),

depending on a hyperparameter Φ, is introduced. The joint distribution of labels looks
finally as follows:

p(c,y|Φ, K,D) =

(∏
k≤K

ω
|Ak|
k

)(∏
d≤D

β
|Cd|
d

)
, (3)

where Φ = {ω,β}.

2.1 Exact ICL for non stationary SBM

The integrated classification criterion (ICL) was introduced as a model selection criterion
in the context of Gaussian mixture models by Biernacky et al. [5]. Côme and Latouche
[6] proposed an exact version of the ICL based on a Bayesian approach for the stochastic
block model and this is the approach we follow here. The quantity we focus on is the
complete data log-likelihood, integrated with respect to the model parameters Φ and
Λ = {λkgd}k≤K,g≤K,d≤D:

ICL = log

(∫
p(N∆, c,y,Λ,Φ|K,D)dΛdΦ

)
. (4)

Introducing a prior distribution ν(Λ,Φ|K,D) over the pair Φ,Λ and thanks to ad hoc
independence assumptions, the ICL can be rewritten as follows:

ICL = log
(
ν(N∆|c,y, K,D)

)
+ log (ν(c,y|K,D)) . (5)

The choice of prior distributions over the model parameters is crucial to have an explicit
form of the ICL.

2.2 A priori distributions

We consider the conjugate prior distributions. Thus we impose a Gamma a priori over Λ:

ν(λkgd|a, b) =
ba

Γ(a)
λa−1
kgd e

−bλkgd

2Self loops are considered here for seek of simplicity. The model can easily be extended to graphs with
undirected links and/or no self loops.
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and a factorizing Dirichlet a priori distribution to Φ:

ν(Φ|K,D) = DirK(ω;α, . . . , α)×DirD(β; γ, . . . , γ).

It can be proven that the two terms in (5), reduce to:

ν(N∆|c,y, K,D) =
∏
k,g,d

ba∆Skgd

Γ(a)
∏

ci

∏
cj

∏
yu
N Iu
ij !

(6)

Γ(Skgd + a)

[∆Rkgd + b]Skgd+a

and:

ν(c,y|K,D) =
Γ(αK)

Γ(α)K

∏
k≤K Γ(|Ak|+ α)

Γ(N + αK)
× Γ(γD)

Γ(γ)D

∏
d≤D Γ(|Cd|+ γ)

Γ(U + γD)
. (7)

3 ICL maximization and experiments

In order to maximize the integrated complete likelihood (ICL) in equation (5) with respect
to the four unknowns c,y, K,D, we rely on a greedy search over labels and the number
of nodes and time clusters. This approach is described in Wyse, Frial and Latouche [4]
for a stationary latent block model.

4 Experiments

4.1 Simulated data

Some experiments on simulated data have initially been conducted. Based on the model
described above, we simulated interactions between 50 nodes, clustered in three groups
(K = 3). Interactions take place into 24 time intervals of unitary length (ideally one
hour), clustered into three groups too (D = 3). Nodes and time intervals labels are
sampled from multinomial distributions. With these settings, we consider 27 different
Poisson parameters (λs) generating connections between nodes. The generative model
used to produce them is described by:

λkgl = s1[k] + s2[g] + s3[l], k, g, l ∈ {1, 2, 3}
where:

s1 = [0, 2, 4] s2 = [0.5, 1, 1.5] s3 = [0.5, 1, 1.5]

ans s1[k] denotes the k-th component of s1. Similarly for s2 and s3. The greedy search
algorithm we coded was able to exactly recover these initial settings, converging to the
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true ICL of −122410. Other experiments were run with different values inside vectors
s1, s2, s3. Not surprisingly the more nuanced differences between λs are, the more difficult
it is for the algorithm to converge to the true value of the ICL3.

4.2 Real Data

The dataset we used was collected during the ACM Hypertext conference held in Turin,
June 29th - July 1st, 2009. Conference attendees volunteered to to wear radio badges that
monitored their face-to-face proximity. The dataset represents the dynamical network of
face-to-face proximity of 113 conference attendees over about 2.5 days4. Further details
can be found in Isella, Stehlé, Barrat, Cattuto, Pinton, Van den Broeck [7]. We focused
on the first conference day, namely the twenty four hours going from 8am of June 29th
to 7.59am of June 30th. The day was partitioned in small time intervals of 20 seconds
in the original data frame. We considered 15 minutes time aggregations, thus leading
to a partition of the day made of 96 consecutive quarter-hours (U = 96 with previous
notation). A typical row of the adjacency matrix we analyzed, looks like:

Person 1 Person 2 Time Interval (15m) Number of interactions

52 26 5 16

It means that conference attendees 52 and 26, between 9am and 9.15am have spoken for
16× 20s ≈ 5m30s.

The greedy search algorithm converged to a final ICL of -53217.4, corresponding to 23
clusters for nodes (people) and 3 time clusters. In Figure (2a) we show how daily quarter-
hours are assigned to each cluster: the class C1 contains intervals marked by a weaker
intensity of interactions (on average), whereas intervals inside C3 are characterized by
the highest intensity of interactions. This can either be verified analytically by averaging
estimated Poisson intensities for each one of the three clusters or graphically by looking
at Figure (2b). In this Figure we computed the total number of interactions between
conference attendees for each quarter-hour and it can clearly be seen how time intervals
corresponding to the higher number of interactions have been placed in cluster C3, those
corresponding to an intermediate interaction intensity, in C2 and so on. It is interesting
to remark how the model can quite closely recover times of social gathering like the lunch
break (13.00-15.00) or the “wine and cheese reception” (18.00-19.00). A complete program
of the day can be found at:

http://www.ht2009.org/program.php.

3Greedy search algorithms are path dependent and they could converge to local maxima.
4More informations can be found at:
http://www.sociopatterns.org/datasets/hypertext-2009-dynamic-contact-network/.
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(b) Connections for every time interval.

Figure 2: The aggregated connections for every time interval (2b) and time clusters found by
our model (2a) are compared.

5 Conclusions

We proposed a non-stationary evolution of the latent block model (LBM) allowing us to
simultaneously infer the time structure of a bipartite network and cluster the two node
sets. The approach we chose consists in partitioning the entire time horizon in fixed-
length time intervals to be clustered on the basis of the intensity of connections in each
interval. We derived the complete ICL for such a model and maximized it numerically,
by means of a greedy search, for two different networks: a simulated and a real one. The
results of these two tests highlight the capacity of the model to capture non-stationary
time structures.
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