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ENTROPY RIGIDITY OF HILBERT AND RIEMANNIAN METRICS

THOMAS BARTHELMÉ, LUDOVIC MARQUIS, AND ANDREW ZIMMER

Abstract. In this paper we provide two new characterizations of real hyperbolic n-space using the Poincaré
exponent of a discrete group and the volume growth entropy. The first characterization is in the space of

Hilbert metrics and generalizes a result of Crampon. The second is in the space of Riemannian metrics with
Ricci curvature bounded below and generalizes a result of Ledrappier and Wang.

1. Introduction

For any discrete group Γ acting by isometries on a proper metric space (X, d), we define the Poincaré, or
critical, exponent of Γ as

δΓ(X, d) := lim sup
r→+∞

1

r
log #{γ ∈ Γ | d(o, γ · o) 6 r}

where o ∈ X is some fixed point.
If X has a measure µ one can also define the volume growth entropy as

hvol(X, d, µ) := lim sup
r→+∞

1

r
logµ (Br(o)) .

If the measure µ is Isom(X, d)-invariant, finite on bounded sets, and positive on open sets then

δΓ(X, d) 6 hvol(X, d, µ)

and, in some cases, for instance when the action of Γ on (X, d) is cocompact, the Poincaré exponent and the
volume growth entropy coincide.

These two invariants have a long and interesting history, as they are intimately related to the geometric
and dynamical property of the space (X, d) (for instance [?, ?]). Moreover, they are often linked to rigidity
phenomenons (for instance [?, ?]).

In this paper we present two new characterizations of real hyperbolic n-space using the Poincaré exponent
of a discrete group and the volume growth entropy. The first characterization (Theorem ??) is in the space
of Hilbert metrics and generalizes a result of Crampon [?]. The second characterization (Theorem ??) is in
the space of Riemannian metrics with Ricci curvature bounded below and generalizes a result of Ledrappier
and Wang [?].

1.1. Hilbert metrics. Given a proper convex subset Ω ⊂ P(Rn+1), we let HΩ be the associated Hilbert
metric. The Hilbert metric is a complete length metric on Ω which is invariant under the group of projective
automorphisms of Ω

Aut(Ω) := {ϕ ∈ PGLn+1(R) : ϕΩ = Ω}.
Moreover, if Ω is projectively equivalent to the ball B, then (Ω, HΩ) is the Klein–Beltrami model of the real
hyperbolic n-space.

Tholozan recently proved the volume entropy conjecture for Hilbert metrics:
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2 ENTROPY RIGIDITY OF HILBERT AND RIEMANNIAN METRICS

Theorem 1.1. [?] If Ω ⊂ P(Rn+1) is a proper convex open set then

hvol(Ω, HΩ, µB) 6 n− 1.

where µB is the Busemann–Hausdorff volume associated with (Ω, HΩ) (or any bi-Lipschitz equivalent mea-
sure).

In particular the volume growth entropy is maximized when Ω is projectively equivalent to the unit ball.
There are many other examples which maximize volume growth entropy, for instance, Berck, Bernig and
Vernicos [?] proved that, if ∂Ω is C1,1 then

hvol(Ω, HΩ, µB) = n− 1.

However, if Ω has “enough” symmetry then it is reasonable to expect that hvol(Ω, HΩ, µB) = n − 1 if and
only if Ω is projectively equivalent to the unit ball. For instance, Crampon proved the following:

Theorem 1.2. [?] Suppose Ω ⊂ P(Rn+1) is a proper strictly convex open set and there exists a discrete
group Γ 6 Aut(Ω) that acts properly, freely, and cocompactly. Then hvol(Ω, HΩ, µB) 6 n− 1 with equality if
and only if Ω is projectively isomorphic to B (and in particular (Ω, HΩ) is isometric to Hn).

Remark 1.3. If Ω ⊂ P(Rn+1) is a proper convex open set and there exists a discrete group Γ 6 Aut(Ω) that
acts properly, freely, and cocompactly then Benoist [?] proved that Ω is strictly convex if and only if ∂Ω is
C1.

Our first new characterization of real hyperbolic space removes the strictly convex hypothesis from Cram-
pon’s theorem:

Theorem A. Suppose Ω ⊂ P(Rn+1) is a proper convex open set and there exists a discrete group Γ 6 Aut(Ω)
which acts properly, freely, and cocompactly. Then hvol(Ω, HΩ, µB) 6 n− 1 with equality if and only if Ω is
projectively isomorphic to B (and in particular (Ω, HΩ) is isometric to Hn).

Remark 1.4. For the Hilbert metric, strict convexity of Ω is somewhat analogous to negative curvature.
In particular, for a strictly convex set the Hilbert metric is uniquely geodesic, that is every pair of points
are joined by a unique geodesic. Moreover, Benoist [?] proved that when Ω is strictly convex and has a
cocompact quotient then the induced geodesic flow is Anosov and is C1+α. In his proof of Theorem ??,
Crampon first shows that the topological entropy of this flow coincides with the volume growth entropy
and then he uses techniques from hyperbolic dynamics to prove rigidity. For a general convex open set, the
Hilbert metric may not be uniquely geodesic, but one can consider a natural “geodesic line” flow obtained
by flowing along the geodesics that are lines segments in P(Rd). However this flow is only C0 and will have
“parallel” flow lines. Thus Crampon’s approach via smooth hyperbolic dynamics will not extend, at least
directly, to the general case.

Our second new characterization of real hyperbolic space replaces compactness with finite volume, but
with the cost of replacing hvol with δΓ.

Theorem B. Suppose Ω ⊂ P(Rn+1) is a proper convex open set and there exists a discrete group Γ which
preserves Ω and acts properly, freely, and with cofinite volume. Then δΓ 6 n− 1 with equality if and only if
Ω is projectively isomorphic to B (and in particular (Ω, HΩ) is isometric to Hn).

When Γ\Ω is non compact but has finite volume, it is unclear whether or not hvol(Ω, HΩ, µB) and
δΓ(Ω, HΩ) coincide (for Riemannian negatively curved metrics, there exists groups acting with cofinite volume
for which the volume entropy and the critical exponent are distinct [?]). However, when Ω has C1 boundary
and is strictly convex then Crampon and Marquis [?, Théorème 9.2] proved that these two asymptotic
invariants coincide. We will prove that in the finite quotient case having C1 boundary and being strictly
convex are equivalent and thus establish:

Corollary C. Suppose Ω ⊂ P(Rn+1) is a proper convex open set which is either strictly convex or has C1

boundary and such that there exists a discrete group Γ which preserves Ω and acts properly, freely, and with
cofinite volume. Then hvol(Ω, HΩ, µB) 6 n− 1 with equality if and only if Ω is projectively isomorphic to B
(and in particular (Ω, HΩ) is isometric to Hn).

Remark 1.5. This result was announced for surfaces by Crampon in [?], but his proof was not complete in
the finite volume case since some of the dynamical results used are only fully proved in the compact case.
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1.2. The Blaschke metric. Associated to every Hilbert metric space (Ω, HΩ) is a Riemannian distance
BΩ on Ω called the Blaschke, or affine, distance (see, for instance, [?, ?]). This Riemannian distance is
Aut(Ω)-invariant and by a result of Calabi [?] has Ricci curvature bounded below by −(n−1). In particular,
if dVol is the associated Riemannian volume form then the Bishop-Gromov volume comparison theorem
implies that

hvol(Ω, BΩ, dVol) 6 n− 1.

Benoist and Hulin [?] showed that the Hilbert distance and the Blaschke distance are bi-Lipschitz equiv-
alent. Tholozan recently proved the following new relation:

Theorem 1.6. [?] If Ω ⊂ P(Rn+1) is a proper convex subset, then

BΩ < HΩ + 1.

In particular,
hvol(Ω, HΩ, µ) 6 hvol(Ω, BΩ, dVol)

and if Γ 6 Aut(Ω) is a discrete group then

δΓ(Ω, HΩ) 6 δΓ(Ω, BΩ).

Tholozan’s result allows us to transfer from the Hilbert setting to the Riemannian setting where many
more analytic tools are available.

1.3. Riemannian metrics. In the Riemannian setting we will prove the following characterization of real
hyperbolic space:

Theorem D. Let (X, g) be a complete, simply connected Riemannian n-manifold and Γ a group acting by
isometries on X. Suppose that

(1) Ric > −(n− 1);
(2) X has bounded curvature;
(3) Γ acts properly and freely on X and Γ\X has finite volume;
(4) the Poincaré exponent satisfies δΓ(X, g) = n− 1

Then X is isometric to the real hyperbolic space Hn.

Ledrappier and Wang [?] proved the above theorem when the quotient Γ\X is assumed to be compact,
in which case you can replace the Poincaré exponent with the volume entropy. Although our proof will
follow the general outline of their argument, only assuming finite volume introduces a number of technical
complications. The bounded curvature assumption and finite volume assumptions are important assumptions
for our argument, but it may be possible to remove them.

Acknowledgments. The first author would like to thank François Ledrappier and Nicolas Tholozan for
helpful discussions. The second author was supported by the ANR Facettes and the ANR Finsler. The third
author was partially supported by NSF grant 1400919.

2. Entropy rigidity for Riemannian metrics

This section is entirely devoted to the proof of Theorem ??. It will follow from Proposition ?? and
Proposition ?? below.

2.1. The Busemann boundary. In this subsection we describe the Busemann compactification of a non-
compact complete Riemannian manifold X.

Fix a point o ∈ X. As in [?, ?], we will normalize our Busemann functions so that ξ(o) = 0. Now, for
each y ∈ X, define the Busemann function based at y to be

by(x) := d(x, y)− d(y, o).

As each by is 1-Lipschitz, the embedding y → by ∈ C(X) is relatively compact when C(X) is equipped with

the topology of uniform convergence on compact subsets. The Busemann compactification X̂ of X is then

defined to be the closure of X in C(X). The Busemann boundary of X is the set ∂X̂ = X̂ \X. We begin
by recalling some features of this compactification.

Theorem 2.1. Let X be a non-compact complete simply connected Riemannian manifold. Then
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(1) X is open in X̂, hence the Busemann boundary ∂X̂ is compact.

(2) The action of Isom(X) on X extends to an action on X̂ by homeomorphisms and for γ ∈ Isom(X)

and ξ ∈ ∂X̂ the action is given by

(γ · ξ)(x) = ξ(γ−1x)− ξ(γ−1o).

The first result can be found in [?, Proposition 1]. The second assertion is straightforward to prove.

2.2. Patterson-Sullivan measures.

Definition 2.2. Let (X, g) be a non-compact complete simply connected Riemannian manifold and Γ 6
Isom(X, g) a discrete subgroup with δΓ < ∞. A family of measures {νx : x ∈ X} on ∂X̂ is a (normalized)
Patterson-Sullivan measure if

(1) νo(∂X̂) = 1,
(2) for any x, y ∈ X the measures νx, νy are in the same measure class and satisfy

dνx
dνy

(ξ) = e−δΓ(ξ(x)−ξ(y)),

(3) for any g ∈ Γ, νgx = g∗νx.

Following the standard construction of Pattersion-Sullivan measures via the Poincaré series (see for in-
stance Section 2 of [?]) we obtain:

Proposition 2.3. Let (X, g) be a non-compact complete simply connected Riemannian manifold and Γ 6
Isom(X, g) a discrete subgroup with δΓ < ∞. Then there exists a Patterson-Sullivan measure {νx : x ∈ X}
on ∂X̂.

2.3. An integral formula. Now suppose (X, g) is a non-compact complete simply connected Riemannian
manifold and Γ 6 Isom(X, g) is a discrete subgroup with δΓ < ∞. Moreover, assume that Γ acts properly
and freely on X and the quotient manifold M = Γ\X has finite volume (with respect to the Riemannian
volume form).

Following [?, ?], we introduce the laminated space

XM = (X × ∂X̂)/Γ

where Γ acts diagonally on the product. The space XM is laminated by the images of X × {ξ} under the
projection. The leaves of this lamination inherit a smooth structure from X and using this structure we
can define a gradient ∇W , a divergence divW , and a Laplacian ∆W in the leaf direction. A Patterson-
Sullivan measure {νx : x ∈ X} yields a measure on the laminated space XM as follows: by definition
dνx(ξ) = e−δΓξ(x)dνo(ξ) for all x ∈ X. In particular if dx is the Riemannian volume form on X, then the
measure

dm̃(x, ξ) = e−δΓξ(x)dxdνo(ξ)

is Γ-invariant and descends to a measure ν on XM .
Now the function x → νx(∂X̂) is Γ-invariant so with a slight abuse of notation the measure ν has total

mass

ν(XM ) =

∫
M

νx(∂X̂)dx.

Since x→ νx(∂X̂) is continuous, if Γ\M is compact then the measure ν is finite. For general finite volume
quotients it is not clear when ν will be a finite measure, but we can prove the following:

Proposition 2.4. With the notation above, if (X, g) has Ric > −(n− 1) and δΓ = n− 1 then ν(XM ) <∞.

Proof. Since Ric > −(n− 1) the Laplacian comparison theorem implies for any ξ ∈ ∂X̂ we have

∆e−(n−1)ξ > 0

in the sense of distribution (see for instance [?, Proposition 4]). So in particular, since δΓ = n − 1, the
function

f(x) := νx(∂X̂) =

∫
∂X̂

e−(n−1)ξ(x)dνo(x)
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is such that ∆f > 0 in the sense of distributions. However, thanks to the invariance of the Patterson-Sullivan
measure, f is Γ-invariant and hence descends to a superharmonic function on M = Γ\X. Since M has finite
volume and f is a positive, superharmonic function, f must be constant [?, Proposition 0.2]. Then,

ν(XM ) =

∫
M

νx(∂X̂)dx =

∫
M

νo(∂X̂)dx =

∫
M

dx = Vol(M). �

Finally the argument at the end of Section 2 of [?] can be used to show the following:

Theorem 2.5. With the notation above, if Y is a continuous vector field on XM which is C1 along the
leaves X × {ξ} so that ‖Y ‖g and divW Y are in L1(XM , dν) then∫

divW Y dν = δΓ

∫ 〈
Y,∇Wξ

〉
dν.

Remark 2.6. Since
∥∥∇Wξ∥∥ 6 1 almost everywhere we see that∫ ∣∣〈Y,∇Wξ〉∣∣ dν 6 ∫ ‖Y ‖g dν <∞.

Thus the right hand side of the equation in Theorem ?? is well defined.

2.4. A special Busemann function.

Proposition 2.7. Suppose (X, g) is a complete simply connected Riemannian manifold with Ric > −(n−1)
and bounded sectional curvature. Assume Γ 6 Isom(X) is a discrete group that acts properly and freely on
X so that M = Γ\X has finite volume (with respect to the Riemannian volume form). If δΓ = n − 1 then

there exists ξ0 ∈ ∂X̂ so that ∆ξ0 ≡ n− 1.

For the rest of the subsection assume (X, g) and Γ 6 Isom(X, g) satisfy the hypothesis of Proposition ??.
Let pt(x, y) be the heat kernel on X. By Theorem 4 in [?], we have that, for any t > 0 there exists

C = C(t) > 1, such that

pt(x, y) 6 Ce
−d(x,y)2

C .

On the space X̂ = X × ∂X̂ define the function

Ft(x, ξ) :=

∫
X

pt(x, y)ξ(y)dy.

Because of the estimate on pt(x, y) above Ft is well defined. In Appendix ?? we will use standard facts about
the heat kernel to prove the following:

Proposition 2.8. With the notation above,

(1) For any t > 0 and ξ ∈ ∂X̂, the function x→ Ft(x, ξ) is C∞.
(2) For any t > 0, the functions (x, ξ)→ ∇xFt(x, ξ) and (x, ξ)→ ∆xFt(x, ξ) are continuous.

(3) For any t > 0 and ξ ∈ ∂X̂,

‖∇xFt(x, ξ)‖ 6 e(n−1)t.

(4) For any t > 0 and ξ ∈ ∂X̂,

∆xFt(x, ξ) 6 n− 1.

Now, let Ỹt(x, ξ) = ∇xFt(x, ξ). Then Ỹt descends to a continuous vector field Yt on XM which is C∞

along the leaves X × {ξ}.

Lemma 2.9. Suppose M is a complete Riemannian manifold and x0 ∈ M , then there exists C > 0 so that
for any r > 4 there is a C∞ function ϕr : M → R such that

(1) 0 6 ϕr 6 1 on M ,
(2) ϕr ≡ 1 on Br(x0),
(3) ϕr ≡ 0 on M \B2r(x0),
(4) ‖∇ϕr‖ 6 C/r on M .
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Proof. Pick a smooth function f : [0,∞)→ R such that 0 6 f 6 1, f ≡ 1 on [0, 1], and f ≡ 0 on [2,∞). Let
C1 = max{|f ′(t)|}. Next, let g : [−1/3, 4/3] → [0, 1] be a C∞ function with g ≡ 0 on [−1/3, 1/3] and g ≡ 1
on [2/3, 4/3]. Let C2 = max{|g′(t)|}. We claim that C = 2C1C2 satisfies the conclusion of the lemma.

Fix r > 0 and define the function φ : M → R by

φ(x) = f(d(x, x0)/r).

Then φ is C1/r-Lipschitz. Then, we can approximate φ by a C∞ function, θ : X → R, so that |φ− θ| < 1/r
and θ is 2C1/r-Lipschitz (see, for instance, [?]). Finally, define

ϕr(x) := g(θ(x)).

Then 0 6 ϕr 6 1 on N by construction. Moreover, if x ∈ Br(x0), we have that φ(x) = 1 and so,
θ(x) ∈ [1−1/r, 1+1/r] ⊂ [2/3, 4/3]. Thus, ϕr(x) = 1. Similarly, if x ∈M \B2r(x0) then ϕr(x) = 0. Finally,
we see that ϕr is 2C1C2/r-Lipschitz. �

Next, let ϕr : M → R be as in the above lemma for some x0 ∈ M . Then, define f̃r : X × ∂X̂ → R by

f̃r(x, ξ) = ϕr(π
′(x)), where π′ : X →M is the universal cover map. Since f̃r is Γ-invariant, it descends to a

continuous function fr : XM → R which is C∞ along the leaves X × {ξ}.
Let x̃0 ∈ X be a preimage of x0 ∈ M . For r > 0, let Kr ⊂ XM be the image of Br(x̃0) × ∂X̂ under the

map

π : X × ∂X̂ → XM .

Lemma 2.10. Kr is compact, fr ≡ 1 on Kr, and fr ≡ 0 on XM \K2r.

Proof. Clearly, Kr is compact by definition. Notice that (x, ξ) ∈ π−1(Kr) if and only if x ∈ ∪γ∈ΓBr(γx̃0).

Thus, if (x, ξ) ∈ π−1(Kr) then f̃r(x, ξ) ≡ 1, and, if (x, ξ) /∈ π−1(K2r) then f̃r ≡ 0. �

Lemma 2.11. For any r > 0 and t > 0,

‖frYt‖ ∈ L1(XM , dν)

and
divW(frYt) ∈ L1(XM , dν).

Proof. Since ‖frYt‖ 6 e(n−1)t, the first assertion is obvious. Now

divW(frYt) = fr divW Yt +
〈
∇Wfr, Yt

〉
,

so ∫
XM

∣∣∣divW frYt

∣∣∣ dν 6 ∫
XM

fr

∣∣∣divW Yt

∣∣∣ dν +
Ce(n−1)t

r
ν(XM ).

However, the support of fr is compact in XM and the map (x, ξ)→ ∆xF (x, ξ) is continuous. Thus,
∣∣∣divW Yt

∣∣∣
is bounded on the support of fr. Hence,∫

XM

fr

∣∣∣divW Yt

∣∣∣ dν < +∞. �

Lemma 2.12. For any t > 0,
divW Yt ∈ L1(XM , dν),

and ∫
XM\K2r

∣∣∣divW Yt

∣∣∣ dν 6 (2n− 2 +
C

r

)
e(n−1)tν(XM \Kr).

Proof. For a real number t, let t+ = max{0, t} and t− = min{0, t}. Then,∫
XM

∣∣∣divW(Yt)
∣∣∣ dν =

∫
XM

divW(Yt)
+dν −

∫
XM

divW(Yt)
−dν

and, by Proposition ??, ∫
XM

divW(Yt)
+dν 6 (n− 1)ν(XM ).

So, it is enough to bound the integral of divW(Yt)
−.
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By Theorem ??, ∫
XM

divW(frYt)dν = (n− 1)

∫
XM

〈
frYt,∇Wξ

〉
dν.

So, by Proposition ??, ∣∣∣∣∫
XM

divW(frYt)dν

∣∣∣∣ 6 (n− 1)e(n−1)tν(XM ).

Now,

divW frYt = fr divW Yt +
〈
∇Wfr, Yt

〉
and

∣∣〈∇Wfr, Yt〉∣∣ 6 Ce(n−1)t

r
,

so ∣∣∣∣∫
XM

fr divW(Yt)dν

∣∣∣∣ 6 (Cr + n− 1

)
e(n−1)tν(XM ).

Then

−
∫
fr divW(Yt)

−dν = −
∫
fr divW(Yt)dν +

∫
fr divW(Yt)

+dν

6 −
∫
fr divW(Yt)dν + (n− 1)ν(XM ).

Which implies that

−
∫
fr divW(Yt)

−dν 6

(
C

r
+ 2n− 2

)
e(n−1)tν(XM ).

Finally limr→∞ fr = 1 and so, by Fatou’s Lemma,

−
∫
XM

divW(Yt)
−dν 6 lim inf

r→∞
−
∫
fr divW(Yt)

−dν 6 (2n− 2) e(n−1)tν(XM ).

By the remarks at the start of the proof we then have that divW Yt ∈ L1(XM , dν).
To prove the second assertion first observe that, for any r ∈ R, |r| = −r + 2r+. So,∫

XM\K2r

∣∣∣divW Yt

∣∣∣ dν 6 ∫
XM

(1− fr)
∣∣∣divW Yt

∣∣∣ dν
= −

∫
XM

(1− fr) divW Ytdν + 2

∫
XM

(1− fr)(divW Yt)
+dν.

Now, ∫
XM

(1− fr)(divW Yt)
+dν 6

∫
XM

(1− fr)(n− 1)dν 6 (n− 1)ν(XM \Kr),

and, by Theorem ??,

−
∫
XM

(1− fr) divW Ytdν = −
∫
XM

divW ((1− fr)Yt) dν +

∫
XM

〈
∇W(1− fr), Yt

〉
dν

6 (n− 1)

∣∣∣∣∫
XM

〈
(1− fr)Yt,∇Wξ

〉
dν

∣∣∣∣+
Ce(n−1)t

r
ν(XM \Kr)

6

(
n− 1 +

C

r

)
e(n−1)tν(XM \Kr).

Combining the above inequalities establishes the second assertion of the lemma. �
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Now, for any r > 0, we have∫
XM\K2r

divW Ytdν

=

∫
x∈M\B2r(x0)

(∫
ξ∈∂M̂

(divW Yt)e
−(n−1)ξ(x)dνo

)
dx

=

∫
x∈M\B2r(x0)

(∫
ξ∈∂M̂

divW
(
Yte
−(n−1)ξ(x)

)
+ (n− 1)〈∇W ξ, Yt〉e−(n−1)ξ(x)dνo

)
dx

=

∫
x∈M\B2r(x0)

(∫
ξ∈∂M̂

divW
(
Yte
−(n−1)ξ(x)

)
dνo

)
dx+ (n− 1)

∫
XM\K2r

〈∇W ξ, Yt〉dν.

So, by Lemma ??, we see that

(1)

∫
x∈M\B2r(x0)

∣∣∣∣(∫
ξ∈∂M̂

divW
(
Yte
−(n−1)ξ(x)

)
dνo

)∣∣∣∣ dx
6

(
2n− 2 +

C

r

)
e(n−1)tν(XM \Kr) + (n− 1)ν(XM \K2r).

Thanks to Lemma ??, we can apply Theorem ?? to Yt(x, ξ). So, redoing the same computations as above,
we get

(n− 1)

∫
XM

〈∇W ξ, Yt〉dν =

∫
x∈M

(∫
ξ∈∂M̂

divW
(
Yte
−(n−1)ξ(x)

)
dνo

)
dx+ (n− 1)

∫
XM

〈∇W ξ, Yt〉dν.

and thus

(2)

∫
x∈M

(∫
ξ∈∂M̂

divW
(
Yte
−(n−1)ξ(x)

)
dνo

)
dx = 0.

We now choose a countable and locally finite open cover {Ui} of M such that each Ui is small enough so
that π−1(Ui) is a disjoint union of open sets all diffeomorphic to Ui.

Let {χi} be a partition of unity subordinated to {Ui}. For each Ui, we choose one connected component

of its lift that we denote by Ũi and we write χ̃i for the lift of χi to Ũi.
Now by equation (??) above, for any ε > 0, there exists r > 0 so that, for all 0 6 t 6 1, we have∫

x∈M\B2r(x0)

∣∣∣∣(∫
ξ∈∂M̂

divW
(
Yte
−(n−1)ξ(x)

)
dνo

)∣∣∣∣ dx 6 ε.
Let

J := {j ∈ N : Uj ∩B2r(x0) 6= ∅}.

Because the cover M =
⋃
Ui is locally finite, we see that J is a finite subset of N. Moreover by Equation ??

∑
j∈J

∫
x∈M

(∫
ξ∈∂M̂

divW
(
Yte
−(n−1)ξ(x)

)
dνo

)
χj(x)dx

= −
∫
x∈M

(∫
ξ∈∂M̂

divW
(
Yte
−(n−1)ξ(x)

)
dνo

)∑
j /∈J

χj(x)dx

> −
∫
x∈M\B2r(0)

∣∣∣∣(∫
ξ∈∂M̂

divW
(
Yte
−(n−1)ξ(x)

)
dνo

)∣∣∣∣ dx
> −ε.
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Then, since the sum is finite,∑
j∈J

∫
x∈M

(∫
ξ∈∂M̂

divW
(
Yte
−(n−1)ξ(x)

)
χj(x)dνo(ξ)

)
dx

=
∑
j∈J

∫
ξ∈∂M̂

(∫
x∈Ũj

divW
(
Yte
−(n−1)ξ(x)

)
χ̃jdx

)
dνo(ξ)

=
∑
j∈J

∫
ξ∈∂M̂

(∫
x∈Ũj

divW
(
Yte
−(n−1)ξ(x)χ̃j

)
dx−

∫
x∈Ũj

〈Yt,∇χ̃i〉e−(n−1)ξ(x)dx

)
dνo(ξ)

= −
∑
j∈J

∫
ξ∈∂M̂

(∫
x∈Ũi

〈Yt,∇χ̃j〉e−(n−1)ξ(x)dx

)
dνo(ξ).

Since the sum is finite, one can send t→ 0 to obtain

∑
j∈J

∫
ξ∈∂M̂

(∫
x∈Ũj

〈∇ξ,∇χ̃j〉e−(n−1)ξ(x)dx

)
dνo(ξ) 6 ε.

By integration by parts, we have

∑
j∈J

∫
ξ∈∂M̂

(∫
x∈Ũj

e−(n−1)ξ(x)∆χ̃jdx

)
dνo(ξ) = −

∑
j∈J

∫
ξ∈∂M̂

(∫
x∈Ũj

〈∇e−(n−1)ξ(x),∇χ̃j〉dx

)
dνo(ξ)

= (n− 1)
∑
j∈J

∫
ξ∈∂M̂

(∫
x∈Ũj

〈∇ξ,∇χ̃j〉e−(n−1)ξ(x)dx

)
dνo(ξ).

So, ∑
j∈J

∫
ξ∈∂M̂

(∫
x∈Ũj

e−(n−1)ξ(x)∆χ̃jdx

)
dνo(ξ) 6

ε

n− 1
.

By [?, Proposition 4] (that is still true in our context), ∆e−(n−1)ξ > 0 in the sense of distribution. Hence,

for all ξ ∈ ∂M̂ and all i, ∫
x∈Ũj

e−(n−1)ξ(x)∆χ̃jdx > 0.

So, we conclude that for all j ∈ J , and for νo-a.e. ξ ∈ ∂M̂∫
x∈Ũj

e−(n−1)ξ(x)∆χ̃jdx 6
ε

n− 1
.

Since ε was arbitrarily small, we deduce that, for all j ∈ N and νo-a.e. ξ ∈ ∂M̂ ,∫
x∈Ũj

e−(n−1)ξ(x)∆χ̃jdx = 0.

In the argument above, one can replace Ũj by g · Ũj and χ̃j by g · χ̃j for any g ∈ Γ. Since Γ is countable,

we conclude that for any g ∈ Γ, any j, and νo-a.e. ξ ∈ ∂M̂∫
x∈g·Ũi

e−(n−1)ξ(x)∆(g · χ̃j)dx = 0.

One can now conclude that, for νo-a.e. ξ ∈ ∂M̂ , ∆e−(n−1)ξ(x) = 0 in the sense of distribution in the same
way as in [?, p.472], which concludes the proof of Proposition ??.
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2.5. Final steps.

Proposition 2.13. Suppose (X, g) is a complete simply connected Riemannian manifold with Ric > −(n−1)
and Γ 6 Isom(X) is a discrete group that acts properly discontinuously on X so that M = Γ\X has finite
volume (with respect to the Riemannian volume form).

If there exists ξ0 ∈ ∂X̂ so that ∆ξ0 ≡ n− 1 then X is isometric to the real hyperbolic n-space.

Proof. By the proof of Theorem 6 in [?] if there exists some ξ1 ∈ ∂X̂ so that ∆ξ1 ≡ n− 1 and ξ1 6= ξ0 then
X is isometric to the real hyperbolic n-space. So, suppose for a contradiction, that we have

{ξ0} = {ξ ∈ ∂X̂ : ∆ξ ≡ n− 1}.

Since

∆(γ · ξ)(x) = (∆ξ)(γ−1x)

we see that γ · ξ0 also has constant Laplacian equal to n− 1. Thus γ · ξ0 = ξ0 for all γ ∈ Γ.
Now if γ ∈ Γ we see that

diff(γ)γ−1x∇ξ0(γ−1x) = ∇
(
ξ0(γ−1x)

)
= ∇

(
ξ0(γ−1x)− ξ0(γ−1o)

)
= ∇(γ · ξ0)(x) = ∇ξ0(x).

Thus, ∇ξ0(x) is a Γ-invariant vector field, and therefore descends to a vector field V on M .
Now, div V = n− 1 since div∇ξ0 = ∆ξ0 ≡ n− 1, and moreover ‖V ‖ 6 1. But, since M has finite volume,

there cannot exists a vector field V with ‖V ‖ ,div V ∈ L1(M) and div V > 0 (see for instance [?]). �

Putting together Proposition ?? and Proposition ?? finishes the proof of Theorem ??.

Remark 2.14. Note that Proposition ?? is not necessary for the proof of Theorem ??. Indeed, since we
assume bounded curvature, we can replace Proposition ?? by [?, Theorem 6]. We however included that
result since it shows that the bounded curvature assumption can be replaced by the finite volume assumption.
In particular, we want to emphasize that the bounded curvature assumption is only used in order to get the
heat kernel estimates needed for Proposition ??.

3. Entropy rigidity for Hilbert metrics

We begin by observing that the Blaschke metric has bounded sectional curvature. For the definition and
some properties of the Blaschke metric, we refer to [?, ?].

Lemma 3.1. Let Ω be a proper convex open set in P(Rn+1). There exists a universal constant Cn, depending
only on the dimension such that the sectional curvature of the Blaschke metric on Ω is bounded above by Cn
and below by −Cn.

Proof. Benzécri [?] proved that the action of PGLn+1(R) on the set of pointed proper convex open sets
E := {(x,Ω), x ∈ Ω} is cocompact, so all we have to show is that the functions that, to an element of E
associates the maximum and minimum of the sectional curvature of the Blaschke metric at x, is PGLn+1(R)
are invariant and continuous. The invariance is clear from the definition of the Blaschke metric, and the
continuity follows from Corollary 3.3 in [?]. �

We next prove Theorem ?? from the introduction:

Theorem 3.2. Suppose Ω ⊂ P(Rn+1) is a proper convex open set and there exists a discrete group Γ which
preserves Ω and acts properly, freely, and with cofinite volume. Then δΓ 6 n− 1 with equality if and only if
Ω is projectively isomorphic to B (and in particular (Ω, HΩ) is isometric to Hn).

Proof. Let BΩ be the Blaschke metric on Ω. Then

(1) Γ acts by isometries on (Ω, BΩ) and the action is proper and free,
(2) BΩ has bounded sectional curvature by Lemma ??,
(3) BΩ has Ricci curvature bounded below by −(n− 1) by a result of Calabi [?],
(4) by Theorem ??, δΓ(Ω, BΩ) = n− 1,
(5) by [?, Proposition 2.6], Γ\Ω has finite volume with respect to the Riemannian volume form induced

by BΩ.
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Thus, the Blaschke metric satisfies all of the assumptions of Theorem ??, so (Ω, BΩ) is isometric to the real
hyperbolic space. Hence, by definition of the Blaschke metric, (Ω, HΩ) is the Klein–Beltrami model of the
hyperbolic space (see [?, Theorem 1]). �

Since δΓ(Ω, HΩ) = hvol(Ω, HΩ, µB) when Γ acts co-compactly on Ω we immediately deduce Theorem ??
from the introduction:

Corollary 3.3. Suppose Ω ⊂ P(Rn+1) is a proper convex open set and there exists a discrete group Γ 6
Aut(Ω) which acts properly, freely, and cocompactly. Then hvol(Ω, HΩ, µB) 6 n− 1 with equality if and only
if Ω is projectively isomorphic to B (and in particular (Ω, HΩ) is isometric to Hn).

In order to prove Corollary ?? from the introduction, we first show the following:

Proposition 3.4. Suppose Ω ⊂ P(Rd) is a proper convex open set and there exists a discrete group Γ which
preserves Ω and acts properly, freely, and with cofinite volume. Then Ω is strictly convex if and only if ∂Ω
is C1.

Proof. Recall that Ω is strictly convex if and only if ∂Ω∗ is of class C1. Now, by [?, Corollary 6.7], the
quotient Ω/Γ is of finite volume if and only if the dual quotient Ω∗/Γ∗ is also of finite volume. Hence, we
only have to show that if Ω is strictly convex and Ω/Γ is of finite volume then ∂Ω is of class C1.

Suppose that Ω is strictly convex. We want to use [?, Theorem 0.15] to conclude that ∂Ω is of class C1.
In order to apply that theorem, we need to prove that Ω/Γ is topologically tame and that the holonomy of
each boundary component is parabolic.

Fix a real ε > 0 strictly less than the Margulis constant (see [?, Théorème 1] or [?, Theorem 0.1]). For
every x ∈ Ω, let Γε(x) be the group generated by the elements of Γ that moves x at a distance less than ε.
By the classification of isometries of proper strictly convex open set, the group Γε(x), if not trivial, is either
hyperbolic (in which case it corresponds to a Margulis tube), or parabolic, and in that case it fixes a unique
point p ∈ ∂Ω (see [?, ?, ?]).

Since Ω/Γ is of finite volume, the thick part of Ω/Γ is compact (see [?, Theorem 0.8] or [?, Lemma 8.5])
and connected component of the thin part correspond to disjoint maximal parabolic subgroups of Γ. Hence,
the action of each maximal parabolic subgroup Γp on ∂Ω r {p} is cocompact. So, by [?, Theorem 5.6], each
parabolic fix point p is in fact C1. Therefore, [?, Theorem 0.5] (or [?, Corollaire 7.18]) show that Γp is
conjugated to a maximal parabolic subgroup of SOn,1(R). We can thus apply [?, Theorem 0.15] to conclude
that ∂Ω is of class C1. �

Finally, we can prove Corollary ?? from the introduction:

Corollary 3.5. Suppose Ω ⊂ P(Rn+1) is a proper convex open set which is either strictly convex or has C1

boundary and there exists a discrete group Γ which preserves Ω and acts properly, freely, and with cofinite
volume. Then hvol(Ω, HΩ, µB) 6 n− 1 with equality if and only if Ω is projectively isomorphic to B (and in
particular (Ω, HΩ) is isometric to Hn).

Proof. By Proposition ??, ∂Ω is C1 and Ω is strictly convex. Thus by [?, Théorème 9.2]

hvol(Ω, HΩ, µB) = δΓ(Ω, HΩ).

So the corollary follows from Theorem ??. �

Appendix A. Proof of Proposition ??

For the rest of the section suppose that (X, g) is a complete non-compact simply connected Riemannian
manifold with Ric > −(n− 1) and bounded sectional curvature.

For a function f : X → R define the function Pt(f) : X → R by

Pt(f)(x) =

∫
X

pt(x, y)f(y)dy.

Lemma A.1. [?, Theorem 4 and Theorem 6] With the notation above, for any T > 0, there exists C > 0
so that

pt(x, y) 6 Ct−
n
2 exp

(
−d(x, y)2

Ct

)
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and

‖∇xpt(x, y)‖ 6 Ct−
n+1

2 exp

(
−d(x, y)2

Ct

)
for all t ∈ (0, T ] and x, y ∈ X.

Proof of Proposition ??. Recall that Ft(x, ξ) = Pt(ξ)(x). We claim that for any ξ ∈ ∂X̂
(∂t −∆x)Ft(x, ξ) = 0

in the sense of distributions. Once this is established part (1) and part (2) follow from standard regularity
results (see for instance [?, Theorem 7.4]).

Let φ ∈ C∞c (X × R+). By Lemma ??, ∆x(φ(x, t))pt(x, y)ξ(y) and ∂t(φ(x, t))pt(x, y)ξ(y) are in L1(X ×
X × R+, dxdydt). Then, using Fubini and the fact that ∂tpt(x, y) = ∆xpt(x, y), we obtain∫

X×R+

∆xφ(x, t)Pt(ξ)(x)dxdt =

∫
X

(∫
X×R+

∆xφ(x, t)pt(x, y)dxdt

)
ξ(y)dy

=

∫
X

(∫
X×R+

φ(x, t)∆xpt(x, y)dxdt

)
ξ(y)dy =

∫
X

(∫
X×R+

φ(x, t)∂tpt(x, y)dxdt

)
ξ(y)dy

= −
∫
X

(∫
X×R+

∂tφ(x, t)pt(x, y)dxdt

)
ξ(y)dy = −

∫
X×R+

∂tφ(x, t)Pt(ξ)(x)dxdt.

Thus

(∂t −∆x)Ft(x, ξ) = 0

in the sense of distributions. So part (1) and (2) are established.
Now, by [?], since Ric > −(n− 1), if f ∈ C∞c (X) then

‖∇Pt(f)‖∞ 6 e
(n−1)t ‖∇f‖∞ .

Moreover, for any ξ ∈ ∂X̂, there exists a sequence fm ∈ C∞c (X) so that fm converges to ξ locally uniformly
and ‖∇fm‖∞ → 1 (see, for instance, [?]). Hence, each Pt(fm) is e(n−1)t ‖∇fm‖∞-Lipschitz. Moreover, by
Lemma ?? and the dominated convergence theorem, Pt(fm)(x) → Pt(ξ)(x) for all x ∈ X. Thus, Pt(ξ) is
e(n−1)t-Lipschitz and

‖∇xFt(x, ξ)‖ 6 e(n−1)t.

Now, for any φ ∈ C∞c (X), we have∫
X

∆xφ(x)Pt(ξ)(x)dx =

∫
X

(∫
X

φ(x)∆xpt(x, y)dx

)
ξ(y)dy

=

∫
X

(∫
X

φ(x)∆ypt(x, y)dx

)
ξ(y)dy =

∫
X

∆yPt(φ)(y)ξ(y)dy.

For r > 0, let ϕr : X → R be as in Lemma ??. Then∫
X

∆yPt(φ)(y)ξ(y)dy =

∫
X

∆y

(
ϕr(y)Pt(φ)(y)

)
ξ(y)dy +

∫
X

∆y

(
(1− ϕr)(y)Pt(φ)(y)

)
ξ(y)dy

6 (n− 1)

∫
X

ϕr(y)Pt(φ)(y)dy +

∫
X

∆y

(
(1− ϕr)(y)Pt(φ)(y)

)
ξ(y)dy.

Using the dominated convergence theorem once again, we have

lim
r→∞

∫
X

ϕr(y)Pt(φ)(y)dy =

∫
X

Pt(φ)(y)dy =

∫
X

φ(x)dx.

Moreover, since integration by parts holds for Lipschitz functions,∫
X

∆y

(
(1− ϕr)(y)Pt(φ)(y)

)
ξ(y)dy = −

∫
X

〈
∇y
(

(1− ϕr)(y)Pt(φ)(y)
)
,∇yξ(y)

〉
dy

6
C

r

∫
X

Pt(φ)(y)dy +

∫
X\Br(o)

‖∇Pt(φ)(y)‖ dy.
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Now,

∇Pt(φ)(y) =

∫
X

∇ypt(x, y)φ(x)dx,

and so, by Lemma ??,
‖∇Pt(φ)(y)‖ ∈ L1(X, dy).

Thus,

lim
r→∞

∫
X\Br(o)

‖∇Pt(φ)(y)‖ dy = 0.

Which implies that

lim
r→∞

∫
X

∆y

(
(1− ϕr)(y)Pt(φ)(y)

)
ξ(y)dy = 0,

and thus ∫
X

∆xφ(x)Pt(ξ)(x)dx 6 (n− 1)

∫
X

φ(x)dx.

Since ξ ∈ ∂X̂ and φ ∈ C∞c (X) were arbitrary, we see that

∆xFt(x, ξ) 6 n− 1. �


