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ABSTRACT

A coupled two dimensional idealized numerical model of the ocean and sediment layers, forced by an offshore wind turbine wake
is used to investigate the complex interactions between the wake, the ocean and the sediment layers, together with the retro-
action on the wind energy. Results show that the turbine wake has an impact on both, the ocean and the sediment layers. The
turbine wake impacts the ocean surface and generates instabilities or vortex streets for some parameter values. Shallow ocean
layers (typically below 15m) are laminar. When water depth is higher, large scale instabilities are generated, leading to a turbulent
dynamic in the ocean layer. The size of the generated vortices in the ocean increases with water depth and decreases with the
quadratic-law bottom friction coefficient. Considering the morphodynamics three cases are observed, depending on whether the
ocean dynamics is laminar (i), has a localized (ii) or domain wide (iii) turbulent behavior. In the first case, changes in seabed
elevation are around a few millimeters per month. Results are similar for the localized turbulence case with small spatial variations.
For the domain wide turbulence case (iii), instantaneous seabed changes are of the order of a few millimeters per month, whereas
the transport averaged over several days decreases to a few tenths of millimeter per month. This behavior is easily explained
by the oscillating local velocity which transports sediments back and forth. The above emphasizes that the water depth is a key
parameter for the coupled atmosphere-ocean-sediment system around wind turbines. Furthermore, considering the ocean velocity
in the atmospheric forcing at the ocean surface leads to a decrease of 4 % of the power lost by friction at the atmosphere-ocean
interface. Ocean dynamics could thus have a non-negligible feedback on the wind power available for the turbines and its variability.

Key words: Offshore Wind Turbine; Wake; Ocean; Seabed; Dynamics.

1. INTRODUCTION

Because of the rising need for sustainable energy, and because up to now wind energy is one of the few forms of renewable energy
that can be harvested efficiently, many European countries are planning and building offshore wind farms to increase the proportion
of renewable energy in their energy mix. According to the European Wind Energy Association 2013 annual report (EWEA, 2013),
the installed European capacity was 5 GW at the end of 2012, and by 2020 it could be multiplied by 8 (40 GW), corresponding to
4% of the European electricity demand. By 2030, offshore wind capacity could totalize 150 GW, corresponding to 14% of the actual
EU’s total electricity consumption.

The environmental impact of wind farm construction is the subject of an important and diversified literature. A consequent part
of this literature focus on the direct impacts of the solid structures of the wind farm on the oceanic environment and principaly on
the fauna. An important environmental consequence is the birds and bats collision with the turbines (Tucker (1996), Drewitt and
Langston (2006)). Concerning the seabed, it is affected by scour process due to the pile presence, a phenomenon similar to that
of occurs at bridge piers (Breusers et al. (1977), Breusers and Raudkivi (1991), Roulund et al. (2005)). It has also been shown that
a local seabed elevation occurs in offshore wind farms (Van der Veen et al., 2007). On a larger scale, impact of wind farms on the
European regional climate (Vautard et al., 2014) or on hurricanes (Jacobson et al., 2014) have been studied recently, showing that
the wind farms environmental impacts are an important questions nowadays.

Nevertheless, most of the interactions between offshore wind farms and their local environment need further research and the
understanding of the global impact induced by the construction of offshore wind farms in coastals areas may requires the modeling
of the ocean-atmosphere-sediment coupled system. However, if air-sea and ocean-sediment interactions have been the subject
of an important literature, to the best of our knowledge, no study has been done on the multi-scale interactions in an atmosphere-
ocean-sediment coupled system. This is even more true in the vicinity of Marine Renewable Energy Devices.
This paper shows the first results of an idealized 2D numerical model build to study the impact of an offshore turbine wake on the
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ocean and the sediment dynamics. In Section 2., the physical model and the basic equations that describe the mathematical model
are detailled. The numerical model used here is described in Section 3., while Section 4. is devoted to the presentation and the
discussion of the results. The summary and conclusions are given in Section 5.

2. PHYSICAL AND MATHEMATICAL MODEL

The physical model consists in two superposed layers (figure 1.a), an homogeneous shallow water ocean layer above a sediment
bed layer, composed of cohesion-less particles. The atmospheric layer is represented as an external forcing (F ), which corresponds
to the wake of wind turbines. The domain length in the x-direction is denoted as Lx and as Ly in the y-direction. The average depth

(a) (b)

Figure 1: Sketch of the physical model, exponent “s” refers to the sediment bed (a) and of the Jensen wake (b).

of the ocean layer is denoted as H . The local thickness of the ocean layer and the seabed elevation, are denoted as h(x, y, t) and
hs(x, y, t) respectively. The free surface elevation is:

η(x, y, t) = h(x, y, t)−H + hs(x, y, t) [1]

The dimensional variables are consigned in the table 1. Densities are denoted as ρ, ρs and ρa for the ocean, the sediment and the
atmosphere, respectively, Ds is the diameter of a sand grain. The ocean layer is forced by the local wind stress at its upper surface.
The spatial variation of this wind stress incorporates the wake-profile of a wind turbine. The oceanic motion induces a shear stress

Table 1: Domain parameters.

ρ (kg.m−3) ρs (kg.m−3) ρa (kg.m−3) Lx (m) Ly (m) H (m) Ds (m)
1025 2650 1.2 103 103 10-50 2−4

τb on the sediment bed layer. This stress and the seabed elevation are responsible for the coupling between the ocean and the
sediment bed layers.

2.1 Hydrodynamic model

Mathematically, the ocean dynamic is given by the two dimensional Shallow Water (SW) equations, as most of the wind farms are
localized in coastal areas (in 2012 the average water depth of offshore wind farms was 22m and the average distance to shore was
29km (EWEA, 2013)), such equations seem to be particularly adapted to the problem:

∂t
−→u + (−→u · ∇)−→u + g∇η = ν∇2−→u +

−→
F −

−→
G [2]

∂th+∇(h−→u ) = 0, [3]

where
−→
F and

−→
G correspond to the frictionnal accelerations applied on the ocean layer by the atmosphere and the sediment,

respectively. These frictionnal accelerations correspond to the forces excerted on the ocean by the wind shear and the bottom
shear respectively and are characterized by a quadratic friction law. The atmosphere−ocean friction law (

−→
F ) is defined by:

−→
F =

1

ρh

−→
f , [4]

where
−→
f is the shear stress applied to the ocean. The latter is calculated using the velocity difference between wind and ocean

current as described by Moulin and Wirth (2014):
−→
f = CD ρa || −→u a −−→u o || (−→u a −−→u o) [5]
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with || −→u a −−→u o ||=
√

(ua − uo)2 + (va − vo)2. The drag coefficient CD follows Wu (1982) and Smith (1988) suggestion:

CD = (0.6 + 0.07u).10−3 for 6 m/s < ua < 26 m/s [6]

The validity range of this friction law corresponds to the good working conditions of wind turbines (from 4 m.s−1 to 25 m.s−1). A
similar quadratic friction law is used to model the friction between the ocean and the sediment layers:

−→
G =

1

h
−→τb , [7]

−→τb = CDs || −→u || −→u , [8]

with || −→u ||=
√
u2 + v2. CDs = 0.005 correspond to the friction coefficient between the sand and the ocean.

2.2 Morphodynamic model

For a bed composed of cohesionless grains (equivalent to sand), the sediment starts to move when the drag force exerted by the
flow is higher than the friction force between the grains. The dimensionless Shields parameter (Shields, 1936), gives the ratio
between the drag force and the apparent submerged grains weight:

θ =
τb

(ρs − ρ)gd
, [9]

where g is the gravitational acceleration and d is the characteristic sediment particle diameter.
The sediment starts to move as soon as the Shields parameter exceeds a typical critical value (θ > θc). The critical Shields
parameter, θc gives the threshold of motion for sediments at the bed and depends on several sediment properties, as the density
or the grain size.
Bed motion results from a local flux balance. The mass conservation equation, also called Exner equation, allows to calculate the
time evolution of the seabed elevation (hs):

∂ths(x, y, t) +
−→
∇ · −→q (x, y, t) = 0, [10]

where −→q is the total sediment flux.
Two modes of sediment transport exists, bed-load transport and suspended load transport. In this work, only the bed-load transport
will be considered, this type of transport is generally dominating for rather low bed shear stress, i.e when the Shields number of the
flow is juste above the critical value.
If only bed-load transport is considered, the total sediment flux becomes:

−→q =
1

1− p
−→q b, [11]

where p is the bed porosity and −→q b is the bed load transport rate.
In the present model, the Meyer-Peter and Müller (1948) (MPM) transport formula is used. It relates the particle flux qb to the
excess Shields parameter:

qb

d
√

(ρs/ρ)gd
=

{
8(θ − θc)3/2 if θ > θc
0 otherwise

[12]

2.3 Turbine wake model

According to Barbe (2013), the turbine wake affects the ocean by decreasing the surface shear in the region where the wake
intersects the ocean surface (see figure 1). This perturbation is maximal at the impact location and then decreases downstream. A
distance of 40 to 60 times the rotor diameter D is necessary for the wake effects to vanish.
The wake model used in this work describes the velocity deficit induced by the rotor in the far wake region. The simplest model is
the Jensen (1983) one, assuming a linearly expanding or cone wake with a velocity deficit which only depends of the distance to
the rotor.

u = U∞

[
1− 1−

√
1− Cw

(1 + 2kx
D

)2

]
, [13]

where U∞ is the wind velocity far from the turbine, Cw the drag coefficient between the turbine and the air and k the Wake Decay
Constant. For offshore turbines, the admitted value is equal to 0.05.

The wake impacts the ocean surface at a given distance downstream from the rotor position (figure 1.b). For the Jensen’s model
we have:

ximpact =
Hr −D/2

k
[14]

This impact distance depends on the wind turbine height and on the rotor diameter and is increasing with the turbine size. For the
turbines considered here (Hr = 70m and D = 80m, k = 0.05), the impact distance is equal to 600 meters, several times the
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turbine height. Perturbations in the seabed induced by the turbine pile are localized in the pile vicinity, the seabed is thus perturbed
on a local scale. As the pile diameter doesn’t exceed 5 meters for the type of turbine modeled, seabed perturbations induced by
the pile and the wake presence are uncorrelated. The effect of the pile is thus not considered here.

The Jensen wake model’s boundaries are extremely sharp, indeed, the velocity difference between inside and outside the wake
corresponds to a step function. Such sharp boundaries are unrealistic and are prone to generating instabilities. To be more realistic
without changing the large scale characteristic of the wake model, a good solution consists in using a mollifier (also known as
approximation to the identity) function. Thus, close to the wake boundary, the wind velocity ua is smoothed and becomes ũa by
using the following operator:

ũa(y) =
1

Lm
√
π

∫ b

a

ua(y′)e
−
(

y−y′
Lm

)2

dy′, [15]

where a = Ly/2 and b = Ly or b = 1 are the integral bounds, for the upper and the lower wake boundaries, respectively, y′ = y′(x)
is the position of the wake boundary and Lm ≈ 1− 10 dy is the mollify length, for Lm = 1, the transition zone correspond to a step
function.

3. NUMERICAL MODEL

The ocean and the sediment are considered in a rectangle of size Lx × Ly . The numerical grid is regular and contains nx × ny

points. The number of grid points is equal to the length (in meters) of the domain in each direction, i.e Lx = 2000m and Ly = 600m.
The spatial resolution is the same in both horizontal directions, ∆x = Lx/nx = ∆y = Ly/ny = 1 m. Periodic boundary conditions
are used in both horizontal directions.
The overall model can be divided in two coupled modules, the hydrodynamic and the morphodynamic ones. Concerning the
hydrodynamic module, where the shallow water equations for the ocean are solved, a second-order, centered, finite-difference
method is used for the space discretization, and a second-order Runge−Kutta scheme is used for the time discretization. The
morphodynamic module solves the Exner equation using a NOCS (Non−Oscillatory Central Scheme) scheme as described by
Jiang et al. (1998).
For a given spatial resolution, the time step is imposed by the Courant−Friedrichs−Lewy (CFL) condition. The sand waves
propagation celerity corresponds to dunes migration speed which is approximatively 1000 times slower than oceanic waves. It is
thus the CFL condition for the ocean that sets the maximum time step, here ∆t = 0.02 s. As the morphological timescale is large
compared to the hydrodynamic one, two time-steps are used, the morphological the time-step is ∆tmorpho = 1000 ∆t for all the
simulations.

4. RESULTS AND DISCUSSIONS

All the numerical simulations presented in this work involve the same wake parameters, such as the rotor diameter or the wind
velocity. The rotor diameter and height (D = 80m, Hr = 70m) correspond to a Vestas V80−2.0 MW wind turbine, one of the most
widespread offshore wind turbines. The wind speed is equal to 20m.s−1, corresponding to the high range part of turbine good
working conditions (from 4m.s−1 to 25m.s−1) 1. Simulations have been undertaken for five different water depths and a summary
of the different simulations parameters is given in table 2. Run H20CD2P3 has been undertaken with a bottom friction coefficient
CDs′ = (2/3) ∗CDs, run H15WUo without the ocean velocity in the calculations of the atmospheric forcing, run H30WUow without
the wake and the ocean velocity in the calculations of the atmospheric forcing and run H30Ww without including the wake in the
calculations of the atmospheric forcing. So in run H30WUow and H30Ww the forcing is constant in time and space and the solutions
in the ocean and sediment converge to a stationary state (and can be calculated analytically). For each case, the initial free surface
and seabed elevation fields are equal to zero.

Table 2: Wake simulations and their parameters.

Run name H (m) Eddies Diameter (De (m)) Eddies spacing (Le (m))
H15 15 - -
H20 20 100 400
H30 30 250 500
H40 40 300-400 670
H50 50 550 1000

H20CD2P3 20 250 500
H15WUo 15 - -

H30WUow 30 - -
H30Ww 30 - -

1Vestas V80-2.0 MW product brochure: http://www.vestas.com
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2: 2D vorticity (s−1, left column) and seabed elevation (right column) fields after 11.5 days of dynamics. Cases H15 (a and b), H20 (c and d), H30 (e and f),
H40 (g and h) and H50 (i and j).
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4.1 Generation of instabilities and impact on morphological evolution

The results presented in figure 2 show that increasing water depth leads to the generation of instabilities in the wake. The ocean
dynamics becomes turbulent, starting from a vortex formation at the wake boundaries. Furthermore, when eddies are generated,
their size and spacing depend also on the water depth, as summarize in table 2.
For the different water depth studied here, three cases of ocean dynamics are observed. Up to 15 meters of water depth, the
dynamics is laminar, the vorticity is higher at the wake boundaries than in other parts of the domain but no instabilities are generated
(figure 2.a). When the water depth is between 20 and 30 meters, vortices are generated at all the wake boundaries (see figures 2.c
and 2.e). Two independents localized vortex streets appear. The third case emerges when water depth is higher than 40 meters.
As the size of the vortices increases, the two vortex streets interact leading to a domain wide turbulence (see figures 2.g and 2.i).
An increase of approximately a factor 2 of water depth leads to a change of the same order in the vortex spacing (Table 2).
Decreasing the bottom friction coefficient in order to conserve the friction coefficient and water depth ratio (S = CD/h) for two
different water depth (cases H20CD2P3 and H30) gives similar results (figure 3.a and figure 3.b). It appears thus that vortex size
and spacing seems to depend on S . This ratio, S, appears in the bottom friction terms in the SW equations:

−→
G =

1

h
−→τb = S || −→u || −→u [16]

This result confirms the findings of Chen and Jirka (1997) on the cylinder wake in a SW flow where S = (D ∗ CD)/h, with D the
diameter of the cylinder. In the present paper no dependency test upon the wake width at the impact location (corresponding to the
diameter of the cylinder of Chen and Jirka (1997) work) have been undertaken. Here, for increasing water depth, S is decreasing
and the bottom friction force as well, allowing for stronger instabilities. For all the simulations undertaken, the qualitative spatial

(a) (b)

Figure 3: 2D vorticity seabed elevation fields after 11.5 days of dynamics. Cases H30 (a) and H20CD2P3 (b).

long-time impact on the wake upon the seabed is similar (figure 2, right column). Figure 2 shows that the velocity deficit induced
by the wake leads to a sediment accumulation, i.e a dune formation close to the impact (between x = 300m and x = 500m) which
corresponds to the local wake width. The same phenomenon occurs at the wake boundaries. Such formations are due to the
non uniformity of the oceanic velocity field and thus of the local bottom shear stress. Downstream in the wake, the velocity deficit
becomes less important, corresponding to a bottom shear stress that induce bed erosion. Outside the wake, the flow velocity is
higher, increasing thus the bottom shear stress and thus the sediment transport, leading to a hole formation on each side of the
dune. After x = 1000m, the velocity and the bottom shear stress decrease along the x-direction, stopping the erosion and starting
sediment accumulation when moving downstream in this region (figure 2, right column).

Figure 4 shows the bathymetry variation between two consecutive outputs (∆t = 2000 s) of the same simulation. The spa-
tial pattern of the morphodynamical evolution between the turbulent and the laminar cases is completely different. The vortices
strongly affect the short term seabed morphodynamics, as expected. For cases H15 and H20 (figures 4.a and 4.b, respectively),
the bathymetry variations between two consecutive outputs are qualitatively similar to the seabed elevation fields after 11.5 days
of dynamics. This is not the case from 30 m to 50 m water depth (figures 4.c and 4.d, respectively), the wakes imprint is totally
annihilated by the signature of the large scale vortices. Difference in vortex scale observed in the ocean is recovered in the seabed,
showing that vortex formation in the ocean has an significant impact on the seabed morphodynamics.
Considering the morphodynamical evolution, three cases can be observed, depending on whether the ocean dynamics is laminar,
has a localized or a domain wide turbulent behavior. In the first case, changes in seabed elevation are around a few millimeters
per month (figure 2.b). Results are similar for the localized turbulence case with small spatial variations (figure 2.d). For the do-
main wide turbulence case, instantaneous seabed changes are of the order of a few millimeters per month (figure 4.d), whereas
the transport averaged over several days decreases to a few tenths of millimeter per month (figure 2.j). This behavior is easily
explained by the oscillating local velocity which transports sediments back and forth. This result may cause environmental issues.
Sediment motion induced by the turbulent state in the ocean could increase the local turbidity and perturb the photosynthesis in
the water column even when the long term accumulated transport is small.
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(a) (b)

(c) (d)

Figure 4: 2D bathymetry difference field between two consecutive outputs for H15 (a), H20 (b), H30 (c) and H50 (d) after 11.5 days.

4.2 Air-sea interactions and energetic balance

In this idealized model the source of mechanical energy is the atmospheric dynamics. Different computations have been undertaken
using different water depth in order to quantify the energy transfer, the results are presented in figure 5. In this analysis, we
neglected the y component of the velocity vectors, they are vanishing for the atmosphere and subdominant for the ocean.
The power lost by the atmosphere (Pa) is the integral over the domain of the product between the wind stress and the wind velocity.

Pa = CDρa

∫ ∫
S

|| −→u a −−→u o || (−→ua −−→uo) · −→ua dS. [17]

As the y component of the velocity is vanishing in the atmosphere and subdominant in the ocean (vo � uo, ua), equation (17)
simplifies to:

Pa = CDρa

∫ ∫
S

| ua − uo | (ua − uo)ua dS. [18]

Furthermore, as the velocity in the atmosphere is always larger than in the ocean (ua > uo, ∀x, ∀y, ∀t):

Pa = CDρa

∫ ∫
S

(ua − uo)2ua dS. [19]

The power taken by the ocean (Po) is the integral over the domain of the product between the wind stress and the ocean velocity,
using the above simplifications it can be written as:

Po = CDρa

∫ ∫
S

(ua − uo)2uo dS. [20]

According to the Betz theory, the maximal power value which can be taken from the wind by the turbine is lower or equal to 16/27
of the wind power without the turbine presence:

Pturbine =
16

27

(
1

2
ρaπR

2(ua)3
)
, [21]

where R correspond to the radius of the rotor.
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(a) (b)

(c) (d)

Figure 5: Power lost by the atmosphere for the different cases investigated and by the wind turbine (a), for different turbulent states (b) and power received by the
ocean for the different cases investigated (c) and for different turbulent states (d).

Figure 5 shows that for all the cases investigated, the power received by the ocean from the atmosphere is several orders of magni-
tude lower than the power lost by the atmosphere (figures 5.a and 5.c). The major part of the power lost by the atmosphere is thus
dissipated by the friction between the atmosphere and the ocean. Taking into account the ocean velocity in the wind forcing leads
to a decrease by 2% of the power received by the ocean from the atmosphere (comparison between cases H30WUow, H30Ww and
cases H15, H15WUo of figure 5.c) and by 4% of the power lost by the atmosphere (comparison between cases H30WUow H30Ww
and cases H15, H15WUo of figure 5.a). For case H15, the loss of atmospheric power due to the friction is reduced by approxima-
tively 4% as compared to case H15WUo. Taking into account the relative velocity between the atmosphere and the ocean leads
to a reduction of the friction between these two layers and thus to the power loss by the atmosphere. Furthermore, considering
the atmospheric wake presence leads to a decrease of the power received by the ocean and the one lost by the atmosphere of
approximatively 16%. Such phenomenon may be explain by the fact that the wake impact reduces the local atmospheric velocity
more than the local ocean one, the relative velocity between the two layers is thus decreasing, so as the friction.
For all the depths considered, the power loss to friction, which is the difference between the power lost by the atmosphere and the
one received by the ocean, is higher than the power taken by the wind turbine.
The figures 5.b and 5.d show the power lost by the atmosphere and received by the ocean, respectively, for runs H15, H20, H30,
H40 and H50. Values of the power lost are increasing for increasing water depth and thus increasing turbulence level (figure 5.b)
but the values of power received by the ocean are decreasing for increasing water depths (figure 5.d). The difference between the
values for the laminar (H15) and the domain wide turbulence case (H50) is small, of the order of 0.01% for the power lost by the
atmosphere and of the order of 0.3% for the power received by the ocean. It shows that the oceanic turbulence as subdominant
role in the air-sea energetic balance.

An analytical development can confirm and explain the above observations. Time average and developed equation 19 can be
written for laminar and turbulent oceanic flow, respectively:

Pa
l = CDρa

∫ ∫
S

ua
3 − 2ua

2uo + uauo
2 dS. [22]

Pa
t = CDρa

∫ ∫
S

ua
3︸︷︷︸

a1

−2ua
2uo + uauo

2︸ ︷︷ ︸
a2

+uau′o
2︸ ︷︷ ︸

a3

dS, [23]
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where uo is the mean flow velocity and u′o2 is the square of the velocity fluctuations, or the x−normal component of the Reynolds
stress tensor.
The same procedure can be applied to the power received by the ocean (20) and gives for laminar and turbulent oceanic flow,
respectively:

Po
l = CDρa

∫ ∫
S

ua
2uo − 2uauo

2 + uo
3 dS. [24]

Po
t = CDρa

∫ ∫
S

ua
2uo︸ ︷︷ ︸
o1

−2uauo
2 + uo

3︸ ︷︷ ︸
o2

+u′o
2(3uo − 2ua)︸ ︷︷ ︸

o3

dS. [25]

The importance of the different terms in the air-sea energetic balance appears in the equations (22), (23), (24) and (25). The
terms a1 = ua

3 and o1 = ua
2uo are linked to the power taken by the ocean without taking into account the oceanic velocity in

the atmospheric forcing. These terms are predominant in laminar and turbulent equations. The terms a2 = −2ua
2uo

2 + uauo
2

and o2 = −2uauo
2 + uo

3 correspond to mean flow power correction occurring when the oceanic velocity is taking into account
in the atmospheric forcing. As the velocity in the atmosphere is always much larger than in the ocean, these correction terms are
negative. Taking into account the oceanic velocity in the atmospheric forcing leads thus to reduce both Pa and Po.
For equations (23) and (25) the terms a3 = uau′o

2 and o3 = u′o
2(3uo − 2ua) correspond to the contributions of the turbulent

fluctuations in the energetic balance. The terms a3 > 0 and o3 < 0, at least for the idealized situation considered here. When
turbulence occurs in the domain, it increases thus the power lost by the atmosphere but decreases the power received by the
ocean, a result in agreement with the observations done in figures 5.b and 5.d. This can be explain by the fact that a part of the
turbulent fluctuations is not in the same direction as the oceanic motion and the atmospheric forcing and increases thus the friction
between the two layers. Furthermore, these fluctuations certainly reduce the energetic transfer efficiency to the mean flow which
may explain that they decrease the power received by the ocean.

If the turbulence seems to play a minor role in the air-sea energetic balance, the results presented in Section 4.1 show its importance
on both oceanic and morphological dynamics. The equations (23) and (25) seem to show that evaluating the x−component of the

root−mean−square velocity (Urms =

√
u′o

2) of the fluctuations can be used to estimate the importance of turbulent fluctuations in
the ocean for the energy fluxes at the atmosphere-ocean interface.

(a) (b)

(c)

Figure 6: 2D Urms fields for H20 (a), H20CD2P3 (b) and H50 (c) after 11.5 days of dynamics.

Figure 6 shows the 2D Urms fields for different cases investigated. For each case, the maximum of Urms is localized at the wake
boundaries, where eddies are generated. This is particularly clear for case H20 and H20CD2P3 (figures 6.a and 6.b, respectively)
where the vortex streets are independent. When the turbulence is domain wide (figure 6.c), the highvalues of Urms are less
localized and start to fill large parts of the domaine. Furthermore, the maximum value of the Urms is increasing for increasing water
depth. The maximum value of the Urms is equal to 0.00957 m.s−1 (for the H50 case), which is only 2.4% of the mean velocity (of
the order of 0,4 m.s−1), showing once again the fluctuation’s small order of magnitude compared to the mean flow.
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Computations of the Vrms =

√
v′o

2 velocity (figure 7) show that the y−component of the turbulent fluctuations is of the same order
of magnitude than the x ones.

(a) (b)

(c)

Figure 7: 2D Vrms fields for H20 (a), H20CD2P3 (b) and H50 (c) after 11.5 days of dynamics.

Variations of free surface elevation for the different computations undertaken are extremely small, of the order of thenths of a
millimeter. The dynamic height is thus small, a result in agreement with potential energy calculations showing that potential energy
involved in the problem is eight orders of magnitude lower than kinetic energy. The major part of the energy involved in the problem
is thus kinetic and not potential.

5. SUMMARY AND CONCLUSION

An idealized 2D numerical model has been proposed to study the impact of an offshore wind turbine wake on the ocean and
sediment dynamics. To the best of our knowledges so far no study has been done on this subject.
A simplified physical model has been proposed and a mathematical model has been consistently built.

The present results show that the turbine wake has an impact on both ocean and sediment bed layers. Turbine wake impact
on the ocean surface can generate instabilities and vortex streets formation. Size and spacing between these vortices seems to be
controlled by the friction between the bed and the ocean layer and more precisely by the friction coefficient and water depth ratio,
S = CD/h. When S is decreased, large scale instabilities are more easily generated, leading to a domain wide turbulence state in
the ocean.
Concerning the seabed, results show that the non-uniformity of the oceanic velocity field induced by the wake presence is re-
covered in the local bottom shear stress responsible for sand erosion and deposition. As the vortices strongly affect the seabed
morphodynamics, for localized and domain wide turbulence, the wakes imprint tends to be reduced by large scale vortices and the
oscillating local velocity which transports sediments back and forth.
Taking into account the ocean velocity in the wind forcing leads to a decrease by approximatively 4% of the power loss to friction
of the atmosphere, for the case considered here, by reducing the relative velocity between the two layers. Power received by the
ocean is also decreasing by approximatively 2%. Finally, considering the wake presence leads to a decrease of 16% of the power
received by the ocean, as the local air-sea friction is decreased.
The results also show that even if the turbulence is strongly influencing both, oceanic and morphological dynamics its role is minor
in the air-sea energetic balance. Furthermore, as the atmospheric dynamics is not resolved here, the oceanic turbulence has
a limited retro-action on the forcing, considering the atmosphere as a shallow-water layer may increase the importance of these
interactions.
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