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Abstract—The control strategy for Direct Wave Energy Con-
verters (DWEC) is often discussed without taking into account
the physical limitations of electric Power Take-Off (PTO) system.
This inappropriate modelling assumption leads to a non-realistic
or a bad use of the electric systems, that leads to a failure to
minimize the global ”per-kWh” system cost. We propose here a
Model Predictive Control (MPC) that takes into account the main
limits of an electrical chain: maximum force, maximum power
and a simplified loss model of the electrical chain. To compare this
optimal control with other strategies, we introduce the notions of
control, electric and global energy efficiencies. Furthermore, we
use an original energy representation used to value the state at
the end of the MPC horizon. Finally, we make several sensitivity
study on the constraint limits for an economical pre-sizing of the
electrical chain.

Index Terms—Optimal Control, Model Predictive Control,
Direct Wave Energy Converter, Pontryagin’s Maximum Principle,
Direct Multiple Shooting Method, Energetic Model, Electric
Power Take-Off

NOMENCLATURE

A State matrix (6× 6) of the buoy system
Arad State matrix (4× 4) of the radiation system
a∞ Added mass of the buoy (radiation effect) [kg]
b() Barrier function
Brad Input matrix (4× 1) of the radiation system
B1 Control matrix (6 × 1) of the buoy: system[

0 −(m+ a∞)−1 (0)
]T

B2 Perturbation matrix (6×1) of the buoy system:[
0 +(m+ a∞)−1 (0)

]T
C Output matrix (1× 6) of the buoy system
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closs Electrical loss coefficient [W·N−2]
c̃loss Loss coefficient used in the control problem

[W·N−2]
Crad Output matrix (1× 4) of the radiation system
EMech Mechanical energy stored in the system [J]
f() Dynamic function of the buoy system ẋ =

f(x, u, t)
fexc Wave excitation force, time domain [N]
Fexc Wave excitation force, Laplace domain [N]
FMax Maximum Power Take-Off force [N]
fPTO Power Take-Off force, time domain [N]
FPTO Power Take-Off force, Laplace domain [N]
H Hamiltonian of the control problem [W·kg−1]
Hrad(s) Impulse radiation response, Laplace domain

[kg·s−1]
Hs Significant height of the sea state [m]
J Objective function of the control problem

[J·kg−1]
khs Hydrostatic stiffness of the buoy [kg·s−2]
L Lagrangian of the control problem [W·kg−1]
m Mass of the buoy [kg]
p Costate vector (1× 6)
P Positive definite matrix: EMech = xT P x
PLoss Mechanical power lost in the system [W]
Pexc Excitation power fexcż [W]
PMax Maximum Power Take-Off power [W]
PPTO Power Take-Off mechanical power fPTO ż [W]
p2 Second element of p
Q Positive definite matrix: PLoss = xT Q x
Tp Peak period of the sea state [s]
u Control input of the buoy system: u = fPTO

w Perturbation input of the buoy system: w =
fexc

x State vector (6 × 1) of the buoy system:[
z ż xrad

]T
xrad State vector (4× 1) of the radiation system
x2 Second element of x: ż



y Output of the buoy system: y = ż
z Vertical position of the buoy, time domain [m]
Z Vertical position of the buoy, Laplace domain

[m]
ε Parameter of the barrier function b()
ηC Control energy efficiency
ηE Electrical energy efficiency
ψ() Weight of the final state [J·kg−1]

I. INTRODUCTION

Direct Wave Energy Converters (DWEC) (or Wave Acti-
vated Bodies), with electric Power Take-Off (PTO) are one
of the most direct and flexible way to convert wave energy
into electrical energy, because there is no buffer between the
waves and the electrical chain contrary to Oscillating Water
Column, Overtopping device or Wave Energy Converters with
mechanical or hydropneumatic transmission. They may make
use of mechanical transmission (gear box, rack and pinion, etc)
or may not (direct drive). They lead to the possibility of higher
efficiency and reliability, yet feature higher power fluctuations
in the grid than WEC with hydraulic or mechanical storage
systems. The test case considered here to represent DWECs is
a heaving buoy, but the method can be reused for all DWEC
with electric PTO.

In order to minimize the per-kWh cost of this technology,
the global efficiency from wave to wire must increase, while
limiting the size of the electric PTO (classically an electrical
machine with an active rectifier).

Control design, however, must take into account the main
limitations of an electric PTO, i.e.: power limitation, force
or torque limitation and losses in the electric chain. But the
problem is often seen as decoupled. Thus, two types of papers
classically deal with control strategies in DWEC: the theoreti-
cal optimization of control with no or very little considerations
for the feasibility limitations [1]–[3]; and optimization using a
given electric system [4]. Some studies take into account only
losses [5], [6], or power limitation [7], or force limitation [8].
To the best of our knowledge, it is the first time a Model
Predictive Control of a Wave Energy Converter takes into
account all the main constraints of an electrical chain.

Furthermore, only a few papers have dealt with the coupling
between control strategy and sizing [9].

II. MODELS

A. Dynamic Model of the Buoy

The considered buoy is 10 meters in diameter and 15 meters
in height. It is illustrated in figure 1 and its physical parameters
are given in TABLE I.

The model chosen is linear within the framework of linear
potential theory (small displacement) and under the hypotheses
of infinite water depth. This model of the buoy takes into
account the hydrostatic effect (with the hydrostatic stiffness
khs), the radiation effect (with the added mass a∞, the
radiation vector state xrad and the matrices Arad, Brad and
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Fig. 1. Simple 1-degree-of-freedom test-case used as an example for the
illustration of the MPC

Crad) and the excitation effect from the waves fexc, as for
example, in [10] [11]:

(m+ a∞) z̈ + Crad xrad + khs z = fexc − fPTO (1)
ẋrad = Aradxrad +Bradż (2)

with z, the vertical position of the buoy, M , the buoy mass,
and fPTO, the controllable force from the electrical Power
Take-Off.

These equations can be rewritten in the Laplace domain
(with s the Laplace variable) and Z, FPTO and Fexc, the
Laplace transformations of z, fPTO and fexc:

Fexc − FPTO = Z
(

(m+ a∞)s2 +Hrad(s)s+ khs

)
(3)

Hrad(s) = Crad (sI −Arad)−1 Brad (4)

with I , the identity matrix with the same size as Arad (4 by
4 in our case) and Hrad(s) the Laplace transformation of the
impulse radiation response.

The inertia, stiffness and radiation transfer function are
given in TABLE I. The parameters have been computed in the
AQUAPLUS seakeeping code for hydrodynamics simulations
[12].

TABLE I
PARAMETERS OF THE HYDRODYNAMIC BUOY MODEL

m (kg) a∞ (kg) khs (kg·s−2)
772 · 103 247 · 103 758 · 103

Hrad(s) = Crad(sI −Arad)
−1Brad (kg·s−1)

=
13.4s3 + 19.3s2 + 5.87s

s4 + 1.56s3 + 1.51s2 + 0.714s+ 0.156
· 103

We will use x = [z ż xrad]T as the system state vector. We
consider that we can control the force of the PTO u = fPTO

and the excitation is considered as a perturbation w = fexc:

ẋ = Ax+B1u+B2w(t) = f(x, u, t) (5)
y = Cx = ż (6)



with A, B1, B2 and C, respectively the state, the control,
the perturbation and the output matrices of the buoy system
that takes as inputs forces (u and w) and that gives the speed
of the buoy as an output (y). The speed was chosen as the
only output because this variable is linked with the excitation
power Pexc = ż fexc and the PTO mechanical power PPTO =
ż fPTO. It has been verified that this system is controllable
and observable.

A JONSWAP spectrum is used to compute the excitation
force [13]. The frequency spreading parameter γ was chosen
equal to 3. The excitation force time series (corresponding
to wave data) is generated by summing monochromatic exci-
tation with randomly chosen initial phases. In our case, this
configuration is similar to the solution of a reconstructed wave
elevation with a random phase, as presented in [14].

This dynamic equation is solved using the Heun’s ordinary
differential equation solver (explicit trapezoidal rule) with a
fixed time step of 0.1 s.

B. Energetic Model of the Buoy

Because the model is linear and passive, there exist a couple
of two positive semidefinite matrices P and Q that defines the
mechanical energy stored in the system and the power loss
with the radiation effects:

EMech = xT P x (7)
PLoss = xT Q x (8)

These two terms respect the conservation of energy with the
following equation:

ĖMech = Pexc − PPTO − PLoss (9)

with the excitation power Pexc and the PTO mechanical power
PPTO.

In order to find these two equations, we need to solve
the following semidefinite programming problem, for example
with CVX [15]:

BT
2 (2 P ) = C (10)

AT P + P A+Q = 0 (11)

Fig. 2 illustrates a decay test used to test the accuracy of this
energetic model: without excitation and harvesting, the time
derivative of the mechanical energy corresponds exactly to the
mechanical loss xT Q x. Such a model gives information on
power flows that is essential for energy conversion studies.

C. Model of the Electrical Chain

The electrical chain is simplified by considering two con-
straints and one term of losses.

The absolute value of the force is limited by a maximum
value FMax mainly due to the limitation of the electrical
machine (electromagnetic converter) and the absolute value
of the power is limited by a maximum value PMax due to the
limitation of the active rectifier (power electronics converter).

Finally, we subtract from the mechanical power of the PTO
system, electric losses assumed to be proportional to the square
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Fig. 2. Decay test from a height of 3 meters: position, speed, energy and
power loss vs. time

value of the force. More precise model could take into account
copper and iron losses in the electrical machine as well as
conduction and switching losses in the active rectifier [9].

This model can be summarized by figure 3 or these three
equations:

|fPTO| ≤ Fmax (12)
|fPTO · ż| ≤ Pmax (13)

PGrid = fPTO · ż − closs f2PTO (14)
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Fig. 3. Electrical power and electrical loss power as a function of Buoy veloc-
ity ż and Power Take-Off force fPTO with Fmax =1 MN, Pmax =1 MW
and closs =0.1 MW/MN2

D. Energy Efficiency

Control efficiency is defined with the maximal theoretical
recoverable power PWave as in [11]. With the wave spectrum
used in our case, we have:

PWave ≈ 103 H2
s T

3
p (15)

with Hs and Tp, respectively the significant height and the
peak period of the sea state considered.



So we define the energy efficiency of the control ηC and of
the electrical chain ηE as:

ηC =
PPTO

PWave

(16)

ηE =
PGrid

PPTO

(17)

ηC ηE =
PGrid

PWave

(18)

III. MODEL PREDICTIVE CONTROL WITH PONTRYAGIN’S
MAXIMUM PRINCIPLE

We want to use the Pontryagin’s maximum principle [16]
to perform a Model Predictive Control for an optimal energy
harvesting. This is achieved by optimizing on a finite time
horizon Th. So we need observation and prediction, as we can
see in Fig.4 that represent the global interactions between the
main elements of the device.

We will suppose here a perfect knowledge of the state of the
system x at the decision instant t0 and a perfect knowledge
of the excitation force from t0 to t0 + Th.
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Fig. 4. Interactions between buoy, electrical chain and control

Actually, to have such information, we need observation and
prediction, and these can’t be perfect.

A. Use of a Barrier Function for the Power Constraint

The problem is to maximize, under a force and power
constraints, the average value of the Lagrangian L:

L(x, u) =
1

m+ a∞

(
fPTO · ż − c̃loss · f2PTO

)
(19)

s.t. |fPTO| ≤ Fmax (20)
|fPTO · ż| ≤ Pmax (21)

Here, we don’t use exactly the electrical power, but an
approximation of the electrical power with a loss coefficient
c̃loss that can be different from closs. Let’s notice that the
inertia term (m + a∞), does not change the problem and is
here for dimension issue.

The power constraint is a mixed constraint state-control
which complicates the use of the Pontryagin’s maximum
principle [17]. In order to avoid this difficulty, we change the
problem by using a barrier function b:

L(x, u) =
1

m+ a∞

(
fPTO · ż − c̃loss · f2PTO

−Pmax · b
(
fPTO · ż
Pmax

))
(22)

s.t. |fPTO| ≤ Fmax (23)

where the barrier function b is defined by:

b(a) =


0 if |a| ≤ 1− ε

0.5

(
|a| − (1− ε)

ε

)2

if |a| > 1− ε
(24)

We will need in the future the derivative function b′:

b′(a) =

 0 if |a| ≤ 1− ε
sign(a)

ε2
(
|a| − (1− ε)

)
if |a| > 1− ε

(25)

Let’s notice that b′ is a monotonically decreasing function
and that b′(a) = sign(a) · b′

(
|a|
)
.

Graphical representations of this barrier function are shown
in figure 5 for different value of ε.
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B. Objective Function
The objective function to maximize is J defined at each

time t0 by:

J(t0) =

∫ t0+Th

t0

L(x, u) dt+ Ψ(x(t0 + Th)) (26)

The function Ψ gives a weight to the final horizon state.
Without such weight, the control naturally tends to convert all
the energy stored by the DWEC at the end of the horizon. We
will here use a portion α of the mechanical energy EMech

that can be used after the horizon:

Ψ(x) =
1

m+ a∞
· α · EMech(x) (27)

=
1

m+ a∞
· α · xT P x (28)

With α = 0, we consider that this energy has no value, and
with α = 1, we consider that this energy has the same value
as the energy converted during the time horizon.

C. Hamiltonian and Dynamic of the Costate vector
The Hamiltonian is defined by:

H = pT f(x, u, t) + L(x, u) (29)

with p, the costate vector, of the same size as the state vector.
The dynamic of this costate vector p is:

ṗ = −∂H
∂x

(30)

= −AT p+B1 fPTO

[
1− b′

(
ż · fPTO

PMax

)]
(31)

And the final costate value must satisfy the following
transversal condition:

p(t0 + Th) =
∂Ψ

∂x
(32)

=
1

m+ a∞
· α · 2 P x(t0 + Th) (33)

D. Maximization of the Hamiltonian
The Pontryagin’s maximum principle states that the maxi-

mization of the function J is obtained only if the control fPTO

maximizes the Hamiltonian H at all instant t.
There are two possibilities:
• The maximum of the Hamiltonian is in the admissible

control interval (|fPTO| ≤ Fmax);
• The maximum of the Hamiltonian is outside the admis-

sible control interval: fPTO = sign
(

∂H
∂fPTO

)
Fmax.

We begin by making the hypothesis that we are in the first
case. To find the extremum of the Hamiltonian, we calculate
its derivative function:

∂H

∂fPTO

=
1

m+ a∞

−p2 + ż

[
1− b′

(
ż · fPTO

Pmax

)]

−2 · c̃loss · fPTO

 (34)

With the information given by the derivative of the barrier
function, we can rewrite this expression:

∂H

∂fPTO

=
1

m+ a∞

(
−p2 + ż − |ż|b′

(
|ż| · fPTO

Pmax

)

−2 · c̃loss · fPTO

)
(35)

This function is strictly decreasing with respect to fPTO, so
there is only one global extremum, and it is always a maximum
because the derivative function changes sign from positive to
negative:

0 = −p2 + ż − |ż|b′
(
|ż| · fPTO

Pmax

)
− 2 · c̃loss · fPTO (36)

In this case, the sign of fPTO is always the same as the
sign of (ż − p2) because the function is strictly decreasing
and y-intercept equals (ż − p2) (see Fig. 6).

+ Fmax

- Fmax

∂H
∂fPTO

fPTO

Max(H)

Fig. 6. Maximization of the Hamiltonian performed by the study of its
derivative. Eight different cases are illustrated here according to the sign of
(ż − p2), the influence of the barrier function for the passage by zero and if
the passage by zero is in or out the admissible domain.

Three different cases exist, that depend on the mechanical
power fPTO · ż:
• |fPTO · ż| ≤ (1− ε) · Pmax;
• fPTO · ż > (1− ε) · Pmax;
• fPTO · ż < −(1− ε) · Pmax;
And the respective solutions are:

• fPTO =
ż − p2
2 · c̃loss

;

• fPTO =
(ż − p2) · ε2 + ż · (1− ε)
2 · c̃loss · Pmax · ε2 + ż2

Pmax ≈
Pmax

ż
;

• fPTO =
(ż − p2) · ε2 − ż · (1− ε)
2 · c̃loss · Pmax · ε2 + ż2

Pmax ≈ −
Pmax

ż
;

Let’s notice that the value of the parameter ε has no effect
because of the simplification done in these solutions.

So, we consider the first case. If the result does not respect
the condition, we use the second or the third case according
to the sign of (ż − p2).



If the force fPTO respects the force constraint, the problem
is solved; if not, we know that the force constraint must be
met. To maximize the Hamiltonian, we must use the following
relation:

fPTO = sign

(
∂H

∂fPTO

)
Fmax (37)

We have already seen that the derivative of the Hamiltonian
has only one sign change, and it is outside the control interval
in this case. So the sign of the derivative in the control interval
is the same (see Fig. 6), and in particular:

sign

(
∂H

∂fPTO

)
= sign

(
∂H

∂fPTO
(fPTO = 0)

)
(38)

= sign (ż − p2) (39)

So, we finally have:

fPTO = sign (ż − p2)Fmax (40)

The complete algorithm to find the optimal fPTO as a
function of the state vector x and the costate vector p is
illustrated in Fig. 7.

fPTO = 2 closs

x2 - p2

|fPTO x2| > Pmax

b' = 0
Pmax

fPTO x2( )

fPTO = 
Pmax

|x2|

=
x2

2 closs fPTO - (x2 - p2)b'
Pmax

fPTO x2( )

|fPTO| > Fmax

b' = 0
Pmax

fPTO x2( )
fPTO = Fmax sgn(x2 -p2)

Begin

End

̃

̃

sgn(x2 -p2)

Fig. 7. Algorithm used to maximize the Hamiltonian as a function of the
state vector x and the costate vector p.

E. MPC resolution

A standard multiple shooting method [18] was used to solve
this MPC problem. We can sum up the dynamic and the control
relations with these three equations:

ẋ =
∂H

∂p
(t, x, p, u) (41)

ṗ = −∂H
∂x

(t, x, p, u) (42)

u = fPTO(x, p) (43)

If we rewrite these relations with z =
[
x p

]T
, we can

have:

ż =


∂H

∂p
(t, z, fPTO(z))

−∂H
∂x

(t, z, fPTO(z))

 = F (t, z) (44)

With the simple shooting method, we want to find zsol(t0)
in such a way that the two boundaries conditions are met:

xsol(t0) = x(t0) (45)

psol(t0 + Th) =
1

m+ a∞
· α · 2 P x(t0 + Th) (46)

Compared to the simple method of shooting, multiple shoot-
ing method consists of cutting the interval into N intervals, and
searching the z values at the beginning of each sub-interval.
We must take into account matching conditions between the
sub-intervals.

We improve the stability of the method by increasing the
number of nodes, but the problem becomes bigger. Indeed,
each new node adds 12 new variables that need to be found (6
for the state and 6 for the costate). This is indeed the principle
of the multiple shooting method, as opposed to the simple
shooting method where the errors with respect to the initial
condition increase exponentially with the horizon size Th.

With the multiple shooting method, we want to find, for
example, zsol1(t0) and zsol2(t0 + Th/2) such as:

xsol1(t0) = x(t0) (47)
zsol1(t0 + Th/2) = zsol2(t0 + Th/2) (48)

psol2(t0 + Th) =
1

m+ a∞
· α · 2 P x(t0 + Th) (49)

The problem has been subdivided by two in this example but
it can be subdivided by more than two.

To solve this problem, we use the Maltab function fsolve().

IV. RESULTS

The MPC control described in III has been simulated with
the buoy model. Each 0.5 s, the optimal control is used to
compute the costate vector in order to decide the next PTO
force to be applied in the next 0.5 s. We have considered
this time to be short enough for the control performances,
but the sampling time used in the MPC algorithm is still
0.1 s. It seems that it is possible to obtain real-time computing
with numerical optimization and the use of correct technology
(like Digital Signal Processors or Field-Programmable Gate
Arrays). Indeed, it takes around 0.5 s for reasonable time
horizon to compute the control with an Intel-Xeon X5550
clocked at 2.67 GHz. Table II gives the default parameters



used in this study: if no further information is given, these
parameters are used. Each simulation has a duration of 250 s
in order to model one sea state.

TABLE II
MODEL PREDICTIVE CONTROL DEFAULT PARAMETERS

Maximum PTO force Fmax 1 MN

Maximum PTO power Pmax 1 MW

Loss coefficient closs 0.1 MW/MN2

Control loss coefficient c̃loss 0.1 MW/MN2

Time horizon Th 12 s

Weight of the final state energy α 0.5

Fig. 8 illustrates for one sea state (Hs = 2 m, Tp = 8 s)
two different types of control: an optimized passive control
with the PTO force proportional to the speed and the MPC
results. We can verify that the force and the power constraints
are respected, while the PTO force is much more continuous
than typical bang-bang controls [19]. The average production
for the passive control is 45 kW and 110 kW for the MPC, that
is around two times more.
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Fig. 8. Comparison between an optimized passive control and the Model
Predictive Control (sea state: Hs = 2m, Tp = 8 s with the same excitation
profile)

A. Influence of the time horizon and the weight of the final
mechanical energy

Two parameters have a huge influence on the control
performance: the time horizon Th and the weight of final state
mechanical energy α. We can predict that the performance is
globally increasing with the time horizon, because we use a
perfect prediction of the excitation. This is what we observe
in figure 9.

The influence of the coefficient α must be lower for a bigger
horizon Th, because this energy become smaller compared to
the converted energy. We can also observe this in figure 9.
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Fig. 9. Control performance for different time horizon Th and weight of final
state mechanical energy α (sea state: Hs = 3m, Tp = 9 s with the same
excitation)

We can deduce from figure 9 that, for each time horizon Th,
there exists an optimal value of α between 0 and 100 % that
maximize the performance of the control, that is the electrical
energy converted. This optimum is smaller with larger time
horizon and its limit seems to be 0.

Others MPC controls for wave energy converters do not take
into account the final state energy (that correspond to the case
α = 0): we can see an important benefit with this additional
setting parameter, in particular with small time horizon value.
That could be very important if the numerical complexity or
the prediction quality does not allow to have long time horizon.

But we see also that taking into account all the final state
energy (α = 1) is never the best way to maximize the
performance, because this mechanical energy have less value
than converted energy: we can even see that, for small time
horizon, the wave energy converter consumes more energy
than it produces.

B. Influence of the sea state

The performance of the control is different for each sea
state, depending on how far the peak period of the excitation is
from the natural resonant period of the system without control
(here, around 7.2 s) and how powerful the sea state is (because
a calm sea state needs less PTO force to have a good control
efficiency). We can notice in figure 10 that the global efficiency
is higher for relatively calm sea state and a peak period close
to the natural resonant period.

We can notice that the shape of the global efficiency as a
function of the time horizon is similar for all sea states, but
it would no longer be the case with a real prediction of the
excitation force.

C. Influence of an error and the electrical losses model

Apart from taking into account the final state energy in
the MPC control, a second originality is to take into account
a simplified loss model for the electrical chain. So it is
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Fig. 10. Harvesting performance versus time horizon Th for different sea
states

important to evaluate what has been added with this additional
information by a sensitivity study, illustrated by the figure
11: the hypothesis about the electrical chain is the same
(closs = 0.1 MW/MN2) but we change the coefficient use for
the control (c̃loss from 0.01 to 1 MW/MN2).

10
−1

10
0

10
1

25

50

75

100

E
ffi

ci
en

cy
˜(

%
)

Error˜factor˜on˜the˜control˜loss˜coefficient˜c
loss

/c
loss

Powerful˜sea−state˜(9˜s,˜3˜m)

˜

˜

10
−1

10
0

10
1

25

50

75

100

E
ffi

ci
en

cy
˜(

%
)

Calm˜sea−state˜(7˜s,˜2˜m)

˜

Control˜η
C

Electrical˜η
E

Global˜η
C
η

E

Fig. 11. Control efficiency, electrical efficiency and global efficiency with
the same hypothesis but an error on the loss coefficient

We can predict that the control efficiency will be higher and
the electric efficiency will be smaller for a smaller value of
c̃loss. The maximum value of the global efficiency must cor-
respond to c̃loss = closs = 0.1 MW/MN2. This corresponds to
the results show in figure 11. We can notice that an important
error on the loss model (by a factor 10) has perceptible impact
on global efficiency, but it is not the case for a smaller error
(by a factor 3), that could still be considered as an important
error. Our MPC seems quite robust against a modelling error
in the loss coefficient.

We can notice that it is more important to take into account
losses for calm sea state, because the control efficiency for
powerful sea states is already limited by the maximum force
and the maximum power for powerful sea states.

D. Pre-sizing of the electrical chain

One important decision to be made for the design of a Wave
Energy Converter is the size of its Power Take-Off. Here we
investigate the influence of maximum force and maximum
power on the global efficiency of the conversion, but also on
the total profitability (that is the reduction of the per-kWh
cost). Indeed, a bigger Power take-Off allows directly a more
efficient conversion, but with a bigger cost, that is not always
the best way for the global per-kWh cost.

The total energy produced during the lifetime of a Direct
Wave Energy Converter EProd correspond to a 8 years case
with the sea state (9 s, 3 m), hypothetically equivalent to
20 years in Yeu’s island site [20]. We can see the increase
of EProd with the maximum force and the maximum power
in the first subfigure (Buoy profitability) of figure 12.

The second and the third subfigures of figure 12 (static and
electro-mechanical converter profitability) correspond respec-
tively to the ratio between the energy produced during its
lifetime by the WEC EProd and the maximum power (for
the static converter profitability) or the maximum force (for
the electro-mechanical converter profitability). Indeed, we use
the assumption that the maximum power depends mainly on
the static converter size and the maximum force on the electro-
mechanical converter (machine) size.

We deduce a cost per-kWh CkWh with the following
hypotheses:
• Static converter cost CP : 100 ke/MW ;
• Electro-mechanical converter cost CF : 200 ke/MN ;
• Cost of the installed DWEC without the electrical chain
CB : 2000 ke.

So we can calculated CkWh with the following relation:

CkWh =
CB + CP PMax + CF FMax

EProd
(50)

The last figure (Total profitability) correspond to the inverse
of this value. We can cite the French WEC feed-in tariff for
comparison, that corresponds to 6.7 kWh/e. According to this
study, an electrical chain with a 2 MW converter and a 2 MN
electrical machine has a smaller per-kWh cost than smaller
electrical chain.

V. CONCLUSION

This paper proposes an enhanced Model Predictive Control
for a Wave Energy Converter (in this case, a heaving buoy):
this model takes into account an original energetic model and
the main constraints of an electrical chain (limitation in force,
in power and losses depending on Power Take-Off force).

The mixed constraint on the power is taken into account
with a barrier function, in order to use the maximum Pontrya-
gin’s principle. A classical multishooting method is used to
compute the optimal control.

The results of the control are consistent with most intuitions.
The control is close of its maximum performance from 12 s
time horizon (the natural resonant period of the system is
7.2 s). Considering final state energy in the control allows
better performance for shorter time horizon, that could be
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Fig. 12. Pre-sizing of the electrical chain: profitability of different element
of the WEC as a function of the maximum force and maximum power

important if there are numerical or prediction issues (here,
a perfect prediction is used).

We notice that it is more important for the global efficiency
to take into account losses for calm sea state, because max-
imum force and maximum power limit already the control
efficiency.

The end of the study has focused on presizing optimization
for a Direct Wave Energy Converter, in a global context
of kWh cost minimization. Electrical chain losses and force
or power amplitude constraints play an important role in
designing the electric chain, and hence in its cost. Moreover,

they play a key role in the conversion mechanism. For this
reason, the control strategy and the electric chain design are
highly correlated. We use here a simplified economic model
in order to optimize the size of the electrical chain (maximum
force that correspond to the electro-mechanical converter and
maximum power that correspond to the static converter).

The MPC seems to be a good solution to optimize the
harvesting and respect the main constraints due to the use of
an electrical chain. Future works could compare it with other
control strategy. However, in order to do a fair comparison,
these controls must use realistic observations and predictions.
Besides the conversion efficiency, other relevant issues must
also be compared, as stability, practical feasibility, flexibility
and robutness. These are particularly important in the harsh sea
environment. Moreover, a better control strategy could lead to
other WEC designs, that could also be studied.

This study is part of a more general design analysis of
a complete electric conversion chain that takes lifetime into
account [9]. We can notice that the power fluctuations are
more stringent with optimal control compared to passive one.
This could lead to premature aging of the electrical chain
(in particular the converter [21]) or grid integration issue (in
particular the need to smooth the production with a flicker
contraint [22]).
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