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Abstract
Cheese ripening is a complex biochemical process driven by microbial communities com-

posed of both eukaryotes and prokaryotes. Surface-ripened cheeses are widely consumed

all over the world and are appreciated for their characteristic flavor. Microbial community

composition has been studied for a long time on surface-ripened cheeses, but only limited

knowledge has been acquired about its in situmetabolic activities. We applied metagenomic,

metatranscriptomic and biochemical analyses to an experimental surface-ripened cheese

composed of nine microbial species during four weeks of ripening. By combining all of the

data, we were able to obtain an overview of the cheese maturation process and to better un-

derstand the metabolic activities of the different community members and their possible inter-

actions. Furthermore, differential expression analysis was used to select a set of biomarker

genes, providing a valuable tool that can be used to monitor the cheese-making process.

Introduction
Microbial communities are of major importance in the fermentation of food products. Fer-
mentation remains a widespread means for food processing and preservation, and fermented
foods (including cheese) are widely consumed worldwide. The composition and behavior of
the microbial communities in a cheese are important for its characteristic organoleptic prop-
erties, shelf life and safety [1]. These communities are involved in the generation of a wide
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range of diverse beneficial functions as a result of individual metabolism and/or complex eco-
logical interactions [2].

To date, a plethora of work related to functions of technological interest have been pub-
lished on cheese-inhabiting microorganism. Such studies mainly concern the ability of those
microorganisms to generate functions such as proteolysis [3], lipolysis [4] and/or catabolic
routes leading to aroma compound production [5–7]. However, although some microorgan-
isms that inhabit cheese are known to be key drivers of the ripening process, our understanding
of how individual microbes and microbial groups change over time within the cheese matrix
and contribute to the structure and function of specific communities remains incomplete.

With the recent advances in high-throughput sequencing technologies (HTS), sensitive pro-
filing of microbial communities from fermented food products can now be performed on an
unprecedented scale via the massive sequencing of short DNA fragments [8,9]. Metagenomic
studies, including both meta-barcoding (e.g., the deep-sequencing of variable regions of the
prokaryotic SSU rRNA gene or of the fungal ITS) and whole metagenome sequencing projects,
have made it possible to characterize the microbial community composition of many cheese
varieties and to access the diversity of sub-dominant populations [10–13]. Furthermore, ge-
nome sequencing of several representative strains isolated from cheese or used as starter cul-
ture in the cheese-making process has allowed us to access their metabolic arsenal [14–16].
The next step towards a better understanding of how the cheese ecosystem functions would be
to evaluate the expression of these genes in situ. As recently demonstrated for a Camembert-
type cheese, this is feasible through metatranscriptomic analyses using RNA sequencing [17].
In this example, the authors followed the metabolic activity of a relatively simple community
essentially composed of a yeast, Geotrichum candidum, and a fungus, Penicillium camemberti,
and highlighted key functions and metabolic pathways that are expressed during the ripening
process. Because the genome of these organisms were not available, de novo assembly of the
RNA-Seq data (long reads) was required prior to functional assignment of the resulting con-
tigs. This approach could be applied to more complex cheese microbial communities compris-
ing both fungal and bacterial species. In this case, short reads analysis offering a higher
sequencing depth is preferable, but it would be highly desirable to have the annotated reference
genomes of all of the species.

In the present work, we combined microbiological, biochemical, metagenomic (DNA-Seq)
and metatranscriptomic (RNA-Seq) data collected from a simplified microbial community ca-
pable of reproducing the complex metabolic pattern of cheese maturation [18,19]. To facilitate
these analyses, we established a reference database of all the genomes of the studied communi-
ty, onto which sequence reads could be mapped. The main objective of the study was to obtain
a global view of the dynamics of the microbial community structure as well as the expression
profiles of its metabolic potential throughout a ripening cycle at different scales—whole micro-
bial community down to the gene level. Moreover, differential analysis of the ecosystem’s meta-
transcriptome was performed which should enable us to propose a set of biomarker genes that
are representative of the most active species at various stages of ripening. Thus, we expect to re-
veal the sequential development and/or metabolic features of microbial species, and possibly
highlight metabolic complementarities and possible interaction phenomena that sustain the
expression of important functionalities of technological interest.

Materials and Methods

Cheese production
Full details on microorganisms used for cheese ripening and cheese production are given in the
S1 File. Briefly, cheese production was performed with 120 L of pasteurized milk, under aseptic
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conditions in a sterilized chamber [20]. A lactic starter culture containing Lactococcus lactis
subsp. lactis S3+ and S3- inoculated at concentrations equivalent to 2 x 106 and 4 x 106 CFU/
mL, respectively, was used in combination with a mix of Kluyveromyces lactis 3550 (104 CFU/
mL), Debaryomyces hansenii 304 (104 CFU/mL) and Geotrichum candidum ATCC 204307
(103 CFU/mL). Next, 120 mL of a filter-sterilized CaCl2 solution (10%) and 40 mL of rennet
(20 mg/L of chymosin (Chr. Hansen, Arpajon, France)) were added to allow the milk to coagu-
late. The curd was cut into small cheeses (diameter: 5 cm; height: 1.5 cm; weight: 26 g) and im-
mersed in sterile brine (270 g/L NaCl, pH 5.5 measured using a contact electrode) to obtain a
salt concentration of 1.7%. The five ripening bacteria (Corynebacterium casei UCMA 3821,
Brevibacterium aurantiacum ATCC 9174, Arthrobacter arilaitensis CIP 108037, Staphylococcus
equorumMu2 and Hafnia alvei GB001) were inoculated onto the surface of the cheese at a rate
of 2 x 105 CFU/g. The inoculated cheeses were ripened for four weeks at 14°C and 97% relative
humidity in sterile crystallizing basins.

Cheese sampling and microbial analyses
Samples were collected on days 1, 7, 14, 21 and 31. Day 1 corresponds to the cheese curd (be-
fore immersion in brine). Three crystallizing basins (corresponding to three replicates) were
analyzed at each time-point. As all cheeses were produced from the same batch of milk and in-
oculum, these replicates should not been considered as true biological replicates. The four
small cheeses in each crystallizing basin were crushed and homogenized with sterile forks and
knives. Serial dilutions were performed in 9 g/L NaCl from one gram of cheese and plated in
triplicate on agar plates. Three selective culture media were used: brain heart infusion (Biokar
Diagnostics) with amphotericin (50 mg/L) for cheese-surface bacteria, de Man-Rogosa-Sharpe
(pH 6.5, Biokar Diagnostics) with amphotericin (50 mg/L) for lactic acid bacteria, and yeast ex-
tract-glucose-chloramphenicol (Biokar Diagnostics) with 2,3,5-triphenyltetrazolium chloride
(10 mg/L) for yeasts. The strains could be selectively counted on these media because each had
a distinct morphotype.

Biochemical analyses
Lactose and lactate concentration. The lactose and lactate contents of cheeses were deter-

mined by high-performance liquid chromatography (HPLC), as previously described [20].
Briefly, a cheese suspension was prepared with finely ground cheese (7.5 g and 10 g for lactose
and lactate, respectively) and 10 mL of distilled water. After incubation for 1 h at 50°C, it was
homogenized for 2 min at 25000 rpm using a mechanical blender (Ultra-Turrax model T25,
Ika Laortechnik).

For lactose measurement, 12.5 mL of Carrez I solution (150 g K4(Fe(CN)6), 3H2O /L water),
12.5 mL of Carrez II solution (240 g Zn(CH3COO)2, 2 H2O /L water) and 2.5 mL of 1 M NaOH
were added to the suspension. After homogenization and incubation for 1 h at 25°C, the sus-
pension was filtered throughWhatman paper n°42 (GE Healthcare) and through a cellulose fil-
ter of 0.22 μm porosity (Minisart SP25, Sartorius). Finally, the filtrate was analyzed by HPLC.

For lactate measurement, 10 mL of 240 g/L trichloroacetic acid (TCA) and 10 mL of water
were added to the suspension after cooling at 25°C. The mixture was incubated for 1h at 25°C
and filtered through Whatman paper n°42 (GE Healthcare). Finally, the filtrate was analyzed
by HPLC.

Free amino acids concentration. A cheese suspension was prepared from 5 g of cheese
and 45 mL of distilled water. It was homogenized for 2 min at 25000 rpm using a mechanical
blender (Ultra-Turrax model T25, Ika Laortechnik) and incubated for 30 min at 50°C. After
centrifugation for 30 min at 5000 x g and 4°C, the supernatant was filtered through Whatman
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paper n°42 (GE Healthcare). The free amino acids concentration was measured on the filtrate
according to the ninhydrin method [21] and quantified using leucine as a standard.

Proteolysis index. A cheese suspension was prepared from 10 g of cheese and 90 mL of
distilled water. It was homogenized for 2 min at 25000 rpm using a mechanical blender (Ultra-
Turrax model T25, Ika Laortechnik). This suspension was used for both total nitrogen and
non-casein nitrogen content measure.

Total nitrogen content was measured directly on the cheese suspension using the Kjeldahl
method according to standard NF EN ISO 8968–1.

The non-casein nitrogen content (soluble at pH 4.6) was measured according to the proce-
dure described in standard NF ISO 27871. The cheese suspension was adjusted to pH 4.6 using
5N HCl and filtered through Whatman paper n°42 (GE Healthcare). The nitrogen content of
this soluble fraction was measured using the Kjeldahl method according to standard NF EN
ISO 8968–1.

The proteolysis index was calculated by dividing the soluble nitrogen content by the total ni-
trogen content and multiplying by 100, as previously described [22].

Lipolysis index. The lipolysis index corresponds to the quantity of KOH (in mg) required
to neutralize the free fatty acids contained in 1 g of cheese. It was determined by adapting the ti-
trimetric measurement described by Mouillet et al. [23]. Briefly, 2.5 g of cheese was homogenized
for 2 min at 25000 rpm using a mechanical blender (Ultra-Turrax model T25, Ika Laortechnik)
in 22.5 mL of ethanol/diethyl ether (1:1 v/v) in order to extract fat content. The suspension was
filtered throughWatman paper No. 42 (GE Healthcare) and the acidity of the filtrate was mea-
sured by standard titration with 1M KOH in ethanol using phenolphthalein as a color indicator.

Metagenomic and metatranscriptomic analyses
Extraction of DNA from cheese samples. Total genomic DNA was obtained after casein

solubilization and cell recovery from two grams of cheese by adapting the method described by
Baruzzi et al. [24]. Cheese samples were mixed with 18 mL of sodium citrate solution (20 g/L
trisodium citrate dihydrate) and the mixture was dispersed for 2 min at 24,000 rpm with a me-
chanical blender (Ultra-Turrax model T25, Ika Laortechnik). A second dispersion was per-
formed after 10 min of incubation at room temperature. The mixture was then centrifuged at
6,400 x g for 10 min at 4°C, and the supernatant was removed. The casein pellet (containing
the microbial cells) was resuspended in 5 mL of a Triton X-100 aqueous solution (2.5% v/v),
vigorously shaken, heated in a water bath at 70°C for 10 min, centrifuged at 6,400 x g for 10
min at 4°C, and rinsed twice in physiological saline solution. The pellet was dissolved in a mix-
ture of 270 μL of guanidium thiocyanate (4 M) in Tris-HCl (pH 7.5, 0.1 M) and 30 μL of sodi-
um lauroyl sarcosinate (100 g/L), and transferred to a 2 mL tube containing 250 mg of 0.1 mm-
diameter zirconium beads and 250 mg of 0.5 mm-diameter zirconium beads (Sigma, St-Quen-
tin-Fallavier, France). Proteinase K treatment, bead-beating, phenol-chloroform extraction,
RNase treatment and ethanol precipitation were then performed as previously described by
Leclercq-Perlat et al. [25]. The DNA pellet was dissolved in 120 μL of Tris EDTA buffer (10
mM Tris-HCl, pH 8.0, 1 mM EDTA).

Extraction of RNA from cheese samples. Total RNA was extracted from 500 mg cheese
samples without the prior separation of microbial cells, as previously described [26]. Three sep-
arate extractions were performed for each cheese sample and pooled before library construc-
tion. The quality of total RNA was analyzed with a 2100 Bioanalyzer and RNA 6000 NANO
chips (Agilent, Palo Alto, CA, USA).

DNA and cDNA library construction and SOLiD sequencing. Library construction and
SOLiD sequencing were performed at the INRAMetaQuant facility (Jouy-en-Josas, France).
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The DNA libraries were constructed from 3 μg of total DNA by using the SOLiD Fragment Li-
brary Construction Kit (Applied Biosystems, Bedford, MA, USA) and then barcoded with the
SOLiD Fragment Library Barcoding Kit. DNA samples collected at day 1 did not allow to con-
struct libraries that meet the quantity and quality criteria enabling to perform sequencing and,
thus, were excluded from this study. The cDNA libraries were constructed from 200 to 500 ng
total RNA using a SOLiDWhole Transcriptome Analysis Kit and were barcoded with the
SOLiD Transcriptome Multiplexing Kit. The SOLiD ePCR kit and SOLiD Bead Enrichment
Kit were used to process DNA and cDNA samples for sequencing, and the SOLiD 4 System
was used for sequencing.

Reads processing and mapping. Short sequence reads of 35 bp were mapped (a maximum
of three mismatches were allowed) onto a reference composed of the nine sequenced strains of
microorganisms (Table 1) using Bowtie software (version 0.12.7) [27].

After the smart filtering of multiple reads, the numbers of reads mapped onto the reference
were counted with METEOR software [28]. Only uniquely mapped reads were further ana-
lyzed. General library statistics are available in S1 Table.

DNA-Seq data analyses. For each microorganism, sequencing coverage was estimated
with the Lander/Waterman equation [29]: C = LN / G, where C is the coverage, L is the read
length, N is the number of reads and G is the haploid genome length.

RNA-Seq data analyses. Sequence reads mapping to the coding DNA sequence (CDS) fea-
tures were retrieved from the raw dataset.

First, functional classification of the metatranscriptomic dataset was performed using the
Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations [30]. To do this, data were
filtered to remove genes displaying an average of less than five reads per sample across the en-
tire dataset (15 samples) and normalized according to the library size using custom scripts
built under the statistical environment R (http://www.r-project.org/).

Second, differential expression analysis over time was done by comparing the number of
mapped reads for each gene at two different time-points (n = 3 per ripening time). For this
analysis, data (six samples for each comparison) were filtered: (i) genes with less than five
mapped reads were eliminated; and (ii) genes whose replicates were heterogeneous were dis-
carded (variation coefficient>minimum mean observed for the two groups of three repli-
cates). Data normalization and determination of differentially expressed genes were then
conducted using the Bioconductor DESeq2 package in the statistical environment R [31,32].
Raw p-values were adjusted for multiple testing using the Benjamini-Hochberg procedure [33],
which assesses the False Discovery Rate. Gene transcripts with an adjusted p-value< 0.05 were
considered to be differentially abundant between two ripening times.

Sequence accession numbers
The raw SOLiD read data for all samples was deposited in the European Bioinformatics Institu-
te's European Nucleotide Archive under the accession number PRJEB6315. Accession numbers
of reference genomes are given in Table 1.

Results and Discussion

Overview of the cheese microbial community composition and activity
during ripening
In order to estimate the overall contribution of each microorganism throughout the cheese-rip-
ening kinetics, we used three complementary approaches: microbiological counting providing
a measurement of the viable cells, metagenomic sequencing (DNA-Seq) indicating the
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proportion of DNAmolecules from both viable and dead cells in each sample, and metatran-
scriptomics (RNA-Seq) reflecting the active populations (Fig 1).

Growth measurements revealed that the early development of yeasts, especially D. hansenii
and G. candidum, contributed to the increase in the pH of the cheese curd (Fig 1A), which, in
turn, prompted the development of acid-sensitive bacteria (A. arilaitensis,H. alvei, B. aurantia-
cum, S. equorum, C. casei). The lactic acid bacterium L. lactis was the most prominent bacterial

Table 1. Reference genomes used for mapping of the sequence reads.

Species Nb of genes (CDS) Genome size (Mb) Status BioProject Accession number Reference

Six bacteria

Arthrobacter arilaitensis CIP 108037 3,689 3.92 Complete PRJEA50353 [40]

Brevibacterium aurantiacum ATCC9174 4,105 4.39 Draft (76 contigs) PRJNA405 no reference

Corynebacterium casei UCMA3821 3,015 3.12 Draft (106 contigs) PRJEA76363 [41]

Hafnia alvei GB001 4,692 4.89 Draft (137 contigs) PRJEB6257 to be published

Lactococcus lactis S3 2,615 2.49 Draft (163 contigs) PRJEB6259 to be published

Staphylococcus equorum Mu2 2,932 2.96 Draft (30 contigs) PRJEA88899 [76]

Three yeasts

Debaryomyces hansenii CBS767 6,421 12.2 Complete PRJNA13832 [14]

Geotrichum candidum ATCC204307 6,958 24.9 Complete PRJEB5752 to be published

Kluyveromyces lactis NRRL Y1140 5,120 10.8 Complete PRJNA13835 [14]

doi:10.1371/journal.pone.0124360.t001

Fig 1. Changes in the microbial community structure during surface-ripened cheesematuration. (A) Microbiological counts and pH measurements.
(B) Distribution of metagenomic data by species. (C) Distribution of metatranscriptomic data by species (only reads mapping CDS features were taken into
account). SE: Staphylococcus equorum. BA: Brevibacterium aurantiacum. AA: Arthrobacter arilaitensis. HA: Hafnia alvei. CC: Corynebacterium casei. DH:
Debaryomyces hansenii. GC:Geotrichum candidum. KL: Kluyveromyces lactis. LL: Lactococcus lactis. NA: data not available.

doi:10.1371/journal.pone.0124360.g001
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population until day 14, but did not grow during the ripening process. Kluyveromyces lactis
was detected at day 1 but was not detectable thereafter. C. casei was the dominant bacterium at
the end of the ripening process (~109 CFU/g of cheese). Geotrichum candidum was the major
yeast at day 7. At the end of the ripening process (day 31), the populations of G. candidum and
D. hansenii were 7 x 107 CFU and 1 x 107 CFU/g of cheese, respectively. The pH of the cheese
curd increased from 4.6 at the beginning of ripening to 7.5 at day 31.

Similar trends were observed between microbiological counts and DNA-Seq data (Fig 1B).
The proportions of reads attributed to each microorganism revealed a co-dominance of L. lactis
and yeasts during the first two weeks of the ripening process, which were progressively replaced
by surface bacteria, principally C. casei (71% of the total reads at day 31). S. equorum exhibited
the lowest genome coverage in our dataset with a maximum of 0.12 X at day 14 (Table 2). In
contrast, abundant species such as L. lactis and C. casei showed the highest genome coverages
with 218 X for the former (day 7) and 176 X for the latter (day 31). The most abundant yeast,
G. candidum, displayed a maximum coverage of 14 X at day 7. The differences observed be-
tween CFU counting (Fig 1A) and the proportions of DNA-Seq reads per species (Fig 1B)
might be due to several reasons. First, CFU counting is supposed to measure living cells where-
as DNA sequencing target both living and dead cells. Second, CFU counting may provide an al-
tered view of the living community structure because of viable but nonculturable (VBNC)
issues, the number of individual cells generating every colonies or the difficulty to count some
species (such as G. candidum which is a filamentous yeast). Third, DNA extraction bias (not as-
sessed in this study), especially the cell separation step, as well as genome size may influence
the proportion of reads by species observed with DNA-Seq.

RNA-Seq data indicated that L. lactis and K. lactiswere the most active species at day 1 (77%
and 13% of total CDS reads, respectively) (Fig 1C). The proportion of reads fromG. candidum ac-
counted for 84% of total CDS reads at day 7 and remained highly dominant over time (with 65%
of total CDS reads at day 31). Read counts corresponding toD. hansenii transcripts increased
from day 1 (1%) to day 14 (9%) and remained stable thereafter. Ripening bacteria, especially C.
casei andH. alvei, were mainly detected at the end of ripening with RNA-Seq (9% and 7% of the
CDS reads at day 31, respectively). Again, RNA extraction efficiency might be variable between
microorganisms (especially between eukaryotes and prokaryotes) and maybe also between ripen-
ing times. This may have influenced the distribution of reads observed with this dataset.

Table 2. Sequencing coverage (C) and percentage of genes (P) with at least an average of five uniquely mapped reads in the DNA-Seq dataset
across the three replicates for eachmicrobial genome during ripening.

Speciesa Day 7 Day 14 Day 21 Day 31

C P C P C P C P

AA 0.52 81.4% 11.53 98% 8.39 97.8% 4.13 97%

BA 0.03 0.3% 1.02 93.1% 1.05 93.1% 0.99 92.8%

CC 1.35 93.6% 11.54 96.3% 110.59 96.8% 175.54 96.8%

DH 10.90 98.6% 9.04 98.5% 3.63 98.3% 2.78 98%

GC 14.39 100% 12.16 100% 4.99 100% 3.78 100%

HA 0.21 42.1% 12.25 99.9% 8.47 99.8% 4.40 99.5%

KL 6.29 97.1% 3.54 97.1% 0.86 96.3% 0.26 75.5%

LL 218.17 99.5% 134.74 99.5% 43.40 99.5% 21.31 99.3%

SE 0.04 0.2% 0.12 13.7% 0.11 12.4% 0.09 7.8%

aAA = Arthrobacter arilaitensis; BA = Brevibacterium aurantiacum; CC = Corynebacterium casei; DH = Debaryomyces hansenii; GC = Geotrichum

candidum; HA = Hafnia alvei; KL = Kluyveromyces lactis; LL = Lactococcus lactis; SE = Staphylococcus equorum

doi:10.1371/journal.pone.0124360.t002
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Overall, the results highlighted the successive development and metabolic activity of differ-
ent microbial groups, L. lactis and K. lactis at the beginning of cheese maturation, followed by
G. candidum and D. hansenii and, finally, acid-sensitive bacteria. This dynamics is in accor-
dance with other studies conducted on surface-ripened cheese, which depicted a similar devel-
opment sequence of the microbial species [19,34,35]. However, we provide new information
here with respect to the metabolic activity of the different cheese-ripening populations.

Functional expression of the cheese ecosystem over time
The global expression pattern of the cheese ecosystem throughout the ripening process was
evaluated by normalizing all data by library size (S2 Table) and classifying RNA-Seq reads ac-
cording to KEGG annotations (Fig 2). Data were also mapped onto the KEGG general map to
obtain a dynamic view at the ecosystem level and per microbial species (S1 Fig). The KEGG
categories—Amino acid metabolism, Carbohydrate metabolism, Energy metabolism, Trans-
port and catabolism, Folding, sorting and degradation, and Translation and Signal transduc-
tion—accounted for the most abundant transcripts throughout the ripening period. These data
are consistent with those observed on a Camembert-type cheese using a similar approach [17].
Differences in the expression dynamics between the functional classes were observed. However,
this possibly reflected changes of several distinct metabolic pathways and required a more de-
tailed analysis. Furthermore, it should be noticed that a great proportion of reads (between 69
and 81% depending on the sample) mapped genes without ortholog in the KEGG database.
This included both annotated genes such as those encoding non enzymatic proteins or en-
zymes not yet referenced in KEGG pathways, as well as unknown genes.

Fig 2. Functional classification of the metatranscriptome during surface-ripened cheesematuration. Functional classes were determined according
to KEGG annotations. Read counts corresponding to all species were cumulated. Read numbers were normalized (according to the library size) to 50,000
reads per sampling day.

doi:10.1371/journal.pone.0124360.g002
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Energy metabolism and iron homeostasis. The great majority of genes involved in energy
production detected in our metatranscriptomic dataset were involved in the oxidative phos-
phorylation pathway (PATH:ko00190) (S2 Fig). As expected, the dynamics in the detection of
transcripts involved in this pathway followed the changes in the community structure observed
using microbial counts (Fig 1A). G. candidum genes encoding ATPases (EC:3.6.3.14 and
3.6.3.6), NADH dehydrogenase (EC:1.6.5.3) and cytochrome C oxidase (EC:1.9.3.1) accounted
for the most frequently detected genes (S2 Table). Their maximum detection levels were ob-
served between days 7 and 21. At day 1, it was possible to observe transcripts of genes encoding
K. lactis ATPase (EC:3.6.3.6) and L. lactis ATPase (EC:3.6.3.14), NADH dehydrogenase
(EC:1.6.99.3) and cytochrome D ubiquinol oxidase (EC:1.10.3.-), which reflected the early
growth of these two microbial species. At the late stage of ripening (days 21 to 31), the detec-
tion of gene transcripts involved in the oxidative phosphorylation pathway from H. alvei, C.
casei and, to a lesser extent, A. arilaitensis increased.

Metals ions, especially iron, are cofactors and/or components of various enzymatic systems
involved in key microbial metabolisms (e.g., respiration). In cheese, iron often forms complexes
with various curd components such as proteins (e.g., lactoferrin, ferritin and casein) and pep-
tides, leading to low bioavailability [36]. Eukaryotic and prokaryotic microorganisms have dif-
ferent specific systems to transport metals. Numerous bacteria synthesize and excrete
siderophores to trap iron [37]. However, some yeasts, including K. lactis, D. hansenii and G.
candidum, express different siderophore transport systems to take advantage of siderophores
present in their environment [38,39]. Another interesting feature is that fungal genes encoding
iron high-affinity transport systems are generally induced under iron starvation conditions
[38]. In our metatranscriptome, gene transcripts related to iron capture and/or transport were
frequently detected (S2 Table), which may indicate a need for iron mobilization within the mi-
crobial community. For instance, feoB transcripts encoding a ferrous iron transport protein in
L. lactis were mainly detected at day 1, transcripts of SIT1 encoding a ferrioxamine B transport-
er in G. candidum were essentially detected from day 7 to day 21, and transcripts of several
iron-siderophore ABC transporters from C. casei (locus tag CCAS_01175, CCAS_03565,
CCAS_00130, CCAS_05220, CCAS_05225, CCAS_12545, CCAS_12550, CCAS_12555,
CCAS_10415) were mainly detected at day 31. Furthermore, sequence reads mapping to genes
encoding high-affinity iron transport systems from both G. candidum (e.g., FTR1, FET3,
FTH1), D. hansenii (e.g., FET3) and K. lactis (e.g., FTH1) were also detected in our conditions.
Surprisingly, we did not observe bacterial transcripts for genes possibly involved in siderophore
biosynthetic pathways, although A. arilaitensis, C. casei and B. aurantiacum are known to carry
such pathways in their genome [26,40,41]. This could be due to an insufficient sequencing
depth for cheese-surface bacterial species. A second hypothesis, which requires complementary
analysis to be confirmed, could be that peptides released during the ripening process through
casein hydrolysis would act as iron trappers, as suggested by [36], and be used as siderophore-
like complexes by members of the microbial community.

Lactose consumption. According to Fig 2, carbohydrate metabolism was mainly detected in
the early stage of ripening. Lactose is the major carbohydrate compound present in cheese curd
and is rapidly consumed during the process (Fig 3A). We identified numerous expressed genes
encoding enzymes involved in lactose uptake and degradation (Fig 3B and S3A Fig). For example,
L. lactis genes encoding components of the lactose-specific phosphoenolpyruvate-dependent
transport system (PTS), including lacEF (EC:2.7.1.69) and ptsI (EC:2.7.3.9), were highly expressed
at day 1. The PTS system allows the concomitant translocation and phosphorylation of carbohy-
drates in L. lactis. The detection of components from other carbohydrate-specific PTS systems
such as celB (EC:2.7.1.69) andmanXYZ (EC:2.7.1.69) might indicate a versatile use of these sys-
tems for lactose uptake in this bacterium, as previously suggested by Aleksandrzak-Piekerczyk
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[42]. Transcripts of the lacG gene encoding the 6P-β-Galactosidase (EC:3.2.1.85), as well as
lacACD (EC:5.3.1.26; EC:2.7.1.144; EC:4.1.2.40) involved in Lactose-6-P degradation via the
D-Tagatose-6-P pathway in L. lactis, were also detected, mainly during the early stages of ripening
(days 1 to 7). The products from this pathway, i.e., β-D-Glucose and Glyceraldehyde-3-P, then
undergo glycolysis and/or the pentose phosphate pathway. Transcripts involved in these path-
ways were also highly detected in L. lactis at the same time (S2B and S2C Fig).

K. lactis is also able to metabolize lactose, but this yeast uses a slightly different pathway [43].
Lactose is imported through a specific lactose permease (encoded by the gene LAC12) and is
then metabolized by a β-Galactosidase (EC:3.2.1.23) encoded by LAC4 and enzymes involved in
the Leloir pathway (EC:2.7.1.6; EC:2.7.7.12) and encoded by genes GAL1 and GAL7. The expres-
sion of all genes from K. lactis involved in this pathway was also observed in our dataset, their
detection being the most important during the early stage of ripening (days 1 to 14) (Fig 3B).

G. candidum does not consume lactose [44], whereas D. hansenii can efficiently catabolize
this disaccharide [22]. Although our analysis indicated the detection of transcripts correspond-
ing to the KEGG galactose pathway (PATH:ko00052) in these species (S3A Fig), this mainly
corresponded to the detection of genes encoding enzymes not necessarily specific to this path-
way, such as phosphoglucomutase (EC:5.4.2.2), 6-phosphofructokinase (EC:2.7.1.11) and
hexokinase (EC:2.7.1.1). Indeed, these enzymes might instead reflect the detection of glycolysis

Fig 3. Lactosemetabolism during surface-ripened cheesematuration. (A) Lactose and lactate concentrations. (B) Expression dynamics of lactose
degradation pathways in Lactococcus lactis and Kluyveromyces lactis. Read numbers were normalized (according to the library size) to 50,000 reads per
sampling day. For each degradation step, a histogram represents cumulative read numbers when several genes were involved.

doi:10.1371/journal.pone.0124360.g003
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(PATH:ko00010, S3B Fig) and the pentose phosphate pathway (PATH:ko00030, S3C Fig).
Consequently, these species are not likely to significantly contribute to the lactose degradation
in our model cheese.

Together, these results highlighted that in our experimental conditions, one of the key func-
tions sustaining the cheese-ripening process, namely lactose biodegradation, involved the ac-
tive participation of both L. lactis and K. lactis and revealed a functional redundancy existing
for this metabolism within the studied ecosystem, as suggested from previous work [45].

Lactate metabolism. Lactate is of major importance in cheese making. It is produced from
lactose present in milk by lactic acid bacteria (Fig 3A). Two lactate dehydrogenases transcripts
of L. lactis, ldhA (EC:1.1.1.27) and dld (EC:1.1.2.4), were generally detected at day 1 (S2 Table),
suggesting that L. lactis actively produces lactate at the early stage of ripening. Lactate exporter-
(s), responsible for lactate extrusion from the intracellular environment in L. lactis, have not
yet been characterized. Carvalo et al. [46] proposed llmg_2513 CDS from L. lactisMG1363 as a
good candidate to encode a lactate transporter based on its predicted protein sequence topolo-
gy that is similar to known lactate transporters from other species (such as LldP from E. coli,
YqkI from B. subtilis and JEN1 from S. cerevisiae), but failed to confirm this activity using the
mutagenesis approach. LLACS3_00055 from L. lactis S3, used as starter culture in our experi-
ment, the only CDS presenting a strong homology with llmg_2513 (89% sequence identity at
the nucleic level), was not detected in our metatranscriptome and, thus, would probably not be
responsible for lactate export. Several gene transcripts encoding transporters in L. lactis were
although detected, mostly at day 1, including MFS and ABC family transporters that could be
good candidates to facilitate the movement of small solutes such as lactate across cell mem-
branes. However, none of them could be identified as a potential lactate transporter on the
basis of sequence similarity with known sequences from other organisms.

Lactate degradation by the cheese microflora, principally yeasts, is a key driver for curd de-
acidification and occurred essentially during the two first weeks of ripening in our conditions
(Fig 3A). Concomitantly, we detected reads for genes JEN1, encoding a lactate transporter, to-
gether with DLD2 (EC:1.1.2.4), encoding a lactate dehydrogenase, in both D. hansenii and G.
candidum (S2 Table). It should also be mentioned that G. candidum DLD1 transcripts encod-
ing a D-lactate dehydrogenase (EC:1.1.2.4) and CYB2 encoding a L-lactate dehydrogenase
(EC:1.2.2.3) were also detected, generally between day 7 and day 21. In Saccharomyces cerevi-
siae [47,48] and D. hansenii—cultivated in a cheese-like medium [49]—the authors reported
that DLD1 and CYB2 were induced by lactate, making them good candidates for
lactate degradation.

Protein and amino acid degradation. Proteins and, more precisely, caseins, are major car-
bon and energy sources for microbial species living on cheese, together with lactose, lactate and
lipids [6]. Proteolysis, which refers to the cleavage of caseins into small peptides and, ultimately,
free amino acids by microbial proteases and peptidases, took place progressively and steadily in
cheese, as attested to by the evolution of the proteolysis index and free amino acid concentra-
tions (Fig 4A). Because a specific category for proteolysis does not exist in the KEGG database,
we manually built two enzyme classes (Proteases and Peptidases) based on gene product anno-
tations present in the reference genomes, and analyzed their expression profile during cheese
ripening (Fig 4B and 4C). Normalized expression data for all these genes along with their anno-
tation is given in S3 Table. These results suggested that G. candidum was the major contributor
to proteolysis in this simplified surface-ripened cheese and supported other studies that indicat-
ed that proteolysis mainly occurs during the first three weeks of soft cheese ripening [17,50].

In the genome of G. candidum, only one predicted CDS encoding a putative protease con-
tains a signal sequence indicating a possible extracellular localization according to SignalP [51]
and the PSORT server [52]. However, we didn’t detected any read mapping to this CDS in our
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metatranscriptome. Similar genome analysis revealed that there is no extracellular protease en-
coding genes predicted in the D. hansenii and K. lactis available genomes, but contrary to Y.
lipolytica, another yeast commonly found at the surface of cheese. Furthermore, extracellular
protease activity assay performed using the strains used for our experimental cheese produc-
tion supported those predictions (S4 Fig). Thus, we hypothesized that there were three possible
non-exclusive ways for G. candidum to utilize caseins. First, it may directly uptake casein-de-
rived peptides present in the extracellular environment, freed from the hydrolytic activities of
both rennet used for milk coagulation [53] and L. lactis used as starter culture [54]. In our
metatranscriptomic dataset, this was supported by the high number of reads observed for
OPT2 and GAP1 genes of G. candidum (S2 Table), mainly between days 7 and 21, encoding an
oligopeptide transporter and a general amino acid permease, respectively, which are known to
contribute to the amino acid and protein uptake in yeasts [55,56]. Furthermore, several tran-
scripts reflecting the proteolytic activity of L. lactis were detected earlier in the ripening kinet-
ics, between days 1 to 7, namely pepA, pepDB, pepC, pepN, pepM, pepT, pepV and pepX
encoding various peptidases (EC:3.4.11.7; EC:3.4.11.23; EC:3.4.22.40; EC:3.4.13.-; EC:3.4.11.2;
EC:3.4.11.18; EC:3.4.11.4; EC:3.4.14.11) involved in the intracellular cleavage of small peptides
into free amino acids [54] as well as genes optA, optC and optF encoding an oligopeptide ABC
transporter system that has been shown to be responsible for casein-derived peptide transport
for amino acid supply in L. lactis [57]. Second, G. candidummay internalize caseins to the vac-
uole by endocytosis and degrade them using vacuolar proteases and peptidases. In agreement

Fig 4. Protein degradation during surface-ripened cheesematuration. (A) Proteolysis and free amino acid concentration. Expression data observed for
genes encoding proteases (B) and peptidases (C). Read numbers were normalized (according to the library size) to 50,000 reads per sampling day. SE:
Staphylococcus equorum. BA: Brevibacterium aurantiacum. AA: Arthrobacter arilaitensis. HA: Hafnia alvei. CC:Corynebacterium casei. LL: Lactococcus
lactis. KL: Kluyveromyces lactis. DH: Debaryomyces hansenii. GC:Geotrichum candidum.

doi:10.1371/journal.pone.0124360.g004
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with this hypothesis, expression data revealed the important detection as of day 7, of several
genes involved in endocytosis in G. candidum, among which the most frequently detected ones
were EDE1 encoding an endocytic protein [58], SAC6 encoding fimbrin [59], ALY2 encoding
an alpha arrestin [60], and PIL1 and LSP1 encoding primary components of eisosomes [61].
Among the most frequently transcribed genes encoding proteases and peptidases, CPS1
(EC:3.4.17.4), PRC1 (EC:3.4.16.5) and PEP4 (EC:3.4.23.25) encode enzymes known to be active
in the vacuole [62]. The third possible way that casein can be used by G. candidum is the libera-
tion of cellular proteases and peptidases in the extracellular environment during cell lysis, e.g.,
the highly expressed metalloendopeptidase encoded by the PRD1 gene. Although no data in
our metatranscriptomic dataset enable us to support this hypothesis, this mechanism has al-
ready been suggested for a cheese isolate of D. hansenii [63].

The next step following initial proteolysis is amino acid biodegradation, which is generally
linked to the cheese matrix alkalinization and volatile compound production known to play an
important role in aroma perception [5,6,64–66]. The most dominant amino acids composing
caseins are glutamate, proline, leucine, lysine, aspartate, valine, serine, tyrosine and isoleucine.
As shown in Fig 5, among the complete list of amino acid metabolic pathways, those responsi-
ble for the metabolism of these dominant amino acids are also the most detected in our meta-
transcriptome. G. candidum accounted for the majority of the expression data observed
regarding most amino acid metabolism. For example, genes involved in glutamate catabolism
were highly detected in this organism. This included genes encoding the NAD-dependent glu-
tamate dehydrogenase (GDH2, EC:1.4.1.2) and the NADP-dependent glutamate dehydroge-
nase (GDH3, EC:1.4.1.4) responsible for the deamination of this amino acid to generate
2-oxoglutarate, which is then supplied to the TCA cycle, as well as genes encoding the gluta-
mate decarboxylase (GAD1, EC:4.1.1.15), degrading glutamate into 4-aminobutyrate (GABA),
which is then converted into succinate by the enzymes 4-aminobutyrate aminotransferase
(EC:2.6.1.19) and NAD(P)-dependent succinate semialdehyde dehydrogenase (EC:1.2.1.79),
encoded by genes UGA1 and UGA2, respectively, which also feed the TCA cycle. GDH2 induc-
tion has already been observed in G. candidum by RT-qPCR in Reblochon-type cheese (a
French surface-ripened cheese) at the end of ripening, and this gene was proposed as a bio-
marker for amino acid catabolism [67]. However, G. candidum was not the only microorgan-
ism responsible for amino acid catabolism in our experimental surface-ripened cheeses.
Transcripts involved in glycine, serine and threonine metabolism (PATH:ko00260) as well as
the valine, leucine and isoleuline degradation pathway (PATH:ko00280) were also highly de-
tected in L. lactis at day 1.

Lipid metabolism. Lipolysis refers to the hydrolysis of triglycerides and results in the lib-
eration of free fatty acids (FFAs) that are important precursors of catabolic reactions that pro-
duce volatile compounds that contribute to cheese quality and flavor [4,66,68]. In our
metatranscriptomic data, we observed that lipid metabolism pathway expression approximate-
ly followed the same dynamics as amino acid metabolism, i.e., a strong increase from day 1 to
day 7 followed by a global stability or a slow decrease during the next three weeks (Fig 2). This
is in agreement with the dynamics observed by Lessard et al. [17] on a Camembert-type cheese.
Furthermore, in our study, the lipolysis index steadily increased along the ripening process,
which indicates a regular lipolysis of the food matrix (S5 Fig). G. candidum once again ac-
counted for the most highly expressed genes detected for this metabolism and is likely to be the
major contributor to cheese lipolysis in our conditions. However, we also detected two genes
encoding putative esterases from L. lactis (locus tag: LLACS3_11125 and LLACS3_11440),
mostly at day 1, which may contribute to the initial lipolysis. Indeed, it has been demonstrated
that esterases produced by lactic acid bacteria could degrade milk fat into FFAs in hard cheese
[69]. Subsequently, few lipase (EC:3.1.1.3) or esterase (EC:3.1.1.13) encoding genes from G.
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candidum (i.e., ATG15, TGL1, ROG1) were detected, and their expression level increased
along with the ripening time. We also detected several transcripts involved in free fatty acid im-
port including FAA1, FAA2 and FAA4 encoding long-chain fatty acyl-CoA synthetases
(EC:6.2.1.3) and PXA1 (synonym: PAT2) and PXA2 (synonym PAT1) encoding peroxisomal
fatty acyl-CoA ABC transporters. Furthermore, genes involved in the peroxisomal version of
the β-oxidation pathway, namely POX1 (EC:1.3.3.6), CTA1 (EC:1.11.1.6), FOX2
(EC:4.2.1.119), ECI1 (EC:5.3.3.8), SPS19 (EC:1.3.1.34) and POT1 (EC:2.3.1.16), were highly de-
tected from day 7 to day 31.

Identification of possible biomarkers of the cheese-ripening process by
differential expression analysis
In situ gene expression measurement is considered as a promising tool for improving our un-
derstanding of the microflora activity in cheese and for monitoring the ripening process. In-
deed, considerable efforts have been made over the last few years to develop consistent and

Fig 5. Gene expression related to amino acid metabolism. For each pathway, the heatmap represents the expression dynamics over time (cumulative
number of normalized reads per pathway) using a gray scale bar from 0 read in white to 500 reads in black. For seven pathways, histogram charts detail this
dynamic per microbial species. CC:Corynebacterium casei, HA: Hafnia alvei, AA: Arthrobacter arilaitensis, BA: Brevibacterium aurantiacum, SE:
Staphylococcus equorum, LL: Lactococcus lactis, KL: Kluyveromyces lactis, DH: Debaryomyces hansenii, GC:Geotrichum candidum.

doi:10.1371/journal.pone.0124360.g005
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repeatable methods for in situ quantification of mRNA transcripts based on RT-qPCR tech-
niques. Several examples in the context of cheese ripening are now available in the literature
[67,70–73]. However, such studies enable the transcription monitoring of a limited number of
genes (generally up to one hundred) and, thus, rely on the previous selection of appropriate
biomarkers relevant to the targeted functions.

In the following section, we used our metatranscriptomic dataset to select and propose a set
of biomarker genes that cover diverse metabolisms relevant in the cheese-ripening process. To
do this, we performed differential expression analysis using the DESeq 2 package [31] and first
compared the number of differentially expressed genes between each ripening time (Table 3).
Based on this result, we decided to separate the ripening kinetics into two phases, the early and
late stage of ripening corresponding to day 1 to day 14 (D1 vs. D14) and day 14 to day 31 (D14
vs. D31), respectively, for which differentially expressed genes were observed. The complete
lists of gene transcripts showing a differential abundance in these two comparisons, along with
their actual adjusted p-values, are available in S4–S5 Tables, respectively. We then manually se-
lected 70 genes from among this list with a high number of reads and related to a biological
and/or technological function according to the genome annotations. For the most prominent
microorganisms, selected genes are reported in Table 4 and classified into categories that might
be relevant for the monitoring of cheese ripening.

Brief description of differentially expressed genes between D1 and D14. On the basis of
the comparative analysis of D1 vs. D14, two genes related to glycolysis, encoding glyceralde-
hyde-3-phosphate dehydrogenase (EC:1.2.1.12) and enolase (EC:4.2.1.11), could be proposed
as common biomarkers of microbial species activity at the early stage of the ripening process.
Interestingly, they were more abundant at D1 in K. lactis and L. lactis, in agreement with an in-
tense development and metabolic activity for these facultative anaerobic microorganisms dur-
ing the first days of ripening. As mentioned above, both species are involved in lactose
degradation within the cheese matrix. This was exactly the opposite for the cheese-surface aer-
obic yeasts G. candidum and D. hansenii for which both genes were more expressed at D14.
Mitochondrial genes of yeasts related to the respiration chain, e.g., COB and COX, followed
the same variation pattern.

Regarding G. candidum, genes involved in protein degradation (e.g., PRD1, PEP4) and in
glutamate—the most abundant amino acid—degradation (e.g., GDH2) were more frequently
detected at D14 when compared to D1 and could thus be proposed as biomarkers for proteolyt-
ic activity and amino acid catabolism. GUT1 encoding glycerol kinase (EC:2.7.1.30) involved
in lipid metabolism followed the same trend and could be used as a biomarker for lipolysis.

A striking feature of L. lactis is the occurrence of several stress-related genes (e.g., sodA,
dnaK, clpB) with high expression levels at D1 (S4 Table). This might be related to several possi-
ble stresses such as the shift from anaerobic (lactic acid production during the milk acidifica-
tion and coagulation phase) to aerobic conditions during the ripening process, the osmotic
pressure induced by salting or variations in the pH. Indeed, transcriptomic analysis of L. lactis

Table 3. Number of differentially expressed genes according to ripening time.

Day 1 Day 7 Day 14 Day 21 Day 31

0 302 314 257 203 Day 1

0 56 177 438 Day 7

0 79 482 Day 14

0 330 Day 21

0 Day 31

doi:10.1371/journal.pone.0124360.t003
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has already revealed that sodA gene overexpression is associated with oxidative stress response
during milk fermentation [74], and that genes encoding chaperones induction reflects the
growth arrest of L. lactis in cheese observed almost 24h post-inoculation [75]. In our study,
model cheeses were analyzed as a whole, thus including both surface and core parts. However,
local conditions might have a great influence on physiochemical stresses encountered by L. lac-
tis and thus should be taken into account for data interpretation.

Brief description of differentially expressed genes between D14 and D31. The compara-
tive analysis of D14 vs. D31 revealed a shift of the metabolism of G. candidum towards peptide
(OPT2, PRD1, LAP3, CPS1) and amino acid (GAP1, AAT2, CAR2) catabolism/transport com-
pared to D1/D14. Another interesting feature is the detection of genes related to iron capture
and/or transport, higher in D14 compared to D31 for G. candidum (SIT1, FET3, FTR1), but
lower in C. casei (iron-siderophore ABC transporter). This indicated that iron capture is crucial
for microbial species living on the cheese surface, as demonstrated by Monnet et al. [26]. In C.
casei, we observed the highest abundance at D31 of CCAS_05260 encoding a 2-methylcitrate
dehydratase (EC:4.2.1.79), an important enzyme involved in the methylcitrate pathway. InH.
alvei, gene transcripts involved in peptide/amino acid transport (meoA, tdcC) and degradation
(speA, pepP, hlfB) were also more abundant at D31, revealing the catabolic activity of this spe-
cies at the end of ripening. Finally, two transcripts involved in sulfur metabolism, encoding a
putative sulfate permease (GECA07s04267g) and a methionine synthase (MET6), were more
highly detected at D31 in G. candidum. They could be involved in sulfur metabolism through
sulfur recycling from various sulfur compounds, including volatile ones, which are released in
great quantity at the surface of ripened cheeses [7].

Conclusion
In this study, we used a combination of microbiological, biochemical, metagenomic and meta-
transcriptomic methods to obtain a detailed picture of an experimental surface-ripened cheese
ecosystem that functions during the ripening process. Overall, we were able to reveal the major
contribution of the most dominant microbial species (e.g. L. lactis, K. lactis, G. candidum, D. han-
senii and C. casei) and possible interactions regarding key functions involved in the dairy matrix
degradation. L. lactis and K. lactis activities during the early stage of ripening enabled the rapid
consumption of lactose. Lactate, produced from lactose by L. lactis, was then rapidly consumed
by D. hansenii and G. candidum for which we detected high levels of lactate dehydrogenase tran-
scripts. Regarding protein and lipid metabolism, the great majority of RNA-Seq reads mappedG.
candidum genes, which suggested a strong influence of this species on casein and fat degradation.
At the end of ripening, our dataset indicated the expression of amino acid degradation-related
genes by G. candidum and acid-sensitive bacteria such as C. casei andH. alvei, which were linked
to their late development at the cheese surface. We demonstrated that global gene expression data
collected at the ecosystem scale were in good accordance with the observed phenomena (e.g., bio-
chemical and microbiological data) and provided the unique opportunity to simultaneously ad-
dress questions related to different metabolisms and involving several individual species.

Furthermore, statistical methods based on differential expression analysis made it possible
to select a short list of potential biomarkers. This valuable tool might be particularly useful for
more precise and in-depth studies aiming at understanding and/or simply following the contri-
bution of different strains or species in the ripening process, sustaining the production of dif-
ferent surface-ripened cheeses.

Altogether, metatranscriptomic analysis revealed the proportion of the genes that are actual-
ly expressed within a food microbial community composed of both eukaryotes and prokary-
otes. When combined with biochemical data, it may also indicate the microbial populations
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that are metabolically active and how they respond to a perturbation. Thus, it may be applied
to detect near-instantaneous responses to environmental perturbations (e.g. biotic and abiotic
constraints) which could occur during the ripening process and other related food fermenta-
tion processes. Currently, the main limitation of this approach remains the difficulty to detect
low-abundant species which could also contribute to the matrix transformation. The combina-
tion of both using efficient rRNA depletion methods and increasing the sequencing depth
might enable to partly overcome this limitation.

Supporting Information
S1 Fig. Metabolic pathways detected in the metatranscriptomic dataset. Genes exhibiting an
average of> 5 normalized reads were mapped in black onto KEGG general metabolic pathways
(ko01100). E: complete ecosystem. LL: Lactococcus lactis. KL: Kluyveromyces lactis. GC: Geotri-
chum candidum. DH: Debaryomyces hansenii. CC: Corynebacterium casei. HA:Hafnia alvei.
(TIF)

S2 Fig. Expression profile of the oxidative phosphorylation pathway during surface-rip-
ened cheese maturation. Histogram charts represent the cumulative number of normalized
reads per sampling day and per microbial species. CC: Corynebacterium casei, HA: Hafnia
alvei, AA: Arthrobacter arilaitensis, BA: Brevibacterium aurantiacum, SE: Staphylococcus
equorum, LL: Lactococcus lactis, KL: Kluyveromyces lactis, DH: Debaryomyces hansenii, GC:
Geotrichum candidum.
(TIF)

S3 Fig. Expression profile of carbohydrate metabolic pathways.Histogram charts represent
the expression dynamics (cumulative number of normalized reads per sampling day and per
microbial species) of the galactose metabolism (A), glycolysis-gluconeogenesis pathway (B) and
pentose phosphate pathway (C). CC: Corynebacterium casei, HA:Hafnia alvei, AA: Arthrobac-
ter arilaitensis, BA: Brevibacterium aurantiacum, SE: Staphylococcus equorum, LL: Lactococcus
lactis, KL: Kluyveromyces lactis, DH: Debaryomyces hansenii, GC: Geotrichum candidum.
(TIF)

S4 Fig. Extracellular protease assay. Yarrowia lipoltica 1E07 (Yl), Kluyveromyces lactis 3550
(Kl), Debaryomyces hansenii 304 (Dh) and Geotrichum candidum ATCC 204307 (Gc) were
spotted on protease assay medium (0.67% yeast nitrogen base without ammonium sulfate and
amino acids (Difco Laboratories), 0.1% glucose, 50 mM phosphate buffer, pH 6.8, 2% skim
milk (Difco Laboratories)), and incubated 6 days at 18°C. Clarification zone around the colony
indicated extracellular protease activity.
(TIF)

S5 Fig. Lipolysis index measurement during surface-ripened cheese maturation.
(TIF)

S1 Table. Metagenome and metatranscriptome statistics.
(XLSX)

S2 Table. Expression data for all CDSs detected in the metatranscriptome (read numbers
were normalized to 50,000 reads per sampling day).
(XLSX)

S3 Table. Expression data for CDSs encoding peptidases and proteases (read numbers were
normalized to 50,000 reads per sampling day).
(XLSX)
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