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Abstract

Dairy products made of concentrated milk protein powder and milk fat have been experimentally shown to
behave like complex systems: The resulting textures depend on various factors, including concentration and
type of proteins, nature of heat treatment and homogenisation process. The aim of this paper is to combine
two models in order to predict the composition of the interface of an homogenised oil-in-water emulsion,
and the resulting bridge structure between the fat droplets. This structure is then correlated to the texture of
the emulsion.

Free unknown parameters of both models have been estimated from experimental data using an evo-
lutionary optimisation algorithm. The resulting model fits the experimental data, and is coherent with the
macroscopic texture measurements.

Keywords: milk gel model, dairy products, oil-water interface, non linear optimisation, model coupling,
knowledge integration

1. Introduction

Surface-active molecules, such as proteins, polymers, ionic and non-ionic surfactants play a major role in
the stabilisation of dispersed system such as oil in water emulsions [1]. In food systems, an important class
of emulsifiers are proteins: they are adsorbed on the oil droplet surface during homogenisation. Stabilisation
is a consequence of the ability of the proteins to generate repulsive interactions (steric and electrostatic)
between oil droplets [2].

The emulsifying properties of milk proteins are excellent and justify their wide use in food processing
[3]. Milk proteins are divided in two major categories: caseins (as casein micelles (CM) or individual
caseins) and native whey proteins (WP).

During most of milk gels processing, the milk proteins solution undergoes a heat treatment. Usually,
a heat treatment denatures soluble proteins and aggregates of proteins appear, with a strong impact on the
physicochemical properties of the final product. Above 70◦C, whey proteins are partly denatured and form
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aggregates (WPA) while casein micelles are less sensitive to heat treatment but can form complexes with WP
(CMWP). This last reaction is in competition with the whey proteins aggregation [4]. All these phenomena
lead to four potential types of proteins in the solution: (CM), (WP), (WPA) and (CMWP).

Several studies on milk gels [1, 5, 6, 7, 8] showed the importance of the dynamics and competition be-
tween these types of particles taking place at a fluid-fluid interface of lipid droplets during the emulsion.
Although studies describe the structuring of pure whey protein aggregates (WPA) submitted to heat [9].
Nevertheless less is known about the behaviour of complex aggregates made of casein micelles and whey
proteins (CMWP) [10]. Moreover, the data and expertise collected on complex aggregates is generally dif-
ficult to integrate in existing models [11]. Mixed solutions are not thermodynamically controlled processes
of competitive adsorption, and cannot be predicted from any classical model like the Langmuir one [9, 3].
In this context, stochastic approaches simulating the layer of adsorbed protein at the nanooscopic level are
relevant, but need important computing time if several types of particles are considered. The surface-active
molecules, i.e. the CMWP aggregates, are in competition with the pure whey protein (WPA) aggregates at
the oil in water interface and play a major role in the network created at a higher level. As highlighted by
Dickinson [8], the interpretation of surface composition in emulsion containing the full range of aggregated
milk proteins is quite complex and certainly not yet fully understood. Modelling is a good candidate to help
to understand such systems.

Experiments have been previously performed, generating complex unexpected behaviour, for a same
total concentration of proteins, when using different mass ratio of (CM). A wide range of interfacial com-
position have been generated when changing this initial condition. The work presented in this paper starts
from those observations.

We propose a computational approach to simulate the structure of a dairy emulsion, from a given com-
position and process condition. The computational approach is validated on the available dataset. The model
uses a stochastic approach to generate at the nanoscopic scale a random spatial configuration of the physical
elements of the emulsion. The purpose of the model is to predict the emergence of the macroscopic struc-
ture from the local organisation at the nanoscopic scale. This approach is strongly inspired by the Random
Sequential Adsorption (RSA) model [12] and its derivatives [13], with the particularity that the interface is
not represented as a plane, but as a 3D surface made of randomly distributed fat droplets in the space.

Additionally, our model is able to manage the competition of elements of different sizes, which is not
considered in previous RSA models.

The paper is organised as follows. After a description of the experimental data used to optimise and
validate the model (section 2), the model is developed in section 3. Results are presented in section 4: after
a sensitivity analysis, the parameters of the model are fitted using an evolutionary optimisation approach
(CMA-ES) [14]. Discussion, conclusions and future work are finally developed in sections 5 and 6.

2. Experimental data

Various emulsions were generated with a range of controlled interfacial compositions (weight ratio of
casein micelles (CM) to whey proteins (WP) from 80:20 to 12:88). Two sets of experiments were made:

• To build the model, a first database was collected from experiments conducted at the pilot plant of
INRA BIA (Institut National de Recherche Agronomique, Biopolymères - Interactions - Assemblages,
Nantes, France) [15].

• To validate the model, a second database was collected from experiments conducted in the laboratory
of IFR (Institute of Food Research, Norwich, England) [16].
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Figure 1: Input and parameters of both models M1 and M2

Both sets of experiments were made with the same preheat treatment and protein solutions, but with
different experimental devices and volumes. The protein phases of both experimental datasets were made of
the same powders, with the same ionic strength, pH and ion composition.

The two emulsion processes were based on the same principle: the continuous phase of the emulsion was
formed from milk proteins dissolved in permeate. These milk proteins were a mixture of caseins (Promilk
852B, IDI company, France with 5% moisture, 1.5% fat, 85.5% nitrogenous matter/dry matter, 8.5% mineral
matter, 4% lactose, 81% nitrogenous matter (on powder), 92% casein micelle, 2.6% Ca, 1.5% P, 0.3% K,
0.1% Na and 0.1% of Mg) and native whey proteins (BiPro, DAVISCO company, Minnesota with 5% max
of moisture, 95% min. of protein, dry basis, 1% max fat, 3% max ash, 1% max lactose, a pH between 6.7
and 7.5) with milk permeate powder (Armor protéines, France with a pH of 6.0 min, 3% max moisture, 3%
min proteins, 1% max fat, 82% lactose, 8% ashes). The continuous phase was prepared the day before use,
was stored at 4◦C and then heated at 80◦C. The dispersed phase of the emulsion is made of saturated lipid:
anhydrous milk fat (AMF) heated at 60◦C to become liquid. These two phases were then homogenised in
order to get an emulsion.

The processes are different for the homogenisation and volume of resulting emulsion. For Database 1, the
blending was done with a rotor stator (Polytron, Heidolph Silent Crusher M), in a low pressure homogeniser
(Stansted Fluid Power, Stansted, UK) at 50 bars, whereas experiments in Database 2 were made with a
blender (BL450 series, KENWOOD) with a shearing cycle (30 seconds low speed, 30 seconds of rest, then
2 x 30 seconds high speed) and in a manual homogeniser (EmulsiFlex - B3, AVESTIN) using 6 passes at 20
x 200 PSI.

In Database 1, the emulsion mass was 70 g (49 g of continuous phase and 21 g of dispersed phase) and
in Database 2, the emulsion mass was 260 g (182 g of continuous phase and 78 g of dispersed phase).

In order to evaluate the impact of initial conditions on the structure and texture of the emulsion, experi-
ments were carried out with various initial conditions (Table 1). The following initial conditions were kept
the same for every experiment:

• For Database 1: the pre-heat treatment temperature of milk proteins was 80◦C, the denaturation level,
i.e. the proportion of denatured WP in the solution, was around 0.6 and the mass of lipid was 21 g, for
a total emulsion volume of 70 mL.

• For Database 2, the pre-heat treatment temperature of milk proteins was 80◦C and the mass of lipid
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Table 1: Initial conditions and measurement results for Databases 1 and 2.
d3.2: Surface area mean diameter of fat droplets,
d4.3: Volume mean diameter,
wcm0 : Initial percentage of caseins in the solution,
wcmads : Percentage of adsorbed caseins,
cprot: Protein concentration in water phase.
Γ: Interfacial concentration.

wcas0 d3.2 d4.3 cprot wcasads Γ

(%) (µm) (µm) (g.L−1) (%) (mg.m−2)
Database 1

13 0.5 0.8 48.4 9 7.1
19 0.45 0.7 48.8 13 4.4
21 0.5 0.8 48.9 22 3.9
26 0.4 0.7 48.9 41 3.4
32 0.45 1.1 49.4 68 5.7
49 0.57 0.9 49.7 61 7.2
80 0.8 1.0 50.4 83 6.1

Database 2
13 0.76 1.19 48.3 0 7.79
31 0.94 1.55 47.5 4 5.48
49 0.94 1.60 49.7 54 8.04
80 0.86 1.43 50.4 80 7.22
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was 78 g, for a total emulsion volume of 260 mL.

The following measurements were collected for characterising the emulsions at a micro/nanoscale.

• Diameter and size distribution of lipid droplets. Laser light scattering was used to measure the diame-
ter of the lipid droplets in the emulsion and evaluate the size distribution. In Database 1, measurements
were made using a Saturn DigiSizer 5200 (Micromeritics, Norcross, USA). These measurements en-
abled us to calculate the initial free lipid surface S 0. In Database 2, measurements were made using
an LS 13320 Laser Diffraction Particle Size Analyser (Beckman Coulter). The measurement error for
all considered devices is around 10%.

• Diameter and size distribution of whey protein aggregates. Dynamic light scattering was used to
measure the diameter of the whey protein aggregates in the emulsion and evaluate the size distribution.
In Databases 1 and 2, these measurements were made using a Nanosizer ZS (Malvern Instrument, UK).

• Interfacial concentration (Γ) and percentage of adsorbed caseins (wcasads ). In Database 1, the study of
the composition of the interface of lipid droplets was carried out with the Patton and Huston technique
[17] which is used to separate droplets. The protein concentration at the interface was then quantified
by the Markwell method [18]. SDS-PAGE electrophoresis was then used to determine the concentra-
tion of each protein at the interface. In Database 2, SDS-PAGE electrophoresis was carried out and
gels were purchased from Invitrogen Ltd. (Paisley, UK).
The measurement error of the Patton techniques and electrophoresis were each around 10%.

• Sensory measurements. Two groups of sensory texture were described during experiments for each
conditions: gelified or liquid. Measurements were performed [19] on the emulsion 2 hours after the
processing at 20 ◦ and confirmed by two techniques (1) a controlled stress rheometer (AR 2000, TA
Instruments, New Castle, Delaware, USA) using plate-plate geometry (diameter 60 mm, gap 100
µm) for Database 1 and a cone-plate geometry (cone diameter 40 mm, gap 62 µm) for Database 2.
(2) Viscoelastic measurements performed with a controlled stain rheometer (ARES, TA Instruments,
New Castle, Delaware, USA) using a plate-plate geometry (diameter 40 mm, gap 100µm) at 20◦C. A
dynamic mechanical spectrum (G’, storage modulus and G”, loss modulus as a function of the angular
frequency) was obtained in a frequency range of frequency from 0.01 to 100 rad/s, at 10 % shear
strain.

3. Coupled models for a milk gel emulsion

The model presented in this paper is a coupling between a first order differential kinetic model of protein
denaturation (M1) and a stochastic model of simulation of the fat droplets interface colonisation (M2a)
and bridge creation between fat droplets (M2b) (Figure 1). Coupling M1 and M2 allows to simulate the
emergence of a network at a mesoscale level from local droplet considerations. Both models are presented
below.

3.1. M1: First order differential kinetic model of protein denaturation

The first model aims at simulating the denaturation process, in particular the competitive reaction that
occurs during the thermal denaturation of whey proteins. According to the values of the parameters of M1,
denatured WP are more or less associated with CM or aggregated in the form of WPA. The outputs of M1 are
the mass concentration of WPAs and the mass concentration of CMWPs. The assumptions are the following:
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Table 2: Model M1 Glossary
Name Description Unit

Parameters
kd Denaturation rate of native WP m1.5.g−0.5.s−1

kag Aggregation rate of denatured WP m1.5.g−0.5.s−1

kcm Association rate between denatured WP and CM m3.g−1.s−1

Inputs
η Denaturation level of WP %

ρwp(0) + ρcm Initial proteins mass concentration g.m−3

wcm0 Initial mass percentage of casein %
State variables

ρcm CM mass concentration g.m−3

ρwpcm Mass concentration of WP associated with CM g.m−3

ρwpa WP aggregates mass concentration g.m−3

ρwp WP natives mass concentration g.m−3

ρwp* Free denatured WP mass concentration g.m−3

Outputs of the model
ρwpcm(∞)
ρwp(0) Ratio of denatured WP that associates with CM

• According to [20], the denaturation reaction of the β-lactoglobulin is a kinetic reaction of order
1.5(equation 1). This reaction is known as following an Arrhenius law (equation 2) [21]. All na-
tive whey proteins are supposed to have the same kinetic as β-lactoglobulin.

• The reactions of aggregation and denaturation have the same order of 1.5. The two reactions are
merged in one [22] (equation 3).

• The association step is a first order reaction with respect to the concentrations of casein micelle and
denatured whey protein that are not yet aggregated. A denatured WP can join either the surface of
a CM or a WPA. The affinity of association between WPs and CM is considered as constant. The
possible association between an aggregate and casein micelles is neglected (equation 4).

• The simulated process is simplified: the temperature is considered constant along the heat treatment;
denaturation is supposed to stop when the experimental measured denaturation rate is reached.

The full model is then made of a set of three differential equations (Figure 2):

• The denaturation reaction given by [20]:

dρwp*

dt
= kd(T ) ×

(
ρwp

)1.5
(1)

kd(T ) follows an Arrhenius law according to temperature with known parameters [21]:

kd(T ) = kd0 exp {−Ead/RT} (2)

In our experiments, T is fixed to 80◦C, kd is also fixed until the experimental denaturation rate is reached.
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• For the aggregation reaction, a similar law is used with an order of reaction of 1.5 [20, 22]:

dρwpa

dt
(t) = kagρ

1.5
wp* (3)

• The association between casein micelles and non aggregated denatured whey proteins is modelled
using a linear dependant law:

dρwpcm

dt
(t) = kcmρcmρwp*(t) (4)

In this model, kd is used as a reference for the other reactions, kag and kcm, and fixed to 1. Indeed, only
equilibrium values predicted by M1 are used by M2, which allows to fix one of the reaction constants
arbitrarily.

3.2. M2 : Adsorption at interface and bridging between fat droplets
3.2.1. Model structure

The model is based on a three dimensional space representation. This 3D space is a cube representing
a random distribution of the fat droplets. It has been calibrated using d3,2 and d4,3, measured for each
experiments (Table 1) as explained in section 3.2.2 below. For the adsorption process, a competition between
WPA, WP and CM (including CMWP) is considered. This competition depends on the current interfacial
concentration of adsorbed native WP at the surface of the droplets.

The model is made of two compartments (Figure 1). The first compartment simulates the adsorption
and gives the final interface configuration at the local level of each fat droplet (M2a in Figure 1). The
second compartment uses the space configuration to estimate the ability of each adsorbed element to link
with another fat droplet (M2b in Figure 1).

A stochastic approach using Brownian dynamics is used to determine the potential of bridging between
fat droplets (M2b).
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Table 3: Model M2 Glossary
Name Description Unit

Constants
swpa WPA radius nm
swp Native WP radius nm
mwp Native WP mass g
scm CM radius nm
mcm CM mass g
Dwpa Fractal dimension of the WPAs ∗

Parameters of M2a
r0 Radius of the fat droplets at the exit of the homogeniser nm

Kspcm Maximal spreading of CM ∗

Kspwpa Maximal spreading of WP aggregates ∗

Γwp Maximal concentration of a one layer native WP interface mg.m−2

Fcm Adsorption rate of CM (including CMWP) ∗

Fwp Adsorption rate of natives WP ∗

Fwpa Adsorption rate of WP aggregates ∗

Parameters of M2b
Klnkwpa Link factor of WP aggregates ∗

Klnkcmwp Link factor of activated CM ∗

µcmwp WP mass activation threshold of a CM g.g−1

γcmwp Variance of WP association on CM g.g−1

Inputs
V Volume of the space simulated by the model m3

Ncm Number of CM ∗

Nwpa Number of WP aggregates ∗

Nwp Number of natives WP ∗{
(Gi)k

1

}
Fat droplets population present in the space

mcmwp Mass mean of WP associated on CM g.g−1

State variables{
(Pi)

p
1

}
Set of adsorbed elements including type and possible geometric

information{
(Li)

q
1

}
Set of links between particles and fat droplets

Outputs of the model
Γ Interfacial concentration mg.m−2

wcmads Mass percentage of casein adsorbed at the interface %
Glink Average number of links by droplet ∗

plnkCMWP Percentage of CMWP in the links set %
(*) dimensionless.
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3.2.2. Implementation of the adsorption model (M2a)
The following assumptions have been made, in order to reduce the unknown parameter space and the

complexity of the model:

• A1: The desorption phenomenon is neglected. The adsorption of the WP and of some casein pro-
teins are known to be irreversible [23]. As a consequence, we consider the WP aggregation and MC
adsorption as irreversible too.

• A2: The native WPs can move on the interface [24]. To take into account this phenomenon, the
model processes the native WPs in a different way than the other particles. Indeed, it only takes into
account the surface occupied by all adsorbed native WPs, and does not allocate them a fixed position
at interface. All further adsorbed elements are supposed to be able to push the whey proteins on the
interface. WPs are managed as a population contrarily to the other particles in competition (WPA, CM
and CMWP), where interaction between individuals is taken into account. A droplet only contains the
information of the mass of native WPs adsorbed at its surface. Due to the high concentration of ionic
elements present in the solution, the electrostatic repulsion is neglected.

• A3: The coalescence phenomenon is simplified, and obeys to an inverse exponential law. The ho-
mogeniser is supposed to generate an initial population of fat droplets with a mean radius of 100 nm.
This population then converges to a distribution that corresponds to the experimental values of d4,3
and d3,2. Coalescence is represented by a mean field law.

• A4: The size of the aggregates of whey proteins has been measured during the experiments : it is
considered as fixed with radius swpa = 65 nm in the given conditions [15]. It has been reported that
the fractal dimension of these aggregates is Dwpa = 2.4 [25] and that the size of a native whey protein
is around swp = 1.5 nm [26], which allows to compute the weight of each aggregate (equation 9).

• A5: The size of casein micelles have also been measured with a size of scm = 75 nm and a mass of
mcm = 5.77 · 10−16 g.

• A6: Spreading is a deformation of the particle at the surface of the fat droplet after adsorption. It is
modeled as an instantaneous phenomenon whose caracteristic parameter is the increase factor of the
apparent radius of the particle.

The model M2 simulates a fraction of volume V of the emulsion. Inside this volume, a population of fat
droplets is placed. The droplets sizes are randomly generated using the experimental measures (distribution
of fat droplets and fat volume fraction). The size distribution is defined with two parameters, d4,3 and d3,2:

d4,3 =

∑
i d4

i∑
i d3

i

; d3,2 =

∑
i d3

i∑
i d2

i

(5)

The parameters of a log normal distribution are straighforwardly calculated from these two factors.
Suppose the diameter distribution follows a lnN(µ, σ2) law, dk then follows a log normal law lnN(k ·µ, k2 ·

σ2). d4,3 and d3,2 are determined from the mean values of the log normal distribution eµ+ σ2
2 :

d4,3 =
e4·µ+42· σ

2
2

e3·µ+32· σ
2

2

= eµ+ 7·σ2
2 (6)

d3,2 =
e3·µ+32· σ

2
2

e2·µ+22· σ
2

2

= eµ+ 5·σ2
2 (7)

10



µ and σ are obtained:

σ =

√
ln(

d4,3

d3,2
) ; µ = ln(d3,2) −

5 · σ2

2
(8)

Knowing V , [CM], ρwpa(∞) and ρwp(∞), the numbers of particles Ncm, Nwpa and Nwp are computed as
follows.

Nwpa is determined using the measured fractal dimension:

Nwpa =

⌈
ρwpa(∞)

mwpa
× V

⌉
with mwpa = mwp ×

(
swpa

swp

)Dwpa

(9)

The number of native whey proteins, and casein micelles are computed in a similar way:

Nwp =

⌈
ρwp(∞)

mwp
× V

⌉
; Ncm =

⌈
ρcm

mcm
× V

⌉
(10)

Starting from a random fat droplet space distribution with an empty interface, the model consists in fixing
elements from the solution to a randomly selected location on the interface. This loop proceeds as follows:

• A fat droplet d is chosen according to a random law: the probability is proportional to the droplet total
surface.

• For coalescence, instead of simulating a population of fat droplets that are progressively merged, the
droplets are supposed to be made of several sub-droplets of radius rsub. Each droplet generated by
the random space distribution corresponds to a set of sub-droplets of radius rsub with same cumulated
volume. The radius follows an inverse power law rd

sub(t) = r0 + (rd − r0) · e−t. The surface is given by

sd(t) = Nd
sub(t)× 4π

(
rd

sub(t)
)2

with Nd
sub(t) = 3× vd ×

[
4π

(
rd

sub(t)
)3
]−1

the mean number of sub droplets.
Coalescence is considered as uniform for all droplets.

t is initialised to 0, and increased by an increment ∆t at each iteration:

1
∆t

=
(
Fcm × Ncm + Fwpa × Nwpa

)
×

∑
d

sd(t)

 + Fwp × Nwp ×

∑
d

(sd(t) − sd
occ)

 (11)

• If the WPs cover the whole available surface of the fat droplet (equivalent to Γ > Γwp = 3.2mg.m−2),
no other particle can be adsorbed. Another droplet is chosen.

• The choice of a type of particle is governed by a random law where the probability to choose an
element is proportional to the affinity parameter of each type (Fcm, Fwpa and Fwp).

For each S ∈ {cm,wpa,wp} : probaS =
NS × FS∑

U∈{cm,wpa,wp} NU × FU
(12)

The position of the particle on the fat droplet surface is fixed as follows:

– If the particle is a WPA or a CM (including CMWP): its position on the surface is randomly
chosen. If there is no collision with elements of the list of already fixed particles, the particle is
added to the list attached to the fat droplet. The collision test is a geometrical computation based
on the position and radius (after spreading) of each particle of the list.

11



– If the particle is a native WP: the collision test is equivalently replaced by a Bernoulli process,
whose parameter is the ratio between the available surface and the total surface of the droplet.

The previous loop ends when a maximum number of unsuccessful trials (i.e. without fixed element) is
reached, or when all fat droplets are saturated.

The flow diagram of the M2a algorithm is presented Figure 4.

3.2.3. Bridging between fat droplets (M2b)
The estimation of the links is based on a stochastic process that considers each element capable of

binding two droplets (i.e. whey protein aggregates and activated casein micelles CMWP). Casein micelles
are considered to be activated (i.e. CMWP) as soon as they have fixed enough whey proteins on their
surfaces. Model M1 gives an average mass of denatured whey proteins associated with casein micelles. The
model introduces a normal distribution of the average mass of WP associated with a CM in order to avoid a
threshold effect between (CM) and (CMWP) states:

ρcm(∞) × V
Ncm

Using the dispersion factor γcmwp, it is possible to estimate how many CM’s have more than µcmwp × mCM
associated WP and become activated.

For each linkable particle of radius r already adsorbed by a droplet, the following steps are performed:

• all droplets able to bind with the considered particle are sorted from the nearest to the farthest,

• for each droplet of this list, a random number x is chosen in (0,KLINK × r). If the distance from the fat
droplet to the considered particle is less than x, a link is created.

3.2.4. Outputs of the model
The model allows the calculation of three outputs:

• Γ, the interfacial concentration, given by the total mass of adsorbed particles including the associated
WP divided by the total surface of all fat droplets.

• wcmads , the ratio between the adsorbed caseins and the total amount of adsorbed proteins.

• Glink, the average number of links by droplet.

4. Results

This section presents simulations for the model M with tests on an experimental data set. A threshold
phenomenon has been observed in the [20%, 30%] range of wcm0 [27, 15]: There actually exists a complex
balance between competitive reactions occurring in thermal treatment and complex dynamics of colonisation
at the fat droplet interface during homogenisation. Understanding this behaviour is an open question.

A sensitivity analysis has been first performed, then a parameter optimisation has been run for estimating
the optimal parameters of M. If quantitative experimental data are available on interfacial concentration and
casein mass ratio at interface, data about numbers of links between particles are not available. This is why
sensitivity analysis and parameter optimisation have not been performed for the parameters and outputs of
M2b. Nevertheless it has been shown that the number of links is directly related to rheological properties
measured during the experiments [28].
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Figure 4: Flow diagram of the algorithm for the adsorption part of the stochastic model (M2a)
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Two parameters out of 9 of the models M1 and M2a are fixed: r0, the radius of a fat droplet at the
homogeniser exit, is set to 100 nm, in concordance with the experimental observations. Γwp is fixed to 3.2
mg.m−2, in accordance to the literature [29], for single layer colonisation.

The sensitivity analysis and the parameter optimisation are made on parameters of M1 and M2a only.
A logarithmic scale is used for the multiplicative parameters (that are here k{cm,ag} for M1, and F{cm,wp,wpa}

for M2). For the sensitivity analysis, these parameters are arbitrarily bounded between e−7 and e7 (approx-
imatively 0.001 and 1000), but they are not limited during optimisation. The spreading parameters (Kspcm,
Kspwp) are bounded between 1 (no spreading) and 4 (the particle takes 16 times its initial surface, which is
equivalent to an occupied surface of 100 m2.g−1 for a WPA and 150 m2.g−1 for a CM, to be compared to
the values founded section 4.2.1).

Four inputs have been considered for the sensitivity analysis: wcm (between 0% and 100%), cprot(between
40 g.L−1 and 60 g.L−1 in the given experimental conditions), d3.2 (between 0.5 and 1 µm) and (d4.3 − d3.2)
(between 0 and 0.5 µm).

Sensitivity analysis and parameter optimisation take as outputs the interfacial concentration and the
casein mass percentage.

4.1. Sensitivity analysis

4.1.1. Methodology
The model is assimilated to a stochastic function f : I ×Ω→ O with:

• I = (P × U) ⊂ R11 the inputs, that include model parameters and initial conditions (i.e. k{cm,ag},
F{cm,wp,wpa}, Ksp{cm,wp} and initial conditions cprot, wcm, d3.2 and (d4.3−d3.2)); I is bounded by (Xmin, Xmax) ∈(
R11

)2
,

• Ω the sample space of the random generator of the model,

• O ⊂ R2 the output space for the model.

|P| = 50 reference points have been chosen using a random Latin hypercube distribution in the space I.
A stochastic exploration is then performed for each reference point and for each dimension of I. A squared
uniform random law is used. 60 points are tested, so as we get 60 × 11 simulations for each reference point.
As a whole, we get 60 × 11 × 50 simulations.

The chosen perturbation is xp
i = xi + 2 × r2 ×

(
Xi

max − Xi
min

)
, with xp

i a perturbation on xi and r a random
number in [−1; 1].

The median of 8 repetitions for each output is considered in the sensitivity analysis. The data are then
analysed using a three order polynomial least square regression. Each polynomial allows to evaluate one of
the partial derivatives:

∂y j

∂xi

From the points of the latin square, three subsets S are considered: wcm0 < 30%, 30% < wcm0 < 60%,
wcm0 > 60%.

Dependence di, j(S ) between input i and output j is evaluated by the sum of the partial derivatives on
each subset S :

di, j(S ) =

 ∑
(x,y)∈S

∂y j

∂xi

 ×
∑

i

∑
(x,y)∈S

∂y j

∂xi

−1
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4.1.2. Results of the sensitivity analysis
X wcm0 < 30% 30% < wcm0 < 60% wcm0 > 60%
Parameter wcmads Γ wcmads Γ wcmads Γ

kag ++ + + + + +

kcm + + + + + ++ ++ + ++

Fcm + + + ++ + + + + ++ +

Fwp ++ ++ + + ++ ++ ++ +

Fwpa ++ +

Kspcm ++ + + + ++ + + + + + + + + + + + + + + +

Kspwpa + + + + + + + + ++ ++ + + ++ ++

Table 4: Impact of each parameter on each output of M2a, expressed as a percentage of the total perturbation: () < 5%, (+) < 10%,
(++) < 15%, (+ + +) < 20%, (+ + ++) < 30%, (+ + + + +) > 30%

The sensitivity analysis have been performed on the computer grid MIGALE of the INRA Jouy-en-Josas.
It has taken 3 days using 100 parallel jobs.

Table 4 presents the influence of parameters on the model response. M1 has a stronger influence when
the initial concentration of caseins is low. This is due to the high concentration of native WPs that could be
denatured in this case. Fcm and Fwp have more impact on wcmads when 30% < wcm0 < 60%. The impact of
Fwpa is more important when wcm0 < 30%, but remains quite low. A possible reason could be due to the
boundaries chosen for M1 parameters, that could disadvantage WPA formation. Kspcm and Kspwpa are key
parameters for the model. They have a strong impact on both Γ and wcmads .

4.2. Identification of parameters by optimisation

4.2.1. Evolutionary optimisation
The problem of identifying an optimal parameter setting for a model according to an experimental dataset

is a complex optimisation problem. The coupled model presented above has an obviously non linear and
stochastic behaviour, this is a reason why a robust stochastic optimisation has been used. The algorithm used
in this section is an Evolutionary Algorithm (EA), which corresponds to a large set of techniques that rely
on the computer simulation of natural evolution mechanisms (Artificial Darwinism) [30, 31, 32, 33, 34].

EAs copy natural evolution with very simple stochastic operators. According to Darwin [35], adaptation
is based on three mechanisms: random variations, inheritance, and survival / reproduction of the fittest
individuals. Used for computational optimisation, this scheme has the major advantage to make only few
assumptions on the function to be optimised (there is no need to have a continuous or derivable function
for instance). In short, Evolutionary Algorithms consider a population of potential solutions exactly as a
population of individuals of a natural population that live, fight and reproduce. The environment pressure is
replaced by an “optimisation” pressure: the function to be optimised, the fitness, is considered as a measure
of the adaptation of the individual to its environment (fitness). In this way, individuals that reproduce are the
best ones with respect to the problem to be solved.

4.2.2. Search space and fitness function
The parameter estimation is turned into an optimisation problem as follows: the optimal parameter set is

searched in the space of all possible parameter sets. The function to be optimised, the fitness function, is an
estimation of the quality of the model: a least square fitting of the predicted values (interfacial concentration
and mass percentage of caseins at interface) on the learning sample (Database 1). As the model is stochastic,
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Figure 5: Fitness value during optimisation

it is run 12 times on each of the 7 points of the experimental data set (Database 1). The median of each
experimental point is used for the fitness computation:

fitness =
∑

i

|yi − zi|
2

with :

• S = (xi, yi)7
i=1 ⊂ U × O the data set (Database 1).

• zi = median jM((p, xi), s j) the estimation of each point by simulating model M.

4.2.3. Algorithm
The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [14] has been used. CMA-ES is

considered as one of the best real-value optimizers for single-objective problems, delivering high-quality
results in a very limited amount of time. Its population size was set to λ = 256, and log scale weights have
been used for the update of µ (the number of offspring’s generated at each generation). Search was initialised
at the following point: (kcm = 1m1.5.g−0.5, kag = 1, Fcm = 1, Fwp = 1,Fwpa = 1, Kspcm = 2, Kspwpa = 2)

During model development, non-linear optimisation methods have been tested (including CMA-ES,
NSGA-2 and Monte-Carlo random search), and it appeared that CMA-ES converged faster than the others
to one of the best fitting parameter sets. Due to the heavy computationnal nature of the model (depending to
the parameters it takes from 20 min to 5 hours to evaluate one set of parameters on a recent core), only two
run of CMA-ES have been made for the last revision of the model.

Figure 5 shows the fitness evolution of the two run of CMA-ES that have been made with the latest
revision of the model. The longest run have taken 3 days and 7 hours on a computational server of 64
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cores (with 8 Xeon(R) CPU E7- 8837 processor at 2.67GHz of 8 core) to make 54 generations. Due to
heavy computational issues the program have been written using C++ and Fortran program languages. The
CMA-ES implementation used is from [14].

The best global fitness has been found for: kcm = 4.66m1.5.g, kag = 7.6·10−3, Fcm = 0.13, Fwp = 7.0·10−4,
Fwpa = 0.16, Kspcm = 1.64 and Kspwpa = 2.14.

• The difference of magnitude between kcm and kag is due to their units (Table 2). It is then difficult to
make a comparison between these reactions.

• Fwp is lower than the other F. Recall the probability to choose one particle (CMs, WPAs, WPs) is
proportional to the product of their number and the corresponding F coefficients (equation 12). The
small value of Fwp, is compensated by the large number of WP.

• Surface occupied by CMs and WPAs are computed using the spreading parameters Kspcm and Kspwpa.
These values can be compared to the spreading of native WPS calculated from litterature data (

[36],[29]): around
√

1500
312 = 2.19. Organized structures like casein micelles or whey protein ag-

gregates have been shown to spread in a less extent than native whey proteins.

• Using the identified spreading parameters, the specific occupied surface are equivalent to 26 m2.g−1

and 29 m2.g−1 for the CMs and WPAs respectively. The maximum surface occupied by a single layer
of native WPs is fixed in the model to 312 m2.g−1 [29]. The calculated parameters are compared to data
measured during the experiments on a Langmuir balance. Surface areas occupied by 1 g of the various
protein species were estimated in real emulsion systems produced with pure proteins. The apparent
surface area occupied by 1 g of the different protein species was estimated by the specific surface of
the emulsion (6/D32) divided by the protein load at the interface of droplets measured according to the
method described by Patton and Huston [17]. It was done for solutions of casein micelles and whey
proteins near the ratios manipulated in this paper and for a same mean fat droplet size but at an air in
water interface. It gives an order of magnitude for a target of behavior, even if it cannot be used for a
quantitative validation. The values found for swp and scm were equal respectively to 473 m2/g and 98
m2/g, which is in accordance with the order of magnitude of the parameters we found.

4.3. Validation of the model

The stochasticity of the model is presented in Figure 6. The variability induced by this stochasticity is
obviously higher for the interfacial concentration than for the casein percentage at interface.

The variability of the interfacial concentration is particularly high for initial percentage of caseins be-
tween 20 and 50 %. It is in this range that the competition between particle is the highest and can mostly
impact the amount of available surface on the fat droplets. This might be enhanced by the fact that, ac-
cording to table 1, the difference between d4.3 and d3.2 is higher in this case. This induces a more dispersed
distribution of droplet sizes.

The percentage of casein at interface is less impacted by the stochasticity of the model than the interfacial
concentration.

Figure 7 and Table 4.3 show the behaviour of the model fitting to experimental data. Generally, the
model has a good fit for the two outputs of the system and for the two databases tested (Database 1 for the
parameter estimation and Database 2 for the test). A mean error is calculated :

• For the output wcmads : 9.3 % and 7.3 % respectively for Database 1 and Database 2
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Figure 6: Model behaviour of 16 different runs that point out the stochasticity of the model

• For the output Γ: 12.5 % and 15.3 % respectively for Database 1 and Database 2 of the maximal
experimental value.

This is comparable to the experimental measurement error of 10%. However two points on the first Database
1 are not well predicted: one for an interfacial concentration at 21% of initial casein rate and the other for
the percentage of casein at 32% of initial casein rate. Moreover, a weakness of the model for low values
of wcm0 is observed. It might be due to a change of behaviour at the interface. This lack of fit reflects
the complexity of the interfacial organisation. The data set shows a complex balance between competitive
reactions occurring in thermal treatment and complex dynamics of colonisation at the fat droplet interface
during homogenisation [1].

An example of prediction of the spatial structure of the gel by M2b is presented Figure 8. It is reached
for a non fitted set of parameters (Klinkmax = 5, µcmwp = 0.6). It seems qualitatively coherent with the sensory
measurements achieved during the experiments [27, 15]. Indeed we know that the number of links is directly
related to rheological properties ([28]). As a consequence, it seems possible to have an indirect measurement
of sensory characteristics through an evaluation of the number and the nature (WPA or CMWP connection)
of created links.

For low values of wcm0 , (Figure 8a) solutions were evaluated as firm gelified structures. It is correlated
with the number of links predicted by the model (here 842). Same results are observed for wcm0 = 49%
(Figure 8b), with two kinds of links: one created by CMWPs (here 859) and another by WPAs (here 244).
The type of links involved in the structure has probably an impact on the texture. Nevertheless, it can not
be depicted using a global sensory analysis. For wcm0 = 80% (Figure 8c), the structure appears completely
different, with a number of links radically reduced. It is coherent with liquid perception of the gel for this
initial ratio.

5. Discussion

The model is able to fit relatively well the experimental data except for some of the points in Figure 7.
In order to improve the results several ideas can be considered:
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Figure 7: Comparison between experimental data (from Databases 1 and 2) with the model behaviour when using the best parameter
set
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Figure 8: Structure of milk gel where each sphere represent a center position of a fat droplet in the space, and the blue and red bridge
represent the existence of a link between fat droplet, respectively by a WPA and by a CM.
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wcm0 wcmads Γ

exp exp model exp model
% % % mg.m−2 mg.m−2

Database 1
13 9 18 7.10 4.63
19 13 26 4.40 4.29
21 22 29 3.90 4.94
26 41 35 3.40 4.07
32 68 41 5.70 5.15
49 61 59 7.20 6.35
80 83 84 6.10 6.27

Database 2
13 0 18 7.79 6.06
31 40 38 5.48 6.15
49 53 56 8.04 6.25
80 78 84 7.22 6.44

Table 5: Model evaluation using the best fitted parameter of M1 and M2a.

• The organisation of the interface is currently assumed to be in a single layer. In reality it has been
suggested that the interface might be more complex when several types of particles are in competition
[1]. Nevertheless few quantitative knowledge is available.

• The stochastic representation of the competition between casein micelles and whey protein aggregates
could be improved by adding knowledge on the colonisation phenomena.

• Another further development could be a model that simulates the coalescence between fat droplets as
a stochastic process instead of the mean field approach.

Nevertheless the above improvements would increase the computation complexity of the model which is
already high. The adequate model complexity is a question of balance between the computation burden and
the physical reality.

6. Conclusion and future work

This combination of a deterministic and a stochastic model shows relevant results in replicating the
behaviour of the complex artificial concentrated milk protein mix under study. Such a model can help us to
have a better understanding of the system through simulation analysis. Further studies will be done along
the directions described in the previous section.
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