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Abstract
& Key message In modelling regeneration patterns, para-
metric regression is recommended because it can account
for the spatial and temporal correlation present in the
data, whereas decision trees allow more complex interac-
tions and can be used to reduce the number of variables.
& Context The establishment of seedlings after regeneration
fellings is key to guaranteeing the development and persis-

tence of the forest. Depending on the objective pursued, data
available or type of forest, a number of different methods have
been employed to assess the relationship between seedling
establishment and both environmental and stand factors.
Most authors have conducted their analyses using parametric
regression or point pattern analysis.
& Aim We analysed the way in which light, stand conditions,
edaphic and topographic variables affect the regeneration of
Pinus sylvestris L. in Central Spain. We used different
methods to analyse the same data set. The strengths and weak-
nesses of each method were discussed.
& Methods We used two parametric approaches: generalized
linear mixed model regression using a negative binomial
followed by the variant explanatory variables reduction prior
to regression as well as three nonparametric approaches not
commonly employed in forest regeneration: nonmetric multi-
dimensional scaling, regression trees and random forests
algorithm.
& Results The parametric regression identified a larger number
of variables associated with the regeneration process and the
inclusion of a random effect in the model allowing the consider-
ation of the spatial variability among plots. However, decision
trees captured the complex interaction among variables, which
typical parametric methods were unable to detect.
& Conclusion Different statistical methods gave similar in-
sights into the underlying ecological process. However, dif-
ferent statistical premises with inference implications can be
noticed. This may givemisinterpretation of the model depend-
ing on the nature of the data. The choice of a given method
should be made according to the nature of the data and the
achievement of desirable results.
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1 Introduction

Natural forest regeneration is a key process in ensuring forest
sustainability (Lucas-Borja 2014). However, in the
Mediterranean basin, natural regeneration is hampered by
the summer drought, high summer temperatures, long inter-
vals between good seed crops, the presence of livestock and
the existence of a too dense herb and litter layer (Barbeito et al.
2011; Calama and Montero 2007; Manso et al. 2013; Pardos
et al. 2007). Therefore, understanding the dynamics, patterns
and factors involved in the success or failure of regeneration
and interactions at the seedling level can provide foresters
with the fundamental knowledge required for decision-
making in forest management (Lucas-Borja 2014).

Regeneration in forest stands has been studied using differ-
ent statistical methods depending on the aim, data available or
type of forest (Table 1). Analyses have been refined as statis-
tical techniques have improved (Zuur et al. 2007).
Regeneration studies often involve counts of the number of
seedlings per sampling unit. However, a wider range of tech-
niques can be applied to assess seedling abundance. An initial,
simple approach is the linear model (del Cerro et al. 2009;
Osem et al. 2013). However, regeneration data rarely satisfy
the basic assumptions for linear models: normality of errors,
linearity of parameters, homogeneity of variance and indepen-
dence of the covariates (Zuur et al. 2010).

Explanatory spatial covariates that influence recruitment
patterns have also been incorporated into different types of
recruitment models, as explanatory variables. The covariates
most used are soil nutrients and/or soil moisture (Barbeito
et al. 2009), light availability (Adili et al. 2013; Fyllas et al.
2008), environmental conditions (Rathbun and Fei 2006) and
stand structure (Manso et al. 2013). Vertical and horizontal
forest structures determine light availability and, therefore,

regeneration dynamics (Catovsky and Bazzaz 2002;
Montgomery 2004) and the development of the stand
(Boyden et al. 2005; Montes and Cañellas 2007). Some au-
thors have assessed the influence of the retained trees on re-
generation through the inclusion of structure influence indices
in the model (Barbeito et al. 2011; Kuuluvainen and Pukkala
1989; Paluch 2005).

Regeneration studies often involve the consideration of a
lot of explanatory variables that may be highly correlated.
Collinearity among covariates increases the risk of inferring
that these covariates have no explanatory power (increasing
the risk of type I errors), and in addition, it can be especially
problematic when ecological signals are weak (Zuur et al.
2010). Collinearity is often assessed through variance infla-
tion factors, pairwise scatterplots comparing covariates or cor-
relation coefficients (Zuur et al. 2010). In order to avoid cor-
relation and to reduce the number of independent variables,
scaling techniques can be used to create a dimensionally re-
duced data set with uncorrelated variables (Borcard and
Legendre 2002; Legendre and Legendre 1998; Strobl et al.
2009). The most widely used tools in this regard are principal
component analysis (PCA) and factor analysis or nonmetric
multidimensional scaling procedure (NMDS). The obtained
uncorrelated new covariates obtained can be then used in stan-
dard regression methods. The requirement of normality of the
data in the PCA analysis is under discussion (Jolliffe 2002;
Borcard and Legendre 2002; Zuur et al. 2010). In this respect,
NMDS is not sensitive to normality, to outliers and to homo-
scedasticity assumptions of classical metric scaling (Casini
et al. 2004; Legendre and Legendre 1998). In addition,
NMDS allows the identification of non-linear gradients of
the environmental covariates. However, the disadvantage of
using ordination methods is that the original input variables
are projected into a reduced set of components or axes, so that

Table 1 Methods used to study
natural pine regeneration in
Mediterranean mountains

Study Pine species studied Methods

Barbeito et al. 2009 P. sylvestris Point pattern

Barbeito et al. 2011 P. sylvestris Generalized linearmodel after ordinationmethod

Christopoulou et al. 2014 P. nigra Mixed effect model and boosted regression trees

del Cerro et al. 2009 P. nigra General linear model

Fyllas et al. 2008 P. brutia and P. nigra Generalized linear model

Gómez-Aparicio et al. 2006 P. nigra General linear model

González-Martínez and Bravo
2001

P. sylvestris General linear model after ordination method

Lucas-Borja et al. 2012 P. nigra General linear model

Montes and Cañellas 2007 P. sylvestris Point pattern analysis

Osem et al. 2013 P. halepensis General linear model

Pardos et al. 2007 P. sylvestris Point pattern analysis and general linear model

Pausas et al. 2004 P. halepensis General linear model

Prévosto et al. 2012 P. halepensis Generalized and general linear model

Spanos et al. 2000 P. brutia Linear and exponential regression
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their individual effect is no longer identifiable (Strobl et al.
2009).

This interpretability problem can be avoided by using de-
cision or regression trees, such as classification and regression
trees (CART; Breiman et al. 1984), conditional inference trees
(Hothorn et al. 2006) or chi-squared automatic interaction
detection (CHAID; Kass 1980). Besides allowing the use of
multiple variables in the data set, these nonparametric proce-
dures are capable of identifying interactions between the var-
iables which are too complex to be captured by parametric
regression models (Strobl et al. 2009). This can be especially
useful in the field of ecology. Forest data have been analysed
using regression trees (CHAID, Álvarez-Álvarez et al. 2011;
conditional inference trees, Barbeito et al. 2012), but their use
in regeneration studies is scarce (Fei 2010). However, simple
tree models are vulnerable to small changes in the learning
data (Strobl et al. 2008). Machine learning methods, such as
the random forests algorithm (Breiman 2001) or boosted re-
gression trees (Elith et al. 2008), solve the problem of insta-
bility by averaging an ensemble of trees into a more robust
composite model (Cutler et al. 2007; Strobl et al. 2009).

Natural, rather than artificial, regeneration is the preferred
option in Mediterranean areas. The shelterwood system is
commonly employed to ensure the establishment of new
Scots pine seedlings (Pinus sylvestris L.) in Central Spain
(Cañellas et al. 2000). However, regeneration is sometimes
hampered by excessively short regeneration periods or by a
number of abiotic and biotic factors, such as competition from
grass or the large fluctuation in cone production over the years
(Barbeito et al. 2011; Cañellas et al. 2000; González-Martínez
and Bravo 2001) which is especially notable in masting spe-
cies such as Pinus pinea L. (Calama et al. 2011; Manso et al.
2013). With regard to the abiotic factors, the survival of
P. sylvestris seedlings is closely linked to climate. In particu-
lar, summer drought can cause complete seedling mortality
during the first summer after the regeneration fellings
(Pardos et al. 2007). In addition, light availability has been
shown to be relevant for regeneration on a small scale, with
moderate light conditions being optimum to maximize the
regeneration density of Scots pine in the Central Mountain
Range in Central Spain (Barbeito et al. 2009; Pardos et al.
2007). Topsoil variables, such as soil moisture and nutrients,
as well as soil preparation have also been identified as impor-
tant factors in forest regeneration (Barbeito et al. 2011).

The aim of this study is to employ and compare five dif-
ferent statistical techniques in order to evaluate the influence
of environmental factors on natural regeneration, using as a
case study of Scots pine forest in Central Spain. The tech-
niques considered are (i) a generalized linear mixed model
(GLMM), (ii) data reduction using the PCA ordination meth-
od prior to GLMM, (iii) ordination using the NMDS, (iv)
CHAID algorithm and (v) random forests algorithm and the
conditional inference trees. Additionally, we aimed to answer

the following question: What is the most suitable method to
evaluate tree recruitment and factors implicated? We com-
pared the results obtained using the different methods, then
assessed and discussed the strengths and weakness of each
methodology.We calculated the goodness of fit for eachmeth-
odology to assess how well the different models fit the obser-
vations. Measures of goodness of fit summarize the discrep-
ancy between the observed values and the values expected
under a statistical model (Maydeu-Olivares and García-
Forero 2010). The importance of the methodology used in
regeneration studies will be evident if not all the approaches
identify the same biotic and abiotic variables that are associ-
ated with the regeneration abundance. Additionally, owing to
the presence of complex interactive effects among the under-
lying variables and to correlations among the potential covar-
iates used to represent those variables, it is expected that the
parametric modelling strategies considered in this study
would fail to identify the importance of covariates detected
as important by decision trees.

2 Materials and methods

2.1 Study site

This study was conducted at the mountain forest of Navafría
(41° 00′ N, 3° 48′ W), located on a north-facing slope in the
Central Mountain Range in Spain. The altitude of this Scots
pine forest ranges from approximately 1200 to 2200 m, and
the altitudinal position of the timberline is around 1800 m.
Annual rainfall exceeds 730 mm, and mean annual tempera-
ture is around 9.9 °C. These mountains are composed of gran-
ite and gneiss, with fairly homogeneous soils throughout the
pinewoods, predominantly humic cambisol-type soils or
leptosols at the higher sites (Forteza et al. 1988) according to
the FAO taxonomic soil classification of 1989. The site index
of these stands ranges between 21.4 and 29.9 m (Montes et al.
2007). Scots pine forms pure stands in the middle and high
altitudes of the forest, whereas in the lower parts of the forest,
this species grows alongside Quercus pyrenaicaWilld. Some
shrubs, such asGenista florida L.,Cytisus scoparius (L.) Link
and Cistus laurifolius L., appear in patches of forest which are
at the reinitiation stage of the stand development.

The Navafría forest is managed using a permanent block
plan with a 100-year rotation period. The management plans
date from the end of the nineteenth century. The forest is
divided into three working groups and these in turn into three
wood production circles. Eachwood production circle is made
up of five blocks (García López 1994). Natural regeneration is
achieved through the uniform shelterwood system over a 20-
year regeneration period. Artificial regeneration is only
employed in exceptional circumstances as a supplementary
measure or aid. The silvicultural management applied consists
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of an intensive thinning from below regime from years
30 to 80 (removing subcanopy trees) or mixed (remov-
ing dominated and co-dominant trees). The canopy is
then opened, leaving a density of 200–250 trees ha−1

at the beginning of the regeneration period. Additional
trees are subsequently removed in a uniform manner
throughout the regeneration block in two or three har-
vests over the regeneration period, leaving a low resid-
ual tree density. Thus, the seedlings become established
under the protection of the older trees (Loftis 1990).
The remaining trees (30–40 trees ha−1) are finally har-
vested at 100 years of age. In order to facilitate the
establishment of the regeneration, soil preparation oper-
ations, subsoil and blade scarification are carried out
before the final harvest. Through this management ap-
proach, natural regeneration of Scots pine throughout
the forest is achieved successfully.

We installed a linear transect along a contour line in each of
the five regeneration blocks. The five transects were installed
after the first regeneration fellings and prior to the final felling,
in the middle of the regeneration period. Square plots of 64m2

in size were established for regeneration inventory purposes at
50-m intervals along these transects, making a total of 45 plots
across the five blocks (Table 2). Each plot was subdivided into
four square subplots where seedlings (individuals shorter than
130 cm) were counted. Additionally, all the trees and the
stumps within a 15-m radius from the centre of each regener-
ation plot were mapped. Measurements included diameter at
breast height (dbh) of the trees, total tree height and diameter
of the stumps at ground level. The topsoil characteristics of
each plot were also recorded, consisting of a mixture of sam-
ples taken from a depth of 20 cm and collected at the centre of
each subplot to obtain the following topsoil variables: soil pH
(in distilled water); percentage of sand, lime and silt according
to the International Society of Soil Science; the percentage of
oxidizable organic matter (Walkley and Black method); avail-
able P (Olsenmethod); colloidal K, Ca, Mg and Na (all atomic
absorption); the electrical conductivity (in distilled water); and
the stoniness (percentage of stones in the uppermost 20 cm of
the soil) (Table 2). We took a hemispherical photograph at the
centre of each plot at a height of 1.30 m above the ground to
measure light availability (Table 2). The Global Site Factor
(GSF) was then calculated using HemiView Canopy Analysis
software (Delta-T Devices Ltd.). The GSF is the proportion of
total radiation under a plant relative to that in the open, rang-
ing from 0 (completely closed canopy) to 1 (completely open
canopy). We also measured plot slope, expressed as a percent-
age and the altitude (Table 2).We considered the same altitude
for all the plots in each transect.

In order to assess the influence of local stand structure, two
indices for the measured trees were calculated: the influence
potential (IPOT) and the index of influence (INF; Woods and
Acer 1984) of the retained trees at a given point. IPOT is based

on the concept of ecological field theory (Wu et al. 1985),
empirically modified by Kuuluvainen and Pukkala (1989):

IPOT j ¼ 1−GPOT j ð1Þ

where

GPOT j ¼ ∏
i¼1

n j

1−βi j

� �
and βi j

¼ dbhi j
.
max dbhð Þ

� �
exp −bi j⋅si j

� �

βij is the potential influence of tree i at plot centre j, sij is the
distance from tree i to the plot centre and dbhij is the diameter
of tree i at the plot centre j. Max(dbh) is the maximum diam-
eter at breast height in the data set; 95 cm in our data set. The
parameter bij was replaced by 1/(a hij), where hij is the height
(m) of tree i at plot centre j and a is a parameter to be estimat-
ed. Alternative values of a from 0 to 1 by 0.1 based on the
correlation between regeneration density and IPOTwere test-
ed. The highest correlation between a and regeneration densi-
ty was found for the value a=0.4. IPOT ranges from 0 (no
competition) to 1 (maximum competition).

Moreover, the INF competition index was defined as

INF j ¼
Xn

i¼1

dbhi jexp −2s2i jdbh
−1
i j

� �
ð2Þ

where INFj represents the index of influence in a plot centre j,
and sij and dbhij are defined above. INF acquires low values in
gaps and high values in dense overstory patches (Paluch
2005).

The target variable in our case study was the number of
seedlings per plot, i.e. count data. This is an important attri-
bute that should be considered in the method selection. All the
measured variables (edaphic, light, topographic and stand
condition variables; Table 2) were included as explanatory
variables in the following fitted models.

2.2 Parametric regression: GLMM using a negative
binomial

Generalized linear mixed models (GLMMs) extend linear re-
gression mixed models to accommodate non-constant vari-
ance through a variance function, non-linear relationships
and certain types of non-normally distributed errors (Bolker
2008; Hardin and Hilbe 2012; Venables and Ripley 2002).
There are three steps in GLMMs: (1) choose a distribution
function for the response variable, which is a function from
the exponential family; (2) define a linear predictor function
specifying the covariates; and (3) link the predictor function
and the mean of the distribution (Zuur et al. 2007). The con-
nection of the mean of the distribution function to the linear
predictor is done using link functions, e.g. logit, log or probit
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(Venables and Ripley 2002). Count data may be assumed to
follow a Poisson distribution or a negative binomial distribu-
tion. However, in the Poisson distribution, a single parameter
quantifies both the mean and the variance, so the use of
Poisson distribution is reduced to data that matches the re-
quirement of having a value of variance similar to the mean
value (Crotteau et al. 2014; Lawless 1987).When the variance
values are higher than the mean, the negative binomial distri-
bution is more appropriate than the Poisson distribution (Bliss
and Fisher 1953; Venables and Ripley 2002). Although the
negative binomial distribution cannot strictly be included in
the exponential family, negative binomial models can be fitted
using a small extension of the GLMMs (Bolker 2008). The
negative binomial distribution is characterized by a dispersion
parameter, θ, which relates the mean (μ) of a response variable
y and its variance: V(y)=μ+(μ2/θ) (Bolker 2008; Crotteau
et al. 2014). This parameterization of the variance, termed
NB2 by Hardin and Hilbe (2012) or restricted negative bino-
mial by Crotteau et al. (2014), assumes that the value of θ is
constant across factors.

Observations recorded in forestry and ecology frequently
present spatial or temporal correlation: several measurements

are taken from the same subject or the sampling is carried out
hierarchically. If these correlations are ignored, the assump-
tion of independence of the observations and the error terms is
violated and the standard error and p values of the covariates
might be affected (Zuur et al. 2007). The correlation among
measurements can be taken into account by including random
effects in the model (Fisher 1918; Henderson et al. 1959; Zuur
et al. 2009). Pure spatial and temporal correlation can be ad-
dressed through semivariograms or correlograms, respectively
(Zuur et al. 2009). Nevertheless, in our study, subplots are
nested within the plots and the plots in turn nested within
the transect. Hence, a plot random intercept and a plot nested
within transect random intercept effects were included in the
model. Thus, the full negative binomial mixed model can be
written as follows:

y ¼ negative binomial μ; θð Þ ð3Þ

log μð Þ ¼ Xβ þ Ζu ð4Þ

where X is the matrix of the covariates, β is the vector of the
unknown (although estimable) parameters of fixed effects, Z is

Table 2 Summary of the main
characteristics of the study area Variables Mean Minimum Maximum Standard deviation

Number seedlings per subplot (4×4 m) 17 1 125 24

Edaphic variables

pH 6.04 4.37 8.57 1.50

Electric conductivity (mS/cm) 0.11 0.03 0.48 0.09

Sand (%) 65.85 55.68 81.96 5.44

Silt (%) 13.91 5.64 23.64 3.74

Clay (%) 20.26 9.68 29.40 4.20

Organic matter (%) 10.86 4.75 21.97 3.58

Available P (mg/kg) 7.7 4.3 20.5 4.2

Available K (mg/kg) 181 87 379 61

Available Ca (mEq/100 g) 4.5 1.9 9.1 1.8

Available Mg (mEq/100 g) 0.85 0.25 2.50 0.45

Available Na (mEq/100 g) 0.06 0.01 0.16 0.03

Stoniness (%) 19.60 2.50 100 15.10

Light variable

Global Site Factor (0–1) 0.62 0.22 0.94 0.16

Topographic variables

Slope (%) 25 5 65 10

Elevation (m) 1540 1381 1730 138

Competition variables

IPOT (0–1) 0.68 0.11 0.97 0.23

INF 39.24 0.01 152.80 33.41

Number of retained trees 6 0 15 4

Number of stumps 4 0 17 4

Stoniness percentage of stones in the uppermost 20 cm of the soil, Global Site Factor the proportion of total
radiation under a plant, IPOT influence potential (Wu et al. 1985; Kuuluvainen and Pukkala 1989), INF index of
influence (Woods and Acer 1984)
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the random-effects designmatrix and u is the vector of random
effects with mean zero and variance to be estimated. After
fitting the model, we used the McFadden’s pseudo-R2 to as-
sess the goodness of fit (Domenich and McFadden 1975):

Mc Fadden0s R2 ¼ 1−
−2logLFull
−2logLNull

ð5Þ

where LFull and LNull are the likelihood of the full model and
the likelihood of the null model. McFadden’s pseudo-R2

values can range between 0 and 1. Nevertheless, the resulting
values are not equivalent to the classical R2 values. Indeed,
values of McFadden’s pseudo-R2 between 0.2 and 0.4 should
be taken to represent a very good model fit (Louviere et al.
2000).

To avoid over parameterization, the inclusion of the ran-
dom effects, the covariates (Table 2) and the interaction of the
variables in the model was carried out via a forward stepwise
procedure according to the likelihood ratio test using a
[Pr>(Chi)]=0.05 as a confidence level. This analysis was
conducted by using the “glmmadmb” function of the
“glmmADMB” package (Fournier et al. 2012) in R 3.0.2. (R
Core Team 2013).

2.3 Including uncorrelated variables in the GLMM. PCA
as ordination method

In the former section (2.2), the explanatory variables were
included sequentially to avoid collinearity. A second option
to deal with this problem is presented in this section. The
measured covariates represent a multivariate data set, a collec-
tion of sites positioned in a space where each variable defines
one dimension (Borcard et al. 2011). In this case, an ordina-
tion method can be used to reduce the number of variables to a
new set of uncorrelated variables, which can be therefore in-
cluded as explanatory variables in the GLMM fitting. The
PCA is a classic multivariate technique (Legendre and
Legendre 1998). It reduces the dimensionality of a group of
variables into a new set of uncorrelated variables, called the
principal components. The principal components retain all of
the variable information, but weight linear combinations of
the original variables (Abdi and Williams 2010; Jolliffe
2002; Legendre and Legendre 1998). The first principal com-
ponent axis data set is the line that goes through the most
explanatory dimension describing a multinomial distribution.
The following axes are orthogonal to one another and explain
successively less (Abdi and Williams 2010; Borcard and
Legendre 2002). The PCA is an eigenvector-based method
and requires the construction of a disperse matrix S, which
assesses the distance among observations. The mathematical
details are beyond the scope of this study, but this information
can be found in Jolliffe (2002) and Legendre and Legendre
(1998). The requirement of normality of the original variables

in the PCA analysis has been widely discussed, and some
authors state that normality is not required (Jolliffe 2002;
Zuur et al. 2010), whereas others argue that data must be
normally distributed (Borcard and Legendre 2002).

We carried out two PCAs, one using edaphic variables and
the other using the competition and light variables. The eigen-
vectors and the scores of the principal components were cal-
culated after applying an orthogonal varimax rotation
(Legendre and Legendre 1998). The PCA was conducted
using the “principal” function of the “psych” package
(Revelle 2013) in R. Seedling abundance was then modelled
using Eq. (1). In this case, the predictors were the scores of the
first and second principal components of each PCA and the
topographic variables (slope and altitude). Two or three com-
ponents are commonly used following ordination methods
(Barbeito et al. 2011; González-Martínez and Bravo 2001)
because those components typically explain a large amount
of the total variance. The criteria described in the previous
section (2.2) were also used for the inclusion of covariates.
As a measure of goodness of fit, we used the statistics de-
scribed in the previous section.

2.4 Ordination using NMDS

NMDS (Shepard 1962) is another ordination method. As with
PCA, it is also an ordination technique, because it reduces a
multivariable set into orthogonal univariate axes. However,
unlike PCA and other ordinationmethods, NMDS is not based
on an eigenvalue solution (Legendre and Legendre 1998).
This method requires the construction of a community dissim-
ilarity distance matrix (Legendre and Legendre 1998). For this
purpose, any measure of association can be used, not only
correlation, which sometimes is not the most appropriate mea-
sure (Zuur et al. 2007). Several distance measures can be
employed to build the dissimilarity distance matrix, e.g.
Bray-Curtis, Manhattan or Jaccard. Measure selection de-
pends on the availability and nature of the data. To calculate
those dissimilarities, numerical optimization methods have to
be used. NMDS is an iterative method. The iterative procedure
attempts to position the objects in the three dimensions so as to
minimize a stress function (scaled from 0 to 1), which mea-
sures how far the distances in the reduced-space configuration
are from the original distances (Borcard et al. 2011; Legendre
and Legendre 1998). Themathematical details can be found in
Legendre and Legendre (1998).

We selected the Bray-Curtis empirical dissimilarity dis-
tance matrix (Bray and Curtis 1957) to reduce the observed
19 variables (Table 2) in three dimensions or axes.We selected
this distance because it is one of the most appropriate metric
distance for community ecology data (Legendre and Fortin
1989), and it has been used in recruitment pattern assessment
before (Ledo et al. 2015). We then plotted the Shepard dia-
gram (Borcard et al. 2011; Legendre and Legendre 1998) to
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compare the original (empirical) distances with the ordination
distances in the three-dimensional space. The goodness of fit
of the ordination is measured as the R2 of both a linear and a
monotone (nonparametric) regression of the NMDS distances
on the original ones (Borcard et al. 2011).

We grouped the number of seedlings for each subplot into a
categorical variable with two levels: one corresponding to the
fourth quartile (Q4) and the other to the first, second and third
quartiles (Q123) of the distribution of the number of seedlings.
We chose this division because the number of seedlings was
relatively homogeneous in the first, second and third quartiles
of the distribution, but increased greatly in the fourth quartile.
We plotted the centroids of the quartiles to interpret the envi-
ronmental variables with respect to the quartiles. We drew an
ordination hull to enclose and cluster the environmental vari-
ables into the two levels (Q123 and Q4). Ellipses for the 95 %
confidence areas of the class centroids were also calculated
(Oksanen 2013). Furthermore, smooth surfaces of covariates
to ordinations can be fitted using generalized additive models
(Cayuela et al. 2006; Oksanen et al. 2013). NMDS was con-
ducted using the function “metaMDS” implemented by the R
package “vegan” (Oksanen et al. 2013).

2.5 Decision tree automatic classification method: CHAID
algorithm

CHAID is a nonparametric procedure that splits a data set
(root node) into groups, classes or segments that differ with
respect to the response variable (Kass 1980; Kleppin et al.
2008). CHAID does not necessarily produce dichotomous
categories, and therefore, a node can be split into more than
two categories (Álvarez-Álvarez et al. 2011; van Diepen and
Franses 2006). No distributional assumptions of the data are
required in the CHAID, which implies a great advantage over
other methods such as the GLMM parametric approach that
we followed in Section 2.2. The CHAID mode operates as
follows: in a first step, continuous variables are divided into
a number of categories with approximately equal numbers of
observations, since the CHAID procedure operates on nomi-
nal variables (Álvarez-Álvarez et al. 2011; van Diepen and
Franses 2006). CHAID then splits the data for the specific
predictors which exhibit the strongest degree of association
with the response variable (Álvarez-Álvarez et al. 2011;
Kleppin et al. 2008; van Diepen and Franses 2006). Since
CHAID is a forward stepwise approach, it is possible that a
better segmentation solution can be found by using another
variable at an earlier stage (Vriens 2001).Mathematical details
of the method are in van Diepen and Franses (2006) and Kass
(1980).

The root node in the present study is the seedling density.
We used a significance level of 5 % of the chi-squared test of
independence to decide which categories of each predictor to
merge and which predictor to split. As the chi-squared test is

only approximately chi-squared distributed, a large sample
size is required (van Diepen and Franses 2006). CHAID was
carried out using SPSS (IBM Corp 2012).

We evaluated the goodness of fit using the classic R2:

R2 ¼ 1−

Xn

i¼1

yi−byið Þ2

Xn

i¼1

yi−yð Þ2
ð5Þ

where yi is the observed density, ŷi is the estimated seedling
density, y is the mean of the density and n is the number of
observations.

2.6 The random forests algorithm and conditional
inference tree

The random forests algorithm (Breiman 2001) is a nonpara-
metric technique that combines the prediction of many inde-
pendent decision tree models into a robust composite model
(Cutler et al. 2007), thereby improving the accuracy of the
prediction (James et al. 2013). To achieve this, the random
forests procedure generated 500 bootstrapped data sets from
the original data set. The procedure then constructs, by de-
fault, 500 bagged regression trees on the bootstrapped training
samples and aggregates the bagged trees for prediction (James
et al. 2013; Strobl et al. 2009). The remaining observations not
used to fit a given bagged tree, referred to as out-of-bag
(OOB) observations, are used to compute the prediction accu-
racy of the given tree (Strobl et al. 2009). In addition, the
algorithm permutes a random sample of the predictors for
determining each split in each tree, producing diverse uncor-
related trees (James et al. 2013; Strobl et al. 2009). Thus, the
preference for certain predictors due to their scale of measure-
ment or importance is avoided (Barbeito et al. 2012). The
preference for a given predictor could result in the bagged
trees being quite similar to each other and, hence, highly cor-
related predictions (James et al. 2013). The predictor impor-
tance is the difference in prediction accuracy before and after
permuting, averaged over all trees (Breiman 2001; Strobl et al.
2009). A conditional permutation scheme for the computation
of the variable importance measure was used in order to ac-
count for the correlation among the variables (Strobl et al.
2008). The variable importance measure is based upon the
mean decrease in accuracy of predictions on the out-of-bag
samples when a given variable is excluded from the model
(James et al. 2013). According to Grömping (2009), the pre-
diction of the random forests algorithm can be estimated via
mean square error from the OOB data (OOB-MSE) as

OOB‐MSE ¼ 1

n

Xn

i¼1

yi−byiOBBð Þ2 ð6Þ
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where ŷiOBB denotes the average prediction for the ith obser-
vation from all trees for which this observation has beenOOB.
As with linear regression, with the average of sum of squares

SST ¼ 1
n ∑

n

i¼1
yi−yð Þ 2, OOB-R2 can be obtained as 1−OOB-

MSE/SST.
Finally, we built an unbiased tree based on non-

parametrical conditional inference procedures for testing in-
dependence between response and each predictor. The split
selection criterion is based on conditional inference tests or
permutation test (Hothorn et al. 2006). We used a significance
level of 5 % as a splitting node criterion in tree construction.
The goodness of fit of the conditional inference tree was eval-
uated thorough the R2 described in the CHAID section. We
employed the functions cforest and ctree of the R package
“party” (Hothorn et al. 2006; Strobl et al. 2008) to perform
the random forests analysis and the conditional inference tree.

3 Results

3.1 Parametric regression: GLMM using a negative
binomial

We assessed the influence of environmental variables on the
number of seedlings per subplot through a negative binomial
regression with a log link. Seedling distribution was explained
through various models in which the different covariates were
sequentially included (Table 3). The most accurate model (in
terms of lower log-likelihood) describing seedling abundance
included the content of Na, P and the number of stumps within
a 15-m radius (Table 3). The Na (estimation coefficient±stan-
dard errors=−12.90±3.20, p<0.0001) and P (estimation coef-
ficient±standard errors=−0.07±0.029, p=0.012) content
showed a negative association, while stump density had a
positive association (estimation coefficient±standard errors=
0.09±0.028, p=0.0001) on regeneration density (Table 3).
Altitude, GSF, the logarithm of electric conductivity and ston-
iness improved the model only very slightly (0.05
<[Pr>(Chi)]<0.1) in terms of log-likelihood, so these were
not included in the model. GSF (estimation coefficient±stan-
dard errors=1.18±0.71, p=0.0941) and altitude (estimation
coefficient±standard errors=0.016±0.0008, p=0.0579) were
positively correlated with seedling density, whereas the loga-
rithm of electric conductivity (estimation coefficient±stan-
dard errors=−0.35±0.20, p=0.0832) and stoniness (estima-
tion coefficient±standard errors=−0.01±0.01, p=0.0657)
was negatively correlated. As regards the interactions among
variables, we did not find a significant effect of any of the
three interactions tested (Table 3). The model including the
plot random effect performed better, in terms of likelihood,
than the model without random effects. This fact pointed out

the importance of considering the spatial correlation within
the plots in the model (Table 3). McFadden’s pseudo-R2 was
0.022, indicating poor model fit (Louviere et al. 2000).

3.2 Including uncorrelated variables in the GLMM. PCA
as ordination method

The edaphic variables were reduced to two principal compo-
nents, the first component was mainly related to the available
Ca and Mg, whereas the second component was related to the
pH and the electric conductivity (Table 4). Together, the two
components explained 32 % of the total variance. Concerning
the light and competition variables, the PCA reduced the num-
ber of variables to two principal components. The number of
trees was related to the first component and the number of
stumps to the second (Table 4). In this PCA, the two compo-
nents explained 48 % of the total variance.

We found that the second component of the PCA of the
light and competition variables (related to the number of
stumps) was positively associated (estimation coefficient±
standard errors=0.342±0.119, p=0.004) in terms of likeli-
hood ratio test (([Pr>(Chi)]<0.05); Table 5) to the seedling
density. We did not find a significant effect ([Pr>(Chi)]>0.05)
of the two other components or the two topographic variables
(slope and altitude) on the number of seedlings. In this regres-
sion, the variance of the plot random intercept was 0.45.
Regardless of the goodness of fit, McFadden’s pseudo-R2

was 0.01 indicating a quite poor model fit (Louviere et al.
2000).

3.3 Ordination with NMDS

The NMDS (Section 2.4) reduced the dimensionality of the 19
variables to three dimensions; one related to the light variables
and to the indices of the influence of retained trees on regen-
eration, the second related to the soil variables, and the last
related to the number of stumps. The R2 of the linear ordina-
tion and the monotone of regression of the NMDS distances
on the original ones were 0.88 and 0.98, respectively. The
stress value was minimized to 0.14. The NMDS diagram
shows that the entire hull of Q4 was enclosed by the hull of
Q123 (Fig. 1). The ellipses for the 95 % confidence areas of
both classes were almost overlapped, indicating only very
slight differences between classes. IPOT and Mg centroids
were enclosed by Q123 but not by Q4. The gradient (via
contours) of the projected smooth surfaces of IPOT and Mg
influenced regeneration density (Fig. 1). The projected
smooth surfaces of the INF and the number of trees followed
the same pattern as the IPOT, parallel with the IPOT projected
smooth surfaces; whereas the surfaces of the number of
stumps was also parallel with respect to the IPOT projected
smooth surfaces but showed a positive association with the
regeneration density. Moreover, both the contours of the
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Table 3 Summary of the
selection process of the
environmental variables and the
fitting statistics of the forward
stepwise regression

Model Fixed effects Random
effect

Log-
likelihood

Compared to
model

Pr>(Chi)

(0) Intercept – −543.56 – –

(1) Intercept Plot −512.74 (0) <0.001

(2) Intercept Plot/transect −512.40 (1) 0.4124

(3) Na Plot −508.77 (1) 0.0048

(4) Na, P Plot −506.45 (3) 0.0312

(5) Na, P, altitude Plot −504.71 (4) 0.0663

(6) Na, P, GSF Plot −505.10 (4) 0.0999

(7) Na, P, slope Plot −505.33 (4) 0.1340

(8) Na, P, pH Plot −506.44 (4) 0.8993

(9) Na, P, IPOT Plot −505.24 (4) 0.1201

(10) Na, P, INF Plot −505.31 (4) 0.1305

(11) Na, P, organic matter Plot −506.29 (4) 0.5668

(12) Na, P, Mg Plot −505.67 (4) 0.2114

(13) Na, P, Ca Plot −505.29 (4) 0.1272

(14) Na, P, K Plot −506.34 (4) 0.6375

(15) Na, P, stumps Plot −501.28 (5) 0.0013

(16) Na, P, stumps, trees Plot −501.21 (15) 0.7043

(17) Na, P, stumps, Ln(electric
conductivity)

Plot −499.83 (15) 0.0889

(18) Na, P, stumps, clay Plot −501.27 (15) 0.8580

(19) Na, P, stumps, sand Plot −501.26 (15) 0.8415

(20) Na, P, stumps, silt Plot −501.28 (15) 0.9383

(21) Na, P, stumps, stoniness Plot −449.62 (15) 0.0681

(22) Na, P, stumps, Na*stumps Plot −501.28 (15) 0.9643

(23) Na, P, stumps, Na*P Plot −501.23 (15) 0.7567

(24) Na, P, stumps, stumps*P Plot −501.24 (15) 0.7773

The chosen model is in italics

Table 4 Eigenvectors of the
environmental variables obtained
from the PCAs

Group of variables Variables Component 1 Component 2

Edaphic variables pH −0.10 0.95

Electric conductivity −0.04 0.94

Sand (%) 0.11 0.03

Silt (%) 0.18 −0.04
Clay (%) 0.01 0.00

Organic matter 0.02 −0.01
K 0.10 0.02

P −0.14 −0.11
Mg 0.85 −0.17
Ca 0.96 −0.03
Na 0.34 0.17

Stoniness (%) −0.02 −0.14
Light and competition variables GSF −0.40 0.36

IPOT 0.40 −0.36
INF 0.24 −0.10
Number of trees 0.89 −0.11
Number of stumps −0.11 0.95

The eigenvectors of the main variables related to each component are in italics

Alternative approaches in regeneration 577



projected smooth surfaces of the Ca and the Na followed the
same pattern than the projected smooth surfaces of the Mg,
parallel to the latter and displaying a negative relationship
with the regeneration density. The rest of the other variables
overlapped each other and were very close to the centroids of
Q4 and Q123. Therefore, we assumed that there was no asso-
ciation with the regeneration density; hence, they are not
shown in Fig. 1.

3.4 Decision tree automatic classification method: CHAID
algorithm

The CHAID procedure split the data into two main branches
according to the Na concentration. Thus, this variable played
the most statistically important role (p<0.0001) in the subplot
seedling density (Fig. 2). The lowest concentrations of Na
(≤0.030 mEq/100 g) were related to the highest number of
seedlings. In the case of higher concentrations of Na

(>0.030 mEq/100 g), the algorithm split the data into six
branches according to the number of retained trees
(p<0.0001). The distribution of the data in these six branches
did not follow a linear pattern. The R2 of the CHAIDwas 0.23,
pointing to a poor model fit.

3.5 Random forests algorithm and conditional inference
tree

Across all the trees considered in the random forests algorithm
(Section 2.6), the content of sodium and the number of stumps
were the two most important variables since they reached the
greatest values of conditional variable importance (Fig. 3).
The OOB-MSE and the OOB-R2 of the random forests algo-
rithm were 434.77 and 0.17, respectively.

The first node of the conditional inference tree split the data
according to the content of Na (p<0.001) (Fig. 4). The largest
number of seedlings was related to the lowest concentrations
of Na (≤0.040 mEq/100 g). For the highest concentrations of
Na (>0.040 mEq/100 g), the branch was divided according to
the number of stumps (p=0.002), which were positively relat-
ed to the number of seedlings per subplot (Table 6). The R2 of
the conditional inference tree was 0.17, indicating a poor mod-
el fit.

4 Discussion

4.1 Factors underlying Scots pine regeneration in Central
Spain

A minimum of 2000 ha−1 (4 seedlings per subplot) denotes a
sufficient regeneration density for Scots pine (e.g. Hyppönen
et al. 2013). In our study, we found that at least 4 seedlings per
subplot (2500 seedlings ha−1) were present in 99 % of the
subplots suggesting regeneration success and good manage-
ment practices. Therefore, we can state that the ranges of the

Table 5 Summary of the
selection process of the principal
components and the fitting
statistics of the forward stepwise
regression

Model Fixed effects Random Effect Log-likelihood Compared to model Pr>(Chi)

(0) Intercept – −543.56 – –

(1) Intercept Plot −512.74 (0) <0.001

(2) Intercept Plot/transect −512.40 (1) 0.412

(3) PC1 com Plot −512.55 (1) 0.540

(4) PC2 com Plot −508.86 (1) 0.005

(5) PC2 com+PC1 ed Plot −508.20 (4) 0.252

(6) PC2 com+PC2 ed Plot −507.81 (4) 0.147

(7) PC2 com+altitude Plot −508.86 (4) 0.950

(8) PC2 com+slope Plot −508.07 (4) 0.209

The chosen model is in italics

PC1 ed component related to the Ca and Mg, PC2 ed component related to the pH and the electric conductivity,
PC1 com component related to the number of trees, PC2 com component related to the number of stumps

Fig. 1 NMDS ordination of the variables showing the centroids of the
quartiles of the number of seedlings. Variables within Q4 hull are not
shown to facilitate the visualization. Red ellipse and red hull Q4 (fourth
quartile of the number of seedlings). Blue ellipse and blue hull Q123
(first, second and third quartiles of the number of seedlings). Yellow
smooth surfaces IPOT gradient. Green surfaces Mg gradient
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measured variables are suitable for achieving natural regener-
ation. The current values of these variables are within a range
that does not limit the regeneration process in the studied
forest. Thus, some of the relationships found between the
environmental variables and the regeneration density may be
arbitrary rather than causal.

The different methods pointed to similar, although not
identical, factors underlying the regeneration process
(Table 6). The models obtained using the different methods
had low goodness of fit values. This indicates that the low
association between the environmental variables and the seed-
ling density may be due to the lack of limiting factors in the
regeneration process.

The parametric regression, the CHAID, the random forests
algorithm and the conditional inference tree found a negative
association between available Na and the seedling density.
This negative relationship can be explained by the salt sensi-
tivity of Scots pine (Bravo-Oviedo and Montero 2008).
However, the sodium concentrations in the study area are
lower than those found in other Scots pine forests (Bravo
and Montero 2001). Furthermore, there was a positive

relationship between the number of stumps and the seedling
density according to the GLMM, the GLMM after PCAs re-
duction, the random forests algorithm and the conditional in-
ference tree. The number of stumps is related to recently cut
trees, so seedling density is directly related to canopy open-
ness indicating that higher intensities in the regeneration
fellings favoured the establishment of seedlings. In addition,
the extraction of the wood resulted in a soil preparation effect,
which facilitated the establishment of the Scots pine seedlings
(Barbeito et al. 2011). The CHAID found an interaction be-
tween the highest levels of Na and the remaining trees. It
indicates that the Na is the most important factor driving the
regeneration, and when its concentration increases over the
optimum, other factors, the remaining trees also appeared as
a driver. The NMDS placed the two classes (the fourth quartile
and the first, second and third quartiles of the distribution of
the number of seedlings) quite close to each other reporting a
weak negative relationship between the number of remaining
trees and the competition indices with the regeneration densi-
ty. The remaining trees play an important role in the regener-
ation, as Scots pine seedlings prefer moderate light conditions
in Mediterranean areas (Barbeito et al. 2009; Pardos et al.
2007) rather than intensive light conditions as in Northern
countries (Valkonen 2000). Furthermore, in Mediterranean
areas, the success of Scots pine regeneration depends on sum-
mer droughts, so silviculture operations in our study area is
also aiming at reducing the competition for resources thor-
ough the soil preparation and thinnings (Barbeito et al. 2011).

4.2 Methods comparison

The variables used to predict the seedling recruitment were
highly correlated. Including this in a regression model is a
problem because it increases the risk of type I errors (Zuur
et al. 2007). The PCA solved this problem reducing the data
into uncorrelated components. Nevertheless, the full-
dimensional GLMM had higher values of the goodness of fit
statistics (McFadden’s pseudo-R2) than the GLMM including
the components of the PCAs. In addition, the reduced

Fig. 2 Regression tree as a result
of the CHAID algorithm for
seedling density. Mean indicates
the mean number of seedlings per
subplot and n the number of
subplots per node

Fig. 3 Conditional variable importance measured following the
permutation principle of the mean decrease in accuracy importance in
the random forests algorithm. Larger values of conditional variable
importance indicate more importance in the random forests model
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components present another flaw, which is that the effect of
the individual covariates is not fully identifiable (Strobl et al.
2009).

NMDS could also have been used to reduce the dimension-
ality of the data for the parametric regression. However, since
the NMDS is based directly on the dissimilarities, it does not
provide correlations between derived axis scores and the var-
iables, whereas techniques based on the eigenvalues and ei-
genvectors allow the researcher to relate, at least in part, the
original variables to the components (Quinn and Keough
2001). Therefore, if the objective of the ordination technique
is to reduce the data to use the scores of the axes in a regres-
sion model, the eigenvalue techniques may be more useful,
since the correspondence to the component-variables is main-
tained. However, eigenvalue techniques are based only on
correlation or covariate coefficients and limited to Euclidean
distances, and this may not be the most appropriate measure of
association (Legendre and Legendre 1998; Zuur et al. 2007).

In addition, the method can also proceed with missing dis-
tance estimates as long as there are enough measures left to
position each object with respect to a few of the others
(Legendre and Legendre 1998). Furthermore, the NMDS
allowed to fit non-linear relationships between the covariates
to ordinations using generalized additivemodels, whereas oth-
er methods, such as PCA, imply linear relationships and it
cannot always be appropriate (Oksanen 2013).

As regards the regression trees, the R2 of the CHAID was
larger than that of the conditional inference tree. Additionally,
the CHAID has the main advantage of splitting each node into
more than two branches, i.e. it is not a binary partitioning
method (Kass 1980; Kleppin et al. 2008; van Diepen and
Franses 2006) as the conditional inference tree (Hothorn
et al. 2006). However, since the CHAID is a forward stepwise
method, i.e. not all the variables are considered simultaneous-
ly but sequentially, there is the possibility that a better seg-
mentation solution can be found using another variable at an
earlier stage (Vriens 2001). Thus, CHAID cannot guarantee a
single optimal solution (Perreault and Barksdale 1980). In
relation to this, the bias in the variable selection is solved by
the conditional inference trees using the permutation test prin-
ciple (Hothorn et al. 2006). Both decision trees, the CHAID
and the conditional inference tree, found second-order inter-
actions. In addition, decision trees may outperform the classi-
cal approaches if there is a non-linear and complex interaction
between the variables and the results of the decision trees are
easier to interpret than those of other regression models
(James et al. 2013; Strobl et al. 2009). Nevertheless, the main
weakness of simple tree models is their instability to small
changes in the learning data (Strobl et al. 2008). The random
forests algorithm solves the problem of instability by averag-
ing an ensemble of trees into a more robust composite model
(Cutler et al. 2007; Strobl et al. 2009). However, the R2 of the
CHAID was larger than that of the random forests algorithm.

Forest regeneration studies in Mediterranean areas have
often been conducted using parametric regression or point
pattern analysis (Table 1). Despite all the assessed models
performed in a similar way and given the similar ecological

Table 6 Significant variables
involved in the regeneration
process according to the
alternative approaches employed

Method Edaphic and topographic
variables

Competition and stand variables

GLMM Na (−); P (−) Number of stumps (+)

GLMM after PCA n.s. Component related to the number of
stumps (+)

NMDS n.s. n.s.

CHAID Na (−) Number of remaining trees (non-linear)

Random forest and conditional
inference tree

Na (−) Number of stumps (+)

The effect of the variables is in parentheses

n.s. no statistically significant variables identified

Fig. 4 Implementation of conditional inference trees for seedling density
into the defined theory of conditional inference procedures. Mean
indicates the mean number of seedlings per subplot and n the number
of subplots per node
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results, the election of the statistical technique must be done
according to the characteristics and structure of the data.
Ecological data often presents both spatial and temporal de-
pendence among the observations. The hierarchical structure
of our design indicates spatial dependence among measure-
ments. The GLMM was the only method which allows the
spatial correlation between subplots to be considered entering
random effects (Fisher 1918; Henderson et al. 1959; Zuur
et al. 2007). In studies with multiple hierarchies, like ours,
random effects are especially important (Ten Have et al.
1999). We found a significant effect of the plot random effect
indicating high correlation among subplots within the same
plot. The model with the plot random effect captured more
variability than the model without the random part. The other
methods employed did not consider this correlation which can
provide biased results and hide the effect of some explanatory
covariates. Model misspecification is a frequent mistake
disregarded in ecological modelling. Additionally, this meth-
od also identified the largest number of variables associated
with seedling density. Thus, in studies with nested data, the
parametric regression model is the most useful statistical ap-
proach. In studies with a large set of predictors, decision trees
and the random forests algorithm through the conditional var-
iable importance and ordination methods can be used to select
and reduce the number of variables to be included in the mod-
el. If complex interactions are expected and the data set is
large, then decision trees are advisable (Strobl et al. 2009).
Whether the researcher had to analyse data sets from a hierar-
chal design with complex interactions among variables, the
parametric regression models could account both issues.

Acknowledgments We wish to thank Adam Collins and Dr. Nicholas
Devaney (National University of Ireland, Galway) for revising the En-
glish grammar and everybody who participated in the field work, espe-
cially Ángel Bachiller. We also thank two anonymous reviewers who
provided good comments to improve the paper.

Funding Funding was provided by the Spanish Ministry of Economy
and Competitiveness (project AGL2010-21153-C02-01) and Madrid
Regional Government (project BOSSANOVA). The Ministerio de
Educación, Cultura y Deporte (Ministry of Education, Culture and
Sport) funded the corresponding DMF’s PhD studies thorough the FPU
programme.

References

Abdi H, Williams L (2010) Principal component analysis. Wiley
Interdiscip Rev Comput Stat 2:433–459

Adili B, El Aouni MH, Balandier P (2013) Unravelling the influence of
light, litter and understory vegetation on Pinus pinea natural regen-
eration. Forestry 86:297–304. doi:10.1093/forestry/cpt005

Álvarez-Álvarez P, Khouri EA, Cámara-Obregón A, Castelo-Dorado F,
Barrio-Anta M (2011) Effects of foliar nutrients and environmental
factors on site productivity in Pinus pinaster Ait. stands in Asturias

(NW Spain). Ann For Sci 68:497–509. doi:10.1007/s13595-011-
0047-5

Barbeito I, Fortin M-J, Montes F, Cañellas I (2009) Response of pine
natural regeneration to small-scale spatial variation in a managed
Mediterranean mountain forest. Appl Veg Sci 12:488–503. doi:10.
1111/j.1654-109X.2009.01043.x

Barbeito I, LeMay V, Calama R, Cañellas I (2011) Regeneration of
Mediterranean Pinus sylvestris under two alternative shelterwood
systems within a multiscale framework. Can J For Res 41:341–
351. doi:10.1139/X10-214

Barbeito I, Dawes MA, Rixen C, Senn J, Bebi P (2012) Factors driving
mortality and growth at treeline: a 30-year experiment of 92 000
conifers. Ecology 93:389–401

Bliss CI, Fisher RA (1953) Fitting the negative binomial distribution to
biological data. Biometrics 9:176–200

Bolker BM (2008) Ecological models and data in R. Princeton University
Press, New Jersey, 382 pp

Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data
by means of principal coordinates of neighbour matrices. Ecol
Modell 153:51–68. doi:10.1016/S0304-3800(01)00501-4

Borcard D, Guillet F, Legendre P (2011) Numerical ecology with R.
Springer, New York

Boyden S, Binkley D, Shepperd W (2005) Spatial and temporal patterns
in structure, regeneration, and mortality of an old-growth ponderosa
pine forest in the Colorado Front Range. For Ecol Manag 219:43–
55. doi:10.1016/j.foreco.2005.08.041

Bravo F, Montero G (2001) Site index estimation in Scots pine (Pinus
sylvestris L.) stands in the High Ebro Basin (northern Spain) using
soil attributes. Forestry 74:395–406

Bravo-Oviedo A, Montero G (2008) Descripción de los caracteres
culturales de las principales especies forestales de España. In:
Serrada R, Montero G, Reque JA (eds) Compendio de selvicultura
aplicada en España. INIA & Ministerio de Educación y Ciencia,
Madrid, 1178 pp

Bray J, Curtis J (1957) An ordination of upland forest communities of
southern Wisconsin. Ecol Monogr 27:325–349

Breiman L (2001) Random forests. Mach Learn 45:5–32
Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and

regression trees. Chapman and Hall, New York
Calama R, Montero G (2007) Cone and seed production from stone pine

(Pinus pinea L.) stands in Central Range (Spain). Eur J For Res 126:
23–35. doi:10.1007/s10342-005-0100-8

Calama R, Mutke S, Tomé J, Gordo J, Montero G, Tomé M (2011)
Modelling spatial and temporal variability in a zero-inflated vari-
able: the case of stone pine (Pinus pinea L.) cone production. Ecol
Modell 222:606–618. doi:10.1016/j.ecolmodel.2010.09.020

Cañellas I, García FM, Montero G (2000) Silviculture and dynamics of
Pinus sylvestris. Investig Agrar Sist y Recur For. Fuera de serie:
233–253

Casini M, Cardinale M, Arrhenius F (2004) Feeding preferences of her-
ring (Clupea harengus) and sprat (Sprattus sprattus) in the southern
Baltic Sea. ICES J Mar Sci 61:1267–1277. doi:10.1016/j.icesjms.
2003.12.011

Catovsky S, Bazzaz F (2002) Feedbacks between canopy composition
and seedling regeneration in mixed conifer broad-leaved forests.
Oikos 98:403–420

Cayuela L, Golicher DJ, Benayas JMR, González-Espinosa M, Ramírez-
Marcial N (2006) Fragmentation, disturbance and tree diversity con-
servation in tropical montane forests. J Appl Ecol 43:1172–1181.
doi:10.1111/j.1365-2664.2006.01217.x

Christopoulou A, Fyllas NM, Andriopoulos P, Koutsias N,
Dimitrakopoulos P, Arianoutsou M (2014) Post-fire regeneration
patterns of Pinus nigra in a recently burned area in Mount
Taygetos, Southern Greece: the role of unburned forest patches.
For Ecol Manag 327:148–156. doi:10.1016/j.foreco.2014.05.006

Alternative approaches in regeneration 581

http://dx.doi.org/10.1093/forestry/cpt005
http://dx.doi.org/10.1007/s13595-011-0047-5
http://dx.doi.org/10.1007/s13595-011-0047-5
http://dx.doi.org/10.1111/j.1654-109X.2009.01043.x
http://dx.doi.org/10.1111/j.1654-109X.2009.01043.x
http://dx.doi.org/10.1139/X10-214
http://dx.doi.org/10.1016/S0304-3800(01)00501-4
http://dx.doi.org/10.1016/j.foreco.2005.08.041
http://dx.doi.org/10.1007/s10342-005-0100-8
http://dx.doi.org/10.1016/j.ecolmodel.2010.09.020
http://dx.doi.org/10.1016/j.icesjms.2003.12.011
http://dx.doi.org/10.1016/j.icesjms.2003.12.011
http://dx.doi.org/10.1111/j.1365-2664.2006.01217.x
http://dx.doi.org/10.1016/j.foreco.2014.05.006


R Core Team (2013) R: a language and environment for statistical
computing

IBM Corp (2012) IBM SPSS Statistics for Windows
Crotteau JS, Ritchie MW, Varner JM (2014) A mixed-effects heteroge-

neous negative binomial. For Sci 60:275–287
Cutler DR, Edwards TC, Beard KH, Cutler A, Hess K, Gibson J, Lawler J

(2007) Random forests for classification in ecology. Ecology 88:
2783–2792. doi:10.1890/07-0539.1

Del Cerro A, Lucas ME, Martínez E, López FR, Andrés M, García FA,
Navarro R (2009) Influence of stand density and soil treatment on
the Spanish Black Pine (Pinus nigra Arn. ssp. salzmannii) regener-
ation in Spain. Investig Agrar Sist y Recur For 18:167–180

Domenich T, McFadden D (1975) Urban travel demand: a behavioural
approach. North-Holland Publishing Co, Amsterdam, 215 pp

Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted re-
gression trees. J Anim Ecol 77:802–813. doi:10.1111/j.1365-2656.
2008.01390.x

Fei S (2010) Applying hotspot detection methods in forestry: a case study
of chestnut oak regeneration. Int J For Res 2010:1–8. doi:10.1155/
2010/815292

Fisher R (1918) The correlation between relatives on the supposition of
Mendelian Inheritance. Philos Trans R Soc Edinburgh 52:399–433.
doi:10.1017/S0080456800012163

Forteza J, Lorenzo L, Najac N, Cuadrado S, Ingelmo F, Hernández J, Prat
L, Muñez MC, Macarro MC, Rivas MD, García A (1988) Mapa de
suelos de Castilla y León, escala 1:500 000. Consejería de Fomento,
Junta de Castilla y León, Valladolid

Fournier DA, Skaug HJ, Ancheta J, Ianelli J, Magnusson A, Maunder
MN, Nielsen A, Sibert J (2012) ADModel Builder: using automatic
differentiation for statistical inference of highly parameterized com-
plex nonlinear models. Optim Methods Softw 27:233–249. doi:10.
1080/10556788.2011.597854

Fyllas NM, Dimitrakopoulos PG, Troumbis AY (2008) Regeneration
dynamics of a mixed Mediterranean pine forest in the absence of
fire. For Ecol Manag 256:1552–1559. doi:10.1016/j.foreco.2008.
06.046

García López J (1994) Short description of the Navafría pine forest and its
management history. In: Montero G, Elena R (eds) Mountain silvi-
culture. Investigación Agraria: Sistemas y recursos forestales. Fuera
de serie n°3, pp 309–320

Gómez-Aparicio L, Valladares F, Zamora R (2006) Differential light re-
sponses of Mediterranean tree saplings: linking ecophysiology with
regeneration niche in four co-occurring species. Tree Physiol 26:
947–958

González-Martínez SC, Bravo F (2001) Density and population structure
of the natural regeneration of Scots pine (Pinus sylvestris L.) in the
High Ebro Basin (Northern Spain). Ann For Sci 58:277–288. doi:
10.1051/forest:2001126

Grömping U (2009) Variable importance assessment in regression: linear
regression versus random forest. Am Stat 63:308–319. doi:10.1198/
tast.2009.08199

Hardin J, Hilbe J (2012) Generalized linear models and extensions, third
edit. Strata Press, Lake Drive

Henderson C, Kempthorne O, Searle S, von Krosigk C (1959) The esti-
mation of environmental and genetic trends from records subject to
culling. Biometrics 15:192–218. doi:10.2307/2527669

Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning: a
conditional inference framework. J Comput Graph Stat 15:651–674

Hyppönen M, Hallikainen V, Niemelä J, Rautio P (2013) The contradic-
tory role of understory vegetation on the success of Scots pine re-
generation. Silva Fenn 47:1–19

James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to
statistical learning: with applications in R. doi: 10.1007/978-1-
4614-7138-71

Jolliffe I (2002) Principal component analysis. Springer, New York

Kass G (1980) An exploratory technique for investigating large quantities
of categorical data. J R Stat Soc 29:119–127

Kleppin L, Pesch R, Schröder W (2008) CHAID Models on boundary
conditions of metal accumulation in mosses collected in Germany in
1990, 1995 and 2000. Atmos Environ 42:5220–5231. doi:10.1016/j.
atmosenv.2008.02.058

Kuuluvainen T, Pukkala T (1989) Simulation of within-tree and between-
tree shading of direct-radiation in a forest canopy: effect of crown
shape and sun elevation. Ecol Modell 49:89–100

Lawless JF (1987) Negative binomial and mixed Poisson regression. Can
J Stat 15:209–225

Ledo A, Cayuela L, Manso R, Condés S (2015) Recruitment patterns and
potential mechanisms of community assembly in an Andean Cloud
Forest. J Veg Sci. doi:10.1111/jvs.12287

Legendre P, Fortin M-J (1989) Spatial pattern and ecological analysis.
Vegetatio 80:107–138

Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier,
Amsterdam

Loftis DL (1990) A shelterwood method for regenerating Red Oak in the
southern Appalachians. For Sci 36:917–929

Louviere J, Hensher A, Swait D (2000) Stated choice methods.
Cambridge University Press, New York

Lucas-BorjaME (2014) Climate change and forest natural regeneration in
Mediterranean mountain areas. For Res 3:2–3. doi:10.4172/2168-
9776.1000e108

Lucas-Borja ME, Fidalgo Fonseca T, Lousada JL et al (2012) Natural
regeneration of Spanish black pine [Pinus nigraArn. ssp. salzmannii
(Dunal) Franco] at contrasting altitudes in a Mediterranean moun-
tain area. Ecol Res 27:913–921. doi:10.1007/s11284-012-0969-x

Manso R, Calama R, Madrigal G, Pardos M (2013) A silviculture-
oriented spatio-temporal model for germination in Pinus pinea L.
in the Spanish Northern Plateau based on a direct seeding experi-
ment. Eur J For Res 132:969–982. doi:10.1007/s10342-013-0724-z

Maydeu-Olivares A, García-Forero C (2010) Goodness-of-fit testing. Int
Encycl Educ 7:190–196

Montes F, Cañellas I (2007) The spatial relationship between post-crop
remaining trees and the establishment of saplings in Pinus sylvestris
stands in Spain. Appl Veg Sci 10:151. doi:10.1658/1402-
2001(2007)10[151:TSRBPR]2.0.CO;2

Montes F, Pita P, RubioA, Cañellas I (2007) Leaf area index estimation in
mountain even-aged Pinus sylvestris L. stands from hemispherical
photographs. Agric For Meteorol 145:215–228. doi:10.1016/j.
agrformet.2007.04.017

Montgomery R (2004) Effects of understory foliage on patterns of light
attenuation near the forest floor. Biotropica 36:33–39

Oksanen J (2013) Multivariate analysis of ecological communities in R:
vegan tutorial

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB,
Simpson GL, Solymos P, Stevens, MHH, Wagner H (2013) vegan:
Community Ecology Package. vegan Community Ecol Packag

Osem Y, Yavlovich H, Zecharia N, Atzmon N, Moshe Y, Schiller G
(2013) Fire-free natural regeneration in water limited Pinus
halepensis forests: a silvicultural approach. Eur J For Res 132:
679–690. doi:10.1007/s10342-013-0704-3

Paluch JG (2005) The influence of the spatial pattern of trees on forest
floor vegetation and silver fir (Abies alba Mill.) regeneration in
uneven-aged forests. For Ecol Manag 205:283–298. doi:10.1016/j.
foreco.2004.10.010

Pardos M, Montes F, Aranda I, Cañellas I (2007) Influence of environ-
mental conditions on germinant survival and diversity of Scots pine
(Pinus sylvestris L.) in central Spain. Eur J For Res 126:37–47. doi:
10.1007/s10342-005-0090-6

Pausas JG, Ribeiro E, Vallejo R (2004) Post-fire regeneration variability
of Pinus halepensis in the eastern Iberian Peninsula. For Ecol
Manag 203:251–259. doi:10.1016/j.foreco.2004.07.061

582 D. Moreno-Fernández et al.

http://dx.doi.org/10.1890/07-0539.1
http://dx.doi.org/10.1111/j.1365-2656.2008.01390.x
http://dx.doi.org/10.1111/j.1365-2656.2008.01390.x
http://dx.doi.org/10.1155/2010/815292
http://dx.doi.org/10.1155/2010/815292
http://dx.doi.org/10.1017/S0080456800012163
http://dx.doi.org/10.1080/10556788.2011.597854
http://dx.doi.org/10.1080/10556788.2011.597854
http://dx.doi.org/10.1016/j.foreco.2008.06.046
http://dx.doi.org/10.1016/j.foreco.2008.06.046
http://dx.doi.org/10.1051/forest:2001126
http://dx.doi.org/10.1198/tast.2009.08199
http://dx.doi.org/10.1198/tast.2009.08199
http://dx.doi.org/10.2307/2527669
http://dx.doi.org/10.1007/978-1-4614-7138-71
http://dx.doi.org/10.1007/978-1-4614-7138-71
http://dx.doi.org/10.1016/j.atmosenv.2008.02.058
http://dx.doi.org/10.1016/j.atmosenv.2008.02.058
http://dx.doi.org/10.1111/jvs.12287
http://dx.doi.org/10.4172/2168-9776.1000e108
http://dx.doi.org/10.4172/2168-9776.1000e108
http://dx.doi.org/10.1007/s11284-012-0969-x
http://dx.doi.org/10.1007/s10342-013-0724-z
http://dx.doi.org/10.1658/1402-2001(2007)10%5B151:TSRBPR%5D2.0.CO;2
http://dx.doi.org/10.1658/1402-2001(2007)10%5B151:TSRBPR%5D2.0.CO;2
http://dx.doi.org/10.1016/j.agrformet.2007.04.017
http://dx.doi.org/10.1016/j.agrformet.2007.04.017
http://dx.doi.org/10.1007/s10342-013-0704-3
http://dx.doi.org/10.1016/j.foreco.2004.10.010
http://dx.doi.org/10.1016/j.foreco.2004.10.010
http://dx.doi.org/10.1007/s10342-005-0090-6
http://dx.doi.org/10.1016/j.foreco.2004.07.061


Perreault W, Barksdale H (1980) A model-free approach for analysis of
complex contingency data in survey research. J Mark Res 17:503–
515

Prévosto B, Amandier L, Quesney T, de Boisgelin G, Ripert C (2012)
Regenerating mature Aleppo pine stands in fire-free conditions: site
preparation treatments matter. For Ecol Manag 282:70–77. doi:10.
1016/j.foreco.2012.06.043

Quinn G, Keough M (2001) Experimental design and data analysis for
biologists. Cambridge University Press, Cambridge

Rathbun SL, Fei S (2006) A spatial zero-inflated Poisson regression
model for oak regeneration. Environ Ecol Stat 13:409–426. doi:10.
1007/s10651-006-0020-x

Revelle W (2013) psych: Procedures for Personality and Psychological
Research

Shepard R (1962) The analysis of proximities: multidimensional
scaling with an unknown distance function. Psychometrika
27:125–140

Spanos IA, Daskalakou EN, Thanos CA (2000) Postfire, natural regen-
eration of Pinus brutia forests in Thasos island, Greece. Acta Oecol
21:13–20. doi:10.1016/S1146-609X(00)00107-7

Strobl C, Boulesteix A-L, Kneib T, Augustin T, Zeileis A (2008)
Conditional variable importance for random forests. BMC
Bioinformatics 9:307. doi:10.1186/1471-2105-9-307

Strobl C, Malley J, Tutz G (2009) An introduction to recursive
partitioning: rationale, application and characteristics of classifica-
tion and regression trees, bagging and random forests. Psychol
Methods 14:323–348. doi:10.1037/a0016973.An

Ten Have TR, Kunselman AR, Tran L (1999) A comparison of mixed
effects logistic regression models for binary response data with two
nested levels of clustering. Stat Med 18:947–960

Valkonen S (2000) Effect of retained Scots pine trees on regeneration,
growth, form and yield of forest stands. Investig Agrar Sist y Recur
For. Fuera de serie:121–145

Van Diepen M, Franses PH (2006) Evaluating chi-squared automatic
interaction detection. Inf Syst 31:814–831. doi:10.1016/j.is.2005.
03.002

Venables W, Ripley R (2002) Modern applied statistics with S, 4th edn.
Springer, New York

Vriens M (2001) Market segmentation: analytical developments and ap-
plication guidelines. Millward Brown Intelli-Quest. Techn
Overview Ser

Woods KD, Acer K (1984) Patterns of tree replacement : canopy effects
on understory pattern in hemlock—northern hardwood forests.
Vegetatio 56:87–107

Wu H-I, Sharpe PJH, Walker J, Penridge LK (1985) Ecological field
theory: a spatial analysis of resource interference among plants.
Ecol Modell 29:215–243. doi:10.1016/0304-3800(85)90054-7

Zuur AF, Ieno EN, Smith G (2007) Analyzing ecological data. Springer,
New York

Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed
effects models and extensions in ecology with R. Springer, New
York, 574 pp

Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to
avoid common statistical problems. Methods Ecol Evol 1:3–14. doi:
10.1111/j.2041-210X.2009.00001.x

Alternative approaches in regeneration 583

http://dx.doi.org/10.1016/j.foreco.2012.06.043
http://dx.doi.org/10.1016/j.foreco.2012.06.043
http://dx.doi.org/10.1007/s10651-006-0020-x
http://dx.doi.org/10.1007/s10651-006-0020-x
http://dx.doi.org/10.1016/S1146-609X(00)00107-7
http://dx.doi.org/10.1186/1471-2105-9-307
http://dx.doi.org/10.1037/a0016973.An
http://dx.doi.org/10.1016/j.is.2005.03.002
http://dx.doi.org/10.1016/j.is.2005.03.002
http://dx.doi.org/10.1016/0304-3800(85)90054-7
http://dx.doi.org/10.1111/j.2041-210X.2009.00001.x

	Alternative approaches to assessing the natural regeneration of Scots pine in a Mediterranean forest
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	Study site
	Parametric regression: GLMM using a negative binomial
	Including uncorrelated variables in the GLMM. PCA as ordination method
	Ordination using NMDS
	Decision tree automatic classification method: CHAID algorithm
	The random forests algorithm and conditional inference tree

	Results
	Parametric regression: GLMM using a negative binomial
	Including uncorrelated variables in the GLMM. PCA as ordination method
	Ordination with NMDS
	Decision tree automatic classification method: CHAID algorithm
	Random forests algorithm and conditional inference tree

	Discussion
	Factors underlying Scots pine regeneration in Central Spain
	Methods comparison

	References


