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Abstract

The role of competition for light among plants has long been recognised at local scales, but its 

importance for plant species distributions at larger spatial scales has generally been ignored. Tree 

cover modifies the local abiotic conditions below the canopy, notably by reducing light 

availability, and thus, also the performance of species that are not adapted to low-light conditions. 

However, this local effect may propagate to coarser spatial grains, by affecting colonisation 

probabilities and local extinction risks of herbs and shrubs. To assess the effect of tree cover at 

both the plot- and landscape-grain sizes (approximately 10-m and 1-km), we fit Generalised 
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Linear Models (GLMs) for the plot-level distributions of 960 species of herbs and shrubs using 

6,935 vegetation plots across the European Alps. We ran four models with different combinations 

of variables (climate, soil and tree cover) at both spatial grains for each species. We used partial 

regressions to evaluate the independent effects of plot- and landscape-grain tree cover on plot-

level plant communities. Finally, the effects on species-specific elevational range limits were 

assessed by simulating a removal experiment comparing the species distributions under high and 

low tree cover. Accounting for tree cover improved the model performance, with the probability 

of the presence of shade-tolerant species increasing with increasing tree cover, whereas shade-

intolerant species showed the opposite pattern. The tree cover effect occurred consistently at both 

the plot and landscape spatial grains, albeit most strongly at the former. Importantly, tree cover at 

the two grain sizes had partially independent effects on plot-level plant communities. With high 

tree cover, shade-intolerant species exhibited narrower elevational ranges than with low tree cover 

whereas shade-tolerant species showed wider elevational ranges at both limits. These findings 

suggest that forecasts of climate-related range shifts for herb and shrub species may be modified 

by tree cover dynamics.

Keywords

biotic interactions; biotic modifiers; facilitation; light competition; plant-plant interactions; shade 
tolerance; spatial grain; species distribution models

INTRODUCTION

One important goal of ecology is to provide reliable forecasts of biotic responses to climate 

change (Pearson and Dawson 2003, Meier et al. 2010, Wisz et al. 2013). At the same time, 

obtaining a mechanistic understanding of the determinants of species distributions is still 

one of the greatest challenges (Thuiller et al. 2013). Climate has long been recognised as the 

main driver of species distributions (Pearson and Dawson 2003). However, many recent 

studies have shown that other factors, such as dispersal limitation, remnant population 

dynamics, transient eco-evolutionary dynamics, environmental disturbances, edaphic 

conditions, and biotic interactions, may modify species-specific responses to climatic drivers 

(Pounds et al. 1999, Root et al. 2003, Parmesan 2006, Lenoir et al. 2010, Normand et al. 

2011, Bertrand et al. 2012). Among these, biotic interactions have been recently highlighted 

as a key factor that should be better incorporated into both species distribution models 

(SDMs) and biodiversity models (Kissling et al. 2012, Linder et al. 2012, Boulangeat et al. 

2012, Wisz et al. 2013). Although previously thought to be of highest importance at fine 

spatial grains (see Eltonian Noise Hypothesis in Soberon and Nakamura 2009, Cooper and 

Belmaker 2010), recent studies have shown that biotic interactions can also significantly 

alter species distributions at coarse spatial grains and broad spatial extents (Bullock et al. 

2000, Araújo and Luoto 2007, Gotelli et al. 2010, Meier et al. 2011).

In plants, both correlative (Pellissier et al. 2010, Meier et al. 2010, 2011, Kunstler et al. 

2011, 2012, Meineri et al. 2012) and experimental studies (Klanderud 2005, Hector et al. 

2012) have provided evidence for the importance of biotic interactions for species 

distributions. For example, shrub cover and abundance affect herb and dwarf shrub richness 
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and abundance in tundra habitats (Pajunen et al. 2011), and the co-occurrence patterns of 

competing trees alter the distribution patterns of European beech (Meier et al. 2011). 

However, the importance of taller species (such as trees) in driving herb and shrub species 

distributions across large geographic regions has never been explicitly assessed (see Linder 

et al. 2012) despite the well-known roles of light availability and shade tolerance in 

determining local plant community composition (Kobe et al. 1995, Valladares and 

Niinemets 2008). Furthermore, due to the sessile nature of plants, direct plant-plant 

interactions are commonly thought to mainly occur within short distances, and there are thus 

few studies of the impact of plant-plant interactions at coarser spatial grains (Linder et al. 

2012, Wisz et al. 2013, but see Bullock et al. 2000).

Trees have been referred to as biotic modifiers (Linder et al. 2012) because of their abilities 

to modify microclimatic conditions (Pinto et al. 2010) and soil properties (Thomas and 

Packham 2007). In areas with high diurnal and seasonal climatic variation, dense tree cover 

dampens the microclimatic variability in the understory compared with open areas (von Arx 

et al. 2012). Additionally, trees add organic matter to the soil, often increasing nutrient 

availability (Augusto et al. 2002). However, the most important effect of trees is that they 

reduce light availability in the understory. As some species are adapted for photosynthesis 

under low-light conditions (Kobe et al. 1995, Valladares and Niinemets 2008), such species 

may benefit from a dense tree cover, whereas other (shade-intolerant) species are excluded. 

Hence, trees may have varying impacts on co-occurring herb and shrub species, ranging 

from competition to facilitation, depending on the shade tolerance of the interacting species. 

Despite their sessile nature, the effects of trees may propagate to coarser spatial grains (e.g., 

1 km2) via plant population dynamics, by affecting colonisation probabilities and local 

extinction risks of herbs and shrubs. For instance, an open gap in a forested landscape could 

be too small to support a viable population of a light-demanding species (Canham 1989) or 

too distant from source populations and/or too short-lived to be colonised. Similar processes 

may also occur for shade-tolerant species and small patches of dense tree cover in open 

landscapes (Jamoneau et al. 2011). These examples suggest the fine-grain occurrence of 

understory plants may be affected not only by tree cover at the same grain but also by 

landscape-grain tree cover through metapopulation-like dynamics.

Changes in the role and importance of biotic interactions along abiotic gradients have been 

discussed for decades, and we use this perspective as an additional way to study the effects 

of tree cover on herb and shrub distributions (Paine 1974, Kaufman 1995, Maestre et al. 

2009). A frequent approach is to study their effects along the elevational ranges of the 

species (Normand et al. 2009, Kunstler et al. 2011, le Roux et al. 2012). The asymmetric-

abiotic-stress-limitation hypothesis (AASLH) proposes that abiotic environmental and biotic 

interaction drivers constrain the upper and lower elevational limits, respectively (Paine 

1974, Normand et al. 2009, Ettinger et al. 2011), assuming a stronger effect of competition 

in habitats not physiologically limited by abiotic conditions (i.e., the lower elevational 

limit). However, biotic interactions may ameliorate the limiting physiological conditions, 

thereby extending the upper elevational limits of certain species (Callaway et al. 2002). The 

stress gradient hypothesis (SGH) predicts varying biotic interactions as environmental stress 

decreases, with an increase in competition and a decrease in facilitation (Bertness and 
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Callaway 1994, Maestre et al. 2009), supporting the role of biotic interactions in influencing 

both upper and lower elevational limits of species ranges (Defossez et al. 2011).

Here, we (1) incorporate tree cover into SDMs (cf. Linder et al. 2012) to measure its 

importance as a driver relative to climate and soil for fine-grain herb and shrub species 

distributions across a large region, the Alps, and (2) assess whether tree cover effects are 

affected by species-specific shade tolerances. Then, we (3) investigate whether tree cover 

effects occur only at fine spatial grains (plot grain: ~10 m) or if there are also detectable 

coarser grain (landscape grain: ~1 km) tree cover effects on fine-grain herb and shrub 

species distributions. Finally, we (4) evaluate whether tree cover affects herb and shrub 

elevational range limits, and if it does, whether the patterns are consistent with the AASLH 

or the SGH.

MATERIALS & METHODS

Study area

The study area covers the entire Alps (43°29’49” – 48°53’00”N; 4°46’28” – 17°04’00”E), 

as delineated by the Alpine Convention Boundary (Fig. 1; http://www.alpconv.org). 

Elevation ranges from sea level up to 4,810 m a.s.l., and mean elevation is approximately 

1,037 m a.s.l. Mean annual temperature and precipitation range from −11.6 to 16.6 °C and 

from 515 to 2,883 mm yr−1, respectively (WorldClim database; Hijmans et al. 2005). Soil 

conditions are diverse, with large areas of calcareous as well as siliceous bedrocks, and soil 

pH ranging from 3 to 8 (European Soil Portal; http://eusoils.jrc.ec.europa.eu/). The main 

vegetation types are forest, agricultural land, scrubland, grassland, and scattered vegetation 

on rocks, with forests covering 40.4 % of the study area (European Forest Data Center; 

http://forest.jrc.ec.europa.eu).

Data and study species

We compiled vegetation plot data from two different sources: (1) the Alps Vegetation 

Database (n = 35,735 plots from 1900 to 2009; Lenoir et al. 2012) and (2) a survey of the 

French National Alpine Botanical Conservatory at Gap (n = 1,782 plots from 1980 to 2009; 

CBNA). This combined database covers a large elevational gradient from 0 up to 3,412 m 

a.s.l., distributed across the entire Alps. We used Flora Alpina (Aeschimann et al. 2004) as 

the taxonomic reference when integrating the databases. Note that each vegetation plot is an 

exhaustive list of all vascular plant species co-occurring within a given location at a given 

point in time and thus provides reliable information on both presence and absence data for a 

given species.

To avoid mismatches between plot locations and the raster-based predictor variables (see 

below), we selected those plots with a spatial reference of at least 500-m accuracy. To 

reduce pseudo-replication, we randomly selected one plot among those with identical spatial 

coordinates (i.e., plots from time-series and spatially nested plots). To estimate plot-grain 

tree cover, we selected plots having abundance-dominance indices and excluded plots 

having presence-absence data only. The final dataset comprised 6,935 plots surveyed after 

1980, with plot sizes ranging from 1 to 500 m2 (see Appendix 1 in the supporting 
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information for an assessment of the overall representativeness of the final dataset for all 

predictor variables relative to the original dataset). As our objective was to study the impact 

of tree cover on the distribution of lower-stature plant species, the smallest plots (1 m2) were 

also relevant because they were the most common plot size for herbs and shrubs in open 

habitats. Consequently, we removed trees and tall shrub species—i.e., life forms coded ‘p’ 

and ‘n-p’ in Flora Indicativa (Landolt et al. 2010)—as well as 634 herb and shrub species 

not listed in Flora Indicativa. Finally, to limit noise in subsequent modelling analyses and to 

lessen the likelihood of overfitting due to the limited number of occurrences, we selected 

960 herb and low-stature shrub species with more than 20 occurrences within the 6,935 

selected plots. The total number of occurrences per modelled species ranged from 20 to 

3,451, with an average of 264 occurrences.

We completed the database with descriptor and indicator values for most of the taxa from 

the Flora Indicativa database (Landolt et al. 2010). Landolt et al. (2010) ranked most of the 

terrestrial plant taxa in the Alps according to their optimal occurrence along key 

environmental gradients using an ordinal scale ranging from 1 to 5. For the purpose of this 

study, we used one plant trait descriptor for life forms (LF) and six plant indicator values for 

air temperature (T), continentality (K), soil moisture (M), soil reaction [soil pH] (R), nutrient 

availability (N), and light (L). LF describes the Raunkiær life forms for plants and was used 

to select herbs, shrubs and trees. We classified species as shade tolerant (L = 1–2), semi-

shade tolerant (L=3), or shade-intolerant (L = 4–5) and, according to their optimal 

elevational belt, as colline (T = 4–5), montane (T = 3–3.5), subalpine (T = 1.5–2.5), or 

alpine and nival (T=1).

Predictor variables

Because our objective was to investigate the effect of tree cover in SDMs on lower-stature 

plants at two different spatial grains (plot and landscape), we calculated two sets of predictor 

variables for climate, soil, and tree cover.

Plot grain—For five of the six indicator values (V: T, K, M, R, N) in a given plot, we 

computed the mean indicator value (VPMI) by averaging the values of all species recorded in 

the respective plot. Note that the averaged values were not weighted by abundance (see 

Diekmann 2003 for a discussion of the use of weighted and unweighted averaged values). 

These climate and soil factors (TPMI, KPMI, MPMI, RPMI, and NPMI) are well known to 

affect plant species distributions (e.g., Skov and Svenning 2004, Bertrand et al. 2012) and 

were used as predictor variables for the plot-grain SDMs (~10-m grain). To avoid circularity 

when fitting SDMs for a given focal species, we computed VPMI after removing the 

indicator values of the focal species from all plant assemblages in which it occurred. 

Because the VPMIs were calculated based on the species observed in each plot, these values 

represent the vegetation at the time when each plant assemblage was recorded. TPMI 

characterises the mean temperature during the growth period, whereas KPMI characterises 

the air humidity, daily and annual variation in temperature, and minimum temperature. 

MPMI reflects the moisture in the soil during the growth period of the plants and was 

included in the climate models to provide information regarding water availability. RPMI and 

NPMI represent the pH and the amount of nitrogen in the soil, respectively.
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To calculate tree cover at the plot grain (TCplot), we used field information provided by the 

vegetation surveys. We calculated the cover percentage for all species taller than 2 m 

(recorded as vegetation layers 1, 2, 3, and 4 in the database) in each plot by transforming the 

original abundance-dominance indices to approximate percentage values and then summing 

the cover percentages for all the species in these four vegetation layers, as implemented in 

Turboveg (Hennekens and Schaminée 2001).

Landscape grain—To study the effect of coarse-grain tree cover on plot-level species 

occupancy, we prepared a similar set of predictor variables, but at the landscape grain (see 

Appendix 2 for similarities and differences between landscape- and plot-grain variables). 

Here, we used freely available data from various sources that are frequently used in SDMs, 

enabling their use in a broader set of studies where environmental information at finer 

spatial grains is not available. Using GRASS 6.4.2RC1 for Windows (GRASS Development 

Team 2011), we created a 30″ resolution grid in the geographic coordinate system and 

datum WGS84 (i.e., approximately 925 m × 625 m or 0.58-km2 cells) that encompassed the 

spatial extent of the final dataset. Then, we computed climate, soil, and tree cover variables 

at this spatial resolution.

We used monthly mean climatic data for current conditions (~1950–2000) from the 

WorldClim database (Hijmans et al. 2005) at 30″ resolution to calculate three climatic 

variables: growing degree days (GDD), absolute minimum temperature (AMT) and water 

balance (WBAL). The WorldClim data were estimated from long-term monitoring and 

subsequent spatial interpolation (Hijmans et al. 2005), offering a rough approximation of 

these metrics. To represent soil conditions, we downloaded two variables from the European 

Soil Portal – European Commission – (Jones et al. 2005, Panagos et al. 2012): the organic 

content in the topsoil (OCT) and soil reaction (pH). OCT was used as a surrogate for 

nutrient availability. Further details in the calculation of these variables are provided in 

Appendix 2.

The landscape-grain tree cover data were derived from the “Forest Map 2000” provided by 

the European Forest Data Centre – European Commission (http://efdac.jrc.ec.europa.eu/). 

This raster layer contains information on forest presence/absence at 25-m resolution and is 

in ETRS89 Lambert Azimuthal Equal Area projection. We re-projected the original data 

using the nearest neighbour method at the original resolution (~25 m). Subsequently, we 

resampled to 30″ resolution, computing the surface ratio (ranging from 0% for treeless areas 

up to 100% for completely forested areas) covered by forest in each grid cell. We refer 

hereafter to this variable as the landscape-grain tree cover (TCland).

Tree cover and species distribution

To assess the importance of tree cover on species distributions relative to climate and soil, 

we fit species distribution models (SDMs) using four different combinations of predictors 

for all selected species in the final dataset: climate, soil and tree cover (CST); climate and 

soil (CS); climate and tree cover (CT); and climate alone (C). First, we ran models with 

predictor variables calculated at the plot grain. Then, we investigated whether the effect of 

tree cover was also observable at a coarser grain by fitting the same combinations of 
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predictors with the independent variables calculated at the landscape grain. In a post-hoc 

analysis, we included TCland in the CST models at the plot grain to evaluate their combined 

effect. All the predictor variables included in each model had low correlations (see Table 

A1), with the exceptions of KPMI vs. MPMI (Spearman correlation, rs = −0.767), GDD vs. 

AMT (rs = 0.921), GDD vs. WBAL (rs = −0.898), and AMT vs. WBAL (rs = −0.779). Most 

importantly, TCplot and TCland, which constitute the variables of greatest interest here, 

showed low correlations with soil and climate variables.

We used Generalised Linear Models (GLMs) with a binomial family and a logistic link 

function in which all the predictor variables were included as linear and quadratic terms. 

However, to avoid interpreting the results solely based on a single algorithm, we performed 

supplementary analyses using Maxent (Phillips et al. 2006) and Boosted Regression Trees 

(BRT; Ridgeway 1999, Elith et al. 2008) (see Appendix 3 for more details on both 

methods). For each modelled species, the response variable is a binary variable (0/1) of 

presence (1) and absence (0) data. Given the high quality of the data, the absence data are 

reliable. For Maxent, which was designed to compare presences with a background sample, 

we used all selected plots (including those where the modelled species was present) as 

background. Our objective with this approach was to obtain comparable results between 

modelling approaches while minimising the effect of sampling bias (Phillips et al. 2009). 

The results from Maxent and BRT were consistent with those obtained with GLMs (see 

Appendix 3). Previous studies have also used data accumulated over long periods to infer 

and study biotic interactions (Araújo and Luoto 2007, Hof et al. 2012, Kunstler et al. 2012, 

Boulangeat et al. 2012), despite the complication that the strength and direction of the 

interactions could change over time (e.g., due to changes in environmental conditions). To 

assess whether interannual variation could affect the results, we performed a sensitivity 

analysis with Logistic Mixed Models with survey year as a random effect. The results were 

highly consistent with those based on GLMs, indicating that such temporal effects did not 

bias the results and the reasoning (see Appendix 4).

To study the performance of models, we randomly selected 75% of the presence-absence 

data from the final dataset for each of the 960 modelled species to calibrate the models 

(training dataset) and withheld the remaining 25% to evaluate them (testing dataset). 

Although the testing datasets were not used to fit the models, they might not be spatially 

independent from the training datasets. This spatial dependency could bias model 

evaluation, overestimating the performance of the models; thus, caution should be taken in 

using the models to make projections, but it is less likely that this bias would affect the 

comparisons of the models. We used two threshold-independent measures, the 

nonparametric Area Under the Curve of the Receiver Operating Characteristics plot (AUC) 

and the parametric point-biserial correlation coefficient (COR), and one threshold-dependent 

measure, the true skill statistic (TSS). AUC has been widely used but is known to be 

sensitive to prevalence, whereas COR and TSS have been suggested to be unbiased by 

prevalence issues (Allouche et al. 2006, Liu et al. 2011). To calculate TSS and to obtain 

presence-absence predictions from the models, we used the species-model-specific threshold 

that minimised the difference between sensitivity (proportion of presences correctly 

predicted) and specificity (proportion of absences correctly predicted) in absolute terms for 
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the training dataset. By using this threshold, our objective was not to assess the ability of the 

models to predict potential areas of suitability but rather to assess their ability to predict 

areas the species actually occupies.

Based on this set of 960 modelled species, we first evaluated the significance of 

incorporating tree cover into the SDMs, in addition to climate and soil. Because of the high 

number of samples, we used pairwise comparisons of model performance among the four 

candidate models (C, CS, CT, and CST) with species as the sampling unit (Blach-Overgaard 

et al. 2010). Boxplots were drawn with boxes showing the interquartile range of the 

difference in model performance between two candidate models of a given species for each 

of the six possible combinations of pairwise comparison (C:CS, C:CT, C:CST, CS:CT, 

CS:CST, and CT:CST) and for each of the three measures of model performances (AUC, 

COR, and TSS). The notches inside the boxes indicate the 95% confidence interval around 

the median of the difference between the two candidate models. If the notches of a box do 

not overlap the zero horizontal line, there is strong evidence (95% confidence) that the 

median difference in model performance between the two candidate models differs from 

zero. Additionally, the statistical significance of these differences was also tested using 

Student’s paired t-test, with the sample units (species) assumed to be independent.

Finally, we assessed the relative importance of the variables for the herb and shrub 

distributions by using hierarchical partitioning. For each species, we ran all possible models 

with different combinations of the six predictors, modelled as linear terms. Then, the 

independent contribution of each variable was calculated and partitioned based on the entire 

set of models.

Tree cover and community composition

If light-mediated plant-plant interactions drive herb and shrub distributions, then the 

proportion of shade-tolerant species within the community should increase with tree cover; 

i.e., tree cover should negatively correlate with the mean indicator values of the plot for light 

(LPMI). Due to the nested nature of TCplot within TCland, the two variables are correlated, 

and their effects on herb and shrub distributions could be confounded (rs = 0.387). We 

disentangled their independent effects by regressing LPMI against TCplot and/or TCland, 

using partial regressions to assess the effect of each tree cover variable while accounting for 

the other.

Tree cover and the elevational range limits

To estimate the effect of tree cover, TCplot, on the elevational range limits of lower-stature 

plants, we compared two extreme scenarios (i.e., low vs. high tree cover) using either real 

observations or simulations. For the real observations, we first selected two subsets of 

vegetation plots among all the plots in the dataset: one subset of plots with low TCplot values 

(≤50 %; n = 1,869) and another subset of plots with high TCplot values (>50 %; n = 4,158). 

Because the plots were not evenly distributed across the elevational gradient, we performed 

stratified random sampling to obtain two subsets of plots that were uniformly and equally 

distributed between 0 and 2200 m a.s.l., selecting 50 plots at each 50-m elevation interval 

whenever possible (n = 1,238 for each subset; mean TCplot = 15.7% and 81.5% for the low 
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and high subsets, respectively; see Appendix 5). Then, for each species within each subset, 

we ranked its occurrences along the elevational gradient and selected the 1st and 99th 

percentiles as the lower and upper elevational limits. To reduce uncertainties due to the 

stratified random sampling, we replicated this computation 10 times and then computed the 

mean values. Finally, for each species, we calculated the elevational differences between the 

low and high tree-cover areas at both its lower and upper elevational limits.

For the simulations, we used the most complex model (CST) at the plot grain to predict the 

elevational limits for each species under the low and high tree-cover scenarios. All predictor 

variables were set to their original values except for TCplot, which was set to 10% and 90% 

to simulate low and high tree-cover conditions, respectively. Then, we used the predicted 

occurrences of a given species (translated to presence-absence predictions by applying the 

species-model-specific thresholds) and applied the same approach as that applied with the 

empirical data to calculate the elevational differences between the low and high tree-cover 

scenarios at both the lower and upper elevational limits. We also compared these results 

among the different shade-tolerance groups of species using Student’s t-test and assuming 

the sample units (species) to be independent.

All analyses were performed using R 2.14.0 (R Development Core Team 2011) and the 

dismo, gbm, hier.part, and ncf packages (Hijmans et al. 2012, Oksanen et al. 2012, 

Ridgeway 2012, Walsh and Nally 2013).

RESULTS

Fine- and coarse-grain tree cover effects for plot-level species distribution

Species distribution models with predictor variables calculated at the plot grain for the 960 

herb and shrub species generally had higher performance than models with predictors at the 

landscape grain (Table 1). For both of these, the climate-only models (C) performed well, 

but including soil or tree cover (CS and CT models) improved the overall performance, 

except for TSS (Table 1 and Fig. 2). Furthermore, including tree cover in addition to climate 

and soil (CST models) resulted in an additional improvement in performance over the CS 

models (Table 1 and Fig. 2; paired t(959) = 5.273 and p<0.001 and paired t(959) = 4.359 and 

p<0.001 for AUC at the plot and landscape grain, respectively). Importantly, using TCland 

with TCplot as predictors with the climatic (C) and soil (S) variables improved the 

performance according to COR (paired t(959) = 2.947; p<0.005).

Focusing on the CST models, which showed the best model performances at both the plot 

and landscape grains, we found different patterns in the relative importance of each 

predictor variable (Fig. 3). At the plot grain, TPMI was by far the most important predictor 

variable, followed by TCplot and MPMI. Hence, TCplot was more important than some 

climatic (KPMI and MPMI) and soil variables (NPMI and RPMI). At the landscape grain, AMT 

was the most important predictor variable, followed by WBAL and GDD. Tree cover at the 

landscape grain (TCland) was less important than at the plot grain but still more relevant than 

OCT (Fig. 3). The response curves of different species along the tree-cover gradient, as 

estimated by the CST models, differed among the colline, montane and subalpine groups of 

herb and shrub species (Fig. 4). As expected, the shade-tolerant species showed an 
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increasing probability of occurrence with higher values of tree cover, whereas shade-

intolerant species showed a decreasing trend with higher tree cover, with the semi-shade-

tolerant species having an almost flat response curve.

Fine- and coarse-grain tree cover effects on plot-level community composition

Both TCplot and TCland had negative effects on LPMI (Fig. 5) and together explained a large 

percentage (58.5%) of the lower-stature plant species composition in terms of their shade 

tolerance. Partial regressions showed that TCplot and TCland had significant independent 

effects (Fig. 5), with a stronger unique effect of TCplot (46.4% explained variance) than 

TCland (9.3%).

Tree cover modifications of elevational range limits

Testing the effect of changes in tree cover at the plot grain on the elevational range limits of 

lower-stature plants, we found contrasting patterns depending on species shade tolerance 

(Fig. 6). Based on the empirical data, the elevational range of shade-intolerant species was 

narrower under high tree cover conditions due to negative differences at the upper limits for 

the colline and montane species groups and due to both negative and positive differences at 

the upper and lower limits, respectively, for the subalpine species group. In contrast, the 

elevational range of shade-tolerant species was greater under high tree cover due to negative 

differences at the lower limits for the colline species group and due to both negative and 

positive differences at the lower and upper limits, respectively, for the montane and 

subalpine species groups. Semi-shade tolerant species showed weaker patterns with no clear 

trend. The outputs from the simulations were largely consistent with the results based on 

observations, although with a tendency to predict weaker tree-cover effects than were 

empirically observed (Fig. 6).

DISCUSSION

This study provides the first broad-scale quantitative assessment of the role of tree cover in 

the distributions of multiple herb and shrub species and their elevational range limits at two 

contrasting spatial grains (coarse vs. fine). Notably, we found that tree cover was correlated 

with distribution and community patterns not only at the vegetation plot level but also at a 

much coarser grain, near 1-km. These results are thus in line with recent findings regarding 

the effects of biotic interactions at large spatial scales (Gotelli et al. 2010, Wisz et al. 2013), 

exemplifying how local interactions could be observable at coarser grains (but see Cooper 

and Belmaker 2010). Additionally, the results suggest that tree cover could lead to important 

modifications in the elevational range limits of plant species based on their shade tolerances, 

suggesting an important role of biotic interactions such as competition and facilitation.

Plant-plant interactions are important at coarse spatial grains

Tree cover improved the overall performance of the models for herb and shrub species 

distributions (Fig. 2). The pairwise comparisons between the candidate models suggest a 

secondary but important role of tree cover relative to climate and soil variables. The analysis 

of variable contributions (Fig. 3) for the most complex models (CST) showed that tree cover 

is more important than soil for models at the plot grain. At this grain, tree cover played a 
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stronger role than at the coarse landscape grain (Fig. 3), likely reflecting the direct effect of 

the nearest neighbouring trees (Fig. 4) on herb and shrub distributions.

When the predictor variables were measured at the landscape grain, climate remained the 

main driver, but soil became more important than tree cover (Fig. 3). The changes in 

variable importance across spatial grains could reflect the differences between the two sets 

of predictors (i.e., their time frame, origin, and the particular variable represented). 

Regardless of this grain-dependent change, tree cover still improved model performance at 

the coarser grain (Fig. 2). Additionally, including TCland with TCplot in the CST models 

provided small but significant improvements in model performance. Interestingly, response 

curves along the tree cover gradient at the landscape grain were similar to those at the plot 

grain, although more flattened (Fig. 4), suggesting that shade-tolerant species might be 

favoured not only by dense tree cover in their direct vicinity but also by being in a forested 

landscape, and vice versa for shade-intolerant species. These tree cover effects extended up 

to 1 km for most species and even further in some cases (see Appendix 6 for a 

supplementary analysis).

The community-level analysis confirmed the structuring role of tree cover in terms of shade 

tolerance. Indeed, the significant negative effects of tree cover at both plot and landscape 

grain on the community-based index of light conditions were consistent with the results of 

the SDMs (Fig. 5). Furthermore, partial regression analyses showed (1) that tree cover in the 

direct vicinity is more important than tree cover in the surrounding areas and (2) that their 

effects act independently of each other, with only a small proportion of shared variation 

(3.2%). These patterns (Figs. 4–6) suggest that tree cover could affect plot-level species 

occurrences not only via direct local processes (Gravel et al. 2010, Wisz et al. 2013) but also 

via landscape-scale effects, e.g., metapopulation dynamics (Eriksson 1996, Ehrlén et al. 

2006). In accordance with Bullock et al. (2000), who showed that competition between 

related plant species could have effects at coarse spatial grains, the results contradict the 

generalised idea that biotic interactions primarily matter at local and fine spatial grains 

(Pearson and Dawson 2003). Our findings highlight the importance of considering biotic 

interactions (e.g., plant-plant, plant-pollinator or plant-grazer interactions) in large-scale 

studies of plant distributions and diversity patterns (Greve et al. 2012), including predictive 

models projecting future climate and land use changes (Araújo and Luoto 2007, Thuiller et 

al. 2013).

Plant-plant interactions relate to shade tolerance

Species response curves along the tree cover gradient (Fig. 4) clearly differed in shade 

tolerance. Notably, shade-tolerant species were positively correlated with tree cover. This 

pattern suggests that these species benefit from the altered abiotic conditions that a dense 

tree cover offers, resulting in a wider elevation range than under low tree cover, in otherwise 

unsuitable conditions (Figs. 4 & 6). However, shade-intolerant species were negatively 

correlated with dense tree cover at both elevational range limits and thus had a narrower 

elevation range than at low tree cover despite the regionally suitable climatic conditions 

(Figs. 4 & 6).
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For shade-intolerant species, tree cover showed an asymmetric pattern regarding elevational 

limits. For subalpine shade-intolerant species, an increase in tree cover increased the lower 

elevational range limits, whereas it did not modify the upper limits (Fig. 6). Such a trend 

would be consistent with the asymmetric-abiotic-stress-limitation hypothesis (AASLH), 

suggesting that tree cover could act as the limiting factor, through light competition, that sets 

the lower elevational range limits of shade-intolerant plant species distributions (Normand et 

al. 2009). For colline and montane shade-intolerant species, an increase in tree cover 

decreased the upper elevational range limits (Fig. 6). Such a trend suggests the negative 

effects of biotic interactions through competition towards the upper elevational range limits 

of plant species distributions, which is inconsistent with both the stress gradient hypothesis 

(SGH) and AASLH, since SGH propose positive effects through facilitation (Callaway et al. 

2002) and AASLH purely abiotic constraints at the upper elevational range limit (Kikvidze 

et al. 2011, Defossez et al. 2011, Pottier et al. 2013).

For shade-tolerant species in the montane and subalpine vegetation belts, an increase in tree 

cover increased the upper and decreased the lower elevational range limits (Fig. 6), most 

likely reflecting facilitation processes. Although these results would support the importance 

of biotic interactions in determining both limits of species ranges (Callaway et al. 2002), 

they are a deviation from the SGH, which predicts an increase in competition and a decrease 

in facilitation as abiotic stress decreases (Maestre et al. 2009). Such a pattern (deviating 

from the SGH) towards the lower elevational range limit most likely reflects the fact that 

most lowland areas are human-altered open habitats (see Appendix 7).

Implications of the use of biotic interactions in species distribution models

The addition of tree cover generally improved the model predictions of herb and shrub 

species distributions compared with models including only climate and soil variables, 

especially for the threshold-independent measures (Table 1). These results are thus in line 

with the increasingly recognised importance of including biotic factors as important drivers 

in SDMs (Gilman et al. 2010, McMahon et al. 2011, Kissling et al. 2012, Linder et al. 2012, 

Boulangeat et al. 2012, Wisz et al. 2013). However, several factors have prevented their 

extensive inclusion in SDMs so far. On the one hand, knowledge of interacting species and 

the nature of the interaction are required but not always available. To manage this problem, 

exploratory analyses on co-occurrences have been performed (Pellissier et al. 2010, Kunstler 

et al. 2011, 2012), or interactions have been inferred between congeners or species with 

similar environmental requirements (Meineri et al. 2012). However, these approaches should 

be carefully implemented because they can lead to misinterpretations if some important 

variables or species were not included in the analyses, if the supposed interactions do not 

apply, or if the interacting species do not have overlapping distributional ranges 

(Ovaskainen et al. 2010, Meineri et al. 2012). On the other hand, biotic interactions can 

involve multiple species, which would reduce the impact of any abiotic variable included in 

these models (Kissling et al. 2012). As an alternative, we used a synthetic index that 

summarises the information regarding biotic interactions through one or few variables, 

representing the effect itself (as a modulator in the sense of Linder et al. 2012) instead of the 

numerous species that generate it (Boulangeat et al. 2012).
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Our results also have implications for the use of SDMs to predict plant responses under 

climate change scenarios and biodiversity conservation. Such responses are increasingly 

recognised as not being as straightforward (Dullinger et al. 2012) as initially thought (Lenoir 

and Svenning 2014), for example simple poleward and upward range shifts (Parmesan 2006, 

Wilson et al. 2007, Lenoir et al. 2008). Indeed, the results of the present study suggest that 

biotic factors can be important additional drivers that influence species-specific range shifts. 

The long life cycles of trees, however, implies long time periods to generate such vegetation 

dynamics (Lenoir et al. 2008, Svenning and Sandel 2013), and therefore, dynamic models 

accounting for transient population dynamics should ideally be used to predict the future of 

plant distribution and diversity (Araújo and Luoto 2007, Meier et al. 2011, 2012, Dullinger 

et al. 2012, Hof et al. 2012, Thuiller et al. 2013).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Spatial distribution of the 6,935 studied vegetation plots across the Alps. The background 

colour indicates decreasing tree cover from green (100%) to light grey (0%) at the landscape 

grain (30”).

Nieto-Lugilde et al. Page 17

Ecography (Cop.). Author manuscript; available in PMC 2015 August 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. 
Pairwise comparisons of model performances for 960 herb and shrub species modelled with 

different sets of predictor variables (C: climate; S: soil; and T: tree cover) among four 

candidate models (C, CS, CT, and CST) and based on three different measures: Area Under 

the Curve of the Receiver Operating Characteristic plot (AUC), correlation coefficient 

(COR), and true skill statistic (TSS). Boxplots show the difference in model performance 

between two candidate models of a given species for each of the six possible combinations 

of pairwise comparison (C:CS, C:CT, C:CST, CS:CT, CS:CST, and CT:CST) and for each 

of the three measures of model performances (AUC, COR, and TSS). Notches inside the 

boxes indicate the 95% confidence interval around the median of the difference between the 

two candidate models. The horizontal line represents no difference between the candidate 

models, and the two candidate models differ in performance when there is no overlap 

between the notches of a given box and this line. Note the change in scale for AUC.

Nieto-Lugilde et al. Page 18

Ecography (Cop.). Author manuscript; available in PMC 2015 August 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 3. 
Relative variable importance (I) for 960 herb and shrub species as independent variance 

explained by each variable (as linear predictors) in a hierarchical partitioning with all the 

predictor variables as linear terms. Boxplots show the per cent contributions across all 

species. Diamonds represent mean values. Variables are ordered by decreasing relative 

importance. Variables are coloured by scale, with the plot-grain variables in light grey: air 

temperature (TPMI), continentality (KPMI), soil moisture (MPMI), nutrients (NPMI), soil 

reaction (RPMI) and tree cover at the plot-grain (TCplot); and the landscape-grain variables in 

dark grey: growing degree days (GDD), absolute minimum temperature (AMT), water 

balance (WBAL), organic content of the top soil (OCT), soil reaction (pH) and tree cover at 

the landscape grain (TCland).
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Figure 4. 
Mean response curves of all 960 species to the tree cover gradient using CST models at both 

plot and landscape grain. The black line represents the mean response curve, and the light 

grey area shows the 99% confidence intervals. To compute these response curves, all other 

predictor variables were set to their mean values. The total number of herb and shrub species 

in each shade tolerance group (L1–L2 for shade; L3 for semi-shade; and L4–L5 for light) is 

at the bottom of the graph.
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Figure 5. 
Pure effect of plot-grain tree cover (TCplot) on the plot mean indicator value for light (LPMI) 

after accounting for the effect of landscape-grain tree cover (TCland) on LPMI and the pure 

effect of TCland on LPMI after accounting for the effect of TCplot on LPMI. All regression 

analyses were performed with standardised values. Hexagons represent point densities in a 

grey scale.
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Figure 6. 
Differences in the elevational range limits of different species between low and high tree 

cover conditions for 717 herb and shrub species: 193 from the colline belt, 302 from the 

montane belt and 222 from the subalpine belt. Squares indicate observed differences based 

on empirical data between high (> 50 %) and low tree cover (≤ 50 %), subtracting the latter 

from the former. Triangles show the same differences based on simulated data obtained 

from the predictions of the CST models at the plot grain. The simulation was run with the 

predictor variables for each plot at their calibration values, except for tree cover, which was 

set at 90% and 10% to simulate high and low tree cover, respectively. Bars indicate the 99% 

confidence intervals for the mean values calculated with one-sample Student’s t-tests. 

Horizontal lines indicate no difference in the elevational distribution of the species between 

the high and low tree cover conditions.

Nieto-Lugilde et al. Page 22

Ecography (Cop.). Author manuscript; available in PMC 2015 August 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Nieto-Lugilde et al. Page 23

Table 1

Median, minimum and maximum values for the Area Under the Curve of the Receiver Operating 

Characteristic plot (AUC), correlation coefficient (COR), and true skill statistic (TSS) for 960 herb and shrub 

species modelled with different sets of predictor variables (C: climate; S: soil; and T: tree cover). Evaluation 

was performed on the test datasets with 25% of the total plots.

Models
AUC [0.5 to 1] COR [−1 to 1] TSS [−1 to 1]

median min–max median min–max median min–max

Plot Models

CST 0.945 0.581–0.999 0.400 −0.012–0.869 0.680 −0.011–0.965

CS 0.941 0.558–0.999 0.382 −0.005–0.859 0.673 −0.007–0.968

CT 0.928 0.607–0.999 0.331 −0.007–0.862 0.674 −0.004–0.977

C 0.918 0.577–0.999 0.297 0.008–0.836 0.675 0.032–0.993

Landscape Models

CST 0.866 0.500–0.999 0.225 −0.014–0.784 0.507 −0.007–0.981

CS 0.863 0.498–0.998 0.223 −0.014–0.780 0.488 −0.018–0.982

CT 0.849 0.518–0.995 0.204 −0.018–0.776 0.535 −0.088–0.969

C 0.844 0.386–0.995 0.193 −0.026–0.768 0.536 −0.234–0.968
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