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ABSTRACT

The branch autonomy principle, which states that the growth of individual branches
can be predicted from their morphology and position in the forest canopy irrespec-
tive of the characteristics of the tree, has been used to simplify models of branch
growth in trees. However, observed changes in allocation priority within trees
towards branches growing in light-favoured conditions, referred to as ‘Milton’s
Law of resource availability and allocation, have raised questions about the appli-
cability of the branch autonomy principle. We present models linking knot ontogeny
to the secondary growth of the main stem in black spruce (Picea mariana (Mill.)
B.S.P.), which were used to assess the patterns of assimilate allocation over time, both
within and between trees. Data describing the annual radial growth of 445 stem rings
and the three-dimensional shape of 5,377 knots were extracted from optical scans
and X-ray computed tomography images taken along the stems of 10 trees. Total
knot to stem area increment ratios (KSR) were calculated for each year of growth,
and statistical models were developed to describe the annual development of knot
diameter and curvature as a function of stem radial increment, total tree height,
stem diameter, and the position of knots along an annual growth unit. KSR varied
as a function of tree age and of the height to diameter ratio of the stem, a variable
indicative of the competitive status of the tree. Simulations of the development of an
individual knot showed that an increase in the stem radial growth rate was associated
with an increase in the initial growth of the knot, but also with a shorter lifespan.
Our results provide support for ‘Milton’s Law, since they indicate that allocation
priority is given to locations where the potential return is the highest. The developed
models provided realistic simulations of knot morphology within trees, which could
be integrated into a functional-structural model of tree growth and above-ground
resource partitioning.

Subjects Computational Biology, Ecology, Plant Science
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INTRODUCTION

Models of carbon assimilate allocation in trees generally consider branches to be part of
either the woody shoot or the crown (Landsberg ¢ Waring, 1997; Mathieu et al., 2009).
However, considering branch xylem as a separate sink can extend the practical applicability
of functional-structural tree models (FSTMs; Sieviinen et al., 2000) to include wood
properties considerations. Knots are formed when branches are occluded by growing
tree stems, and exert a strong influence on the end-use characteristics of wood products
(Buksnowitz et al., 2010).

Knot formation is driven by complex spatiotemporal interactions between a tree and
its environment. Thus, knowledge of the biological processes that regulate assimilate
partitioning in trees could improve models of branch growth. The branch autonomy
principle (Van der Wal, 1985; Sprugel ¢ Hinckley, 1988) has been used in some FSTMs to
simplify the modelling process (Bosc, 20005 Kull & Tulva, 2000). The branch autonomy
principle states that the growth of individual branches can be predicted from their
morphology and position in the forest canopy, irrespective of tree characteristics. Models
that incorporate this principle can also predict mortality based on the growing space
(Mitchell, 1975) or the amount of light (Nikinmaa ¢ Hari, 1990) available to individual
branches. However, there is an important limitation to this principle. By comparing the
height of the lower limit of the living crown in trees of different sizes, Sprugel (2002)
showed that branches on supressed trees were more likely to survive and grow than the
equivalent branches on dominant trees. This implied shift in allocation priority within
trees towards branches in light-favoured positions, referred to as ‘Milton’s Law of resource
availability and allocation’ (Sprugel, 2002), suggests that assimilates are invested where the
potential return is highest. This is consistent with the results of Nikinmaa et al. (2003),
who obtained improved predictions of crown development when considering both the
position and the light environment of branches. However, experimental confirmation of
Milton’s Law is generally restricted to static assessments of the location of the crown base in
even-aged forest stands (Valentine et al., 2013).

Branch ontogeny can be studied in long-term experiments (Pretzsch, 2005), but
repeated measurements on the same trees are time-consuming and costly. One solution
to this problem is to use empirical branch distribution models to simulate the temporal
development of tree and branch growth using cross-sectional data i.e., observations of the
number, location and size of branches made on trees of different ages (Colin ¢ Houllier,
1991; Miikinen ¢ Miikeld, 2003; Achim et al., 2006; Weiskittel, Maguire ¢ Monserud, 2007).
However, the simplicity of the approach comes at the expense of reduced accuracy for
some branch measurements (Duchateau et al., 2013a). More recently, non-destructive
techniques for rapidly generating high-resolution data have been developed, such as
infrared imaging, optical scanning, magnetic resonance imaging (MRI), and computed
tomography (CT) using X-rays or gamma rays (Moberg, 2001; Longuetaud et al., 2012;
Dutilleul, Han ¢ Beaulieu, 2014). These innovations allow the use of internal data to
simultaneously reconstruct stem and knot growth over time.
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In this study we present models linking knot ontogeny to the secondary growth of the
main stem in black spruce (Picea mariana (Mill.) B.S.P.), a dominant species in the North
American boreal forest. We used data from high-resolution CT scans of tree stems to
reconstruct the history of both stem and knot development, with the aim of developing
models that would apply in an FSTM framework. First, we tested the hypothesis that the
ratio of branch to stem growth was dependent on stem characteristics indicative of the
competitive status of the tree. We then developed statistical models for predicting the
evolution of individual knot diameter and trajectory using a series of predictors related to
the position in the tree, stem radial growth, and other general stem characteristics. This
allowed us to test ‘Milton’s Law’ using longitudinal data i.e., repeated measurements of
branch and stem growth over time. This approach allowed us to make detailed simulations
of knot development while considering the variation in assimilate partitioning between
trees.

MATERIALS AND METHODS

Tree sampling

Sample trees were collected from seven naturally-regenerated, unmanaged forest stands
in the North-Shore region of Quebec, Canada. All sampling locations were part of a
network of sites established to study the growth of spruce-moss forests after fire (Barrette,
Pothier ¢ Ward, 2013; Torquato et al., 2014; Ward, Pothier & Paré, 2014). At the time these
plots were established, efforts were made to maintain site characteristics (i.e., surface
deposit, topographic position, exposure and soil drainage) as constant as possible and
representative of mesic conditions (Ward, Pothier ¢ Paré, 2014).

Because CT scanning is costly and the associated data processing time-consuming, we
worked with a limited number of sample trees. In each of the seven stands, two trees were
randomly selected for destructive sampling. However, four trees were omitted from the
analysis due to missing discs and the presence of wood decay. Of the ten trees in our final
sample, eight came from even-aged plots that had regenerated after fires dating back to
between 66 and 152 years (Bouchard, Pothier ¢ Gauthier, 2008). Two more trees (T09 and
T10) were selected from one uneven-aged plot where the time since the last stand-replacing
fire exceeded 200 years. The sample trees had a wide range of ages, crown size and stem
dimensions (Table 1).

Annual knot data
After felling, each tree was cut into 2.5-m logs, giving a total of 41 logs that were then
transported to the Institut National de la Recherche Scientifique in Quebec City and
scanned using a Somatom Sensation 64 CT scanner (Siemens Medical Solutions USA,
Inc., Malvern, Pennsylvania, USA). Each log was scanned at 2-mm intervals along its
longitudinal axis with a 2-mm-wide X-ray beam (120 kV-50 mA), so that the scanned
segments were contiguous. The pixel size was 0.35 mm X 0.35 mm in the transverse
direction.

Knot geometry was extracted using the Image]J 1.44 free software (Abramoff, Magalhaes
¢ Ram, 2004), with a Java plug-in (‘Gourmand, version 1.01) developed at INRA, Nancy,
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Table 1 Characteristics of the 10 sample trees in the dataset.

Age Number of complete  Total height Diameter at breast Length of the crown? Number of measured
rings used on (m) height (cm) (m) knots
the analysis

To1 82 14 14.02 15.4 5.04 726
T02 85 19 14.15 14.1 4.3 620
T03 86 27 15.27 15.6 4.8 819
T04 93 32 11.81 14.3 2.09 568
TO05 104 45 14.22 16.3 5.32 1,066
T06 106 47 20.52 22.2 8.77 1,198
TO07 113 48 18.2 21.4 5.82 514
TO08 118 51 16.92 21.8 8.32 1,121
T09 139 78 16.28 17.8 5.42 993
T10 152 84 20.8 22.4 5.25 1,518
Mean 107.8 68.5 16.219 18.13 5.513 914.3
Sd 23.47 24.36 2.93 3.45 1.90 321.14
Notes.

2 The base of the crown was defined as the location of the lowest pseudo-whorl containing at least one live branch, above which all pseudo-whorls contained at least one

live branch.

France (Longuetaud et al., 2012). On successive images, the tangential limits of each
knot were manually delineated with a series of points (Fig. 1A). A second purpose-built
software named ‘BIL3D’ (Colin et al., 2010) was developed to visualise the position and
3D geometry of each knot using the Cartesian coordinates of each point (Fig. 1B). The
series of points representing the tangential limits of the knot were interpolated using spline
curves. This allowed us to position the central axis (as the middle of both curves) and
diameter (as the distance between each curve, assuming a circular cross section) of each
knot from its point of origin to the bark. In a database, the diameter (D) of the knot was
recorded at an interval of 1 cm from the stem’s pith in the radial direction. Similarly, the
position of the central axis of the knot along the longitudinal stem axis (Z, referred to as the
‘trajectory’) was recorded at an interval of 1 cm from the stem’s pith. This way, we obtained
arepresentation of the geometric profiles of 5,377 knots. A more detailed description of the
knot reconstruction method was presented by Duchateau et al. (2013a).

The demarcation between stem and knot xylem cannot be considered as perfectly
discrete. Knot profiles were therefore extracted from the CT images by manually
delineating high density wood corresponding to a knot and the surrounding lower density
stem wood. Although the transition was generally clear enough to ensure accuracy (Fig. 1),
the knot reconstruction process produced some localized irregularities that did not reflect
the true shape of the knots. For this reason, we chose to smooth the radial profiles of each
knot using a combination of two Weibull equations, which can reproduce a wide variety of
knot profiles (Duchateau et al., 2013a). This also had for advantage to provide a parametric
description of each knot that was dependent on the radial position within the stem. It is
possible, however, that abrupt variations in knot shape were missed due to the smoothing
process.
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Figure 1 The knot extraction process. (A) Extraction of the position and diameter of each knot profile
on CT scanning images using the Image] Java plug-in ‘Gourmand’ and (B) reconstruction of the 3D
geometry of each knot using the software “Bil3D.”

Knot development at a given radial position (/) was reconstructed using the diameter
(Dy) and trajectory data (Z;). The same Weibull equation with an additional linear term
was used to model both series of D; and Z; measurements:

yl=a<l—e(_ﬂ(Rm;X_l))>—{—,u-l (0 <1< Rmax) 1)

where y; represents either the D; or Z; values (mm), [ is the distance from the stem’s pith in
the radial direction (mm), Rpax is the total length (mm) of the knot along the stem’s radial
direction and &, B and p are parameters to be estimated empirically.

The functions were fitted to each knot independently using the nls function of the nlme
library in the R statistical programming environment (R Core Team, 2014). The models for
both D; and Z; converged for 95% of the knots in the database. Visual examination revealed
that non-convergent knots were generally small and sinuous. Indeed, convergent knots
represented 98% of the total volume of knots in the entire dataset, which we considered
representative of the full history of knot growth in our sample trees.

Annual ring data from the main stem

The model presented by Duchateau et al. (2013a) only made static predictions of knot
shape based on external branch characteristics. To meet the objective of this study to link
knot ontogeny to the secondary growth of the main stem, it was necessary to reconstruct
the yearly growth of the stem at its interface with each knot. Annual ring data from the
main stem were difficult to obtain from the CT images due to factors such as narrow
rings and the higher moisture content of the sapwood. One-cm-thick discs were hence
cut from the ends of each log to reconstruct the growth history of the stems. Discs were
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Figure 2 Inferring ring width at the location of a knot. (A) Interpolation of the rings between the
two discs to reconstruct the log and (B) selection of the two cardinal directions bordering the knot to
reconstruct the ring widths along the knot profile.

optically scanned and annual ring boundaries were delineated in the four cardinal radial
directions using image analysis software (WinDENDRO™; Régent Instruments, Quebec
City, Quebec, Canada, 2005; Guay, Gagnon & Morin, 1992).

To link annual changes in knot geometry with stem radial increments, a first linear
interpolation was made, in each cardinal direction, between the widths of each matching
ring from both ends of each log (Fig. 2A). For rings present near the pith of the lower
disc but absent from the upper disc, we used the mean slope and intercept of linear
interpolations derived for the first five complete rings. This way, we obtained estimates
of annual ring widths at any height along the stem in the four main cardinal directions.

To obtain estimates of stem growth in the azimuthal direction of a knot (Fig. 2B), a
second interpolation was made from the two surrounding cardinal directions for which we
had annual ring width measurements. In this case we used a weighted average of the two
known ring width series located on each side of the knot. We defined «, as the azimuth an-
gle between a knot and one of the two cardinal directions on each side. The weighting fac-
tor was calculated as (90-c,)/90, which approached a value of 1 if the knot orientation was
close to one of the two cardinal directions. Due to irregularities in stem shape, the resulting
series of stem rings associated with a given knot did not end in the same exact location as
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the knot-stem interface, which was located on the CT images. Therefore, a small correction
constant was added (or subtracted) to each ring in the series to ensure that both matched
exactly. These linear interpolations of annual ring width variation between two sample
discs were a simplification, since in reality growth rings deviate around knots (Pellicane ¢»
Franco, 1994). However, given the imposibility to extract the position of growth rings along
each knot directly from CT images, this was considered as a good approximation.

In a final step in the knot and stem growth reconstruction process, we traced back
the annual limits of primary growth. Each annual elongation of the shoot was defined
as a growth unit (GU). Like other conifers, black spruce produces several nodal and
internodal branches within a growth unit. Nodal branches are those forming a whorl
at the top of a GU (Achim et al., 2006; Auty et al., 2012). Botanically, the branches of
conifers do not technically originate from the same vertical position, these are referred to
as ‘pseudo-whorls’ (Fisher ¢» Honda, 1979). However, this distinction was not apparent at
the resolution of our CT-scanning measurements. Therefore, we summed the basal areas
of all branches that originated from the same CT image, which facilitated the identification
of pseudo-whorls of branches that were used as the limits of annual GUs. To avoid large
errors, we ensured that the number of GUs matched the difference in the number of annual
rings measured at both ends of each log. A more detailed description of the growth unit
identification method is presented in Duchateau et al. (2013b).

Once we had obtained a full description of both the knots and stem shape, a final
step was to obtain the annual increments in knot diameter (AD;) and trajectory (AZ;).
These were computed using the intersection points between stem rings and knots, and by
considering the diameter perpendicular to the central axis of the knot at each intersection
point (Fig. 3).

Model development

Tree-level models

To examine the variation in biomass allocation between the stem and branches over time,
the ratio of knot to stem growth (KSR; ;, dimensionless) was calculated, for each year

of growth (¢) in a tree, as the sum of all knot area increments at the surface of the stem
divided by the annual basal area increment of the stem at 1.3 m. Because the trees were not
scanned all the way to the stem apex, the most recent annual growth rings were incomplete.
These were therefore omitted from the analysis so that calculations were made only for
years where complete growth data were available. When knots had reached a constant or
decreasing diameter they were considered to be dead.

To assess the variation of KSR; ; through the life of the tree, we developed a linear
mixed-effects model (Pinheiro & Bates, 2009) describing its evolution as a function of
tree height-diameter ratio and tree age. To assess the effect of within stand competition
on KSR; ¢, the ratio (HD; ;, m/cm) between tree height (H; ;) and its diameter at breast
height (DBH; ;, measured at 1.3 m) was used as a surrogate for the competitive status of
the subject trees at a given age. This ratio is useful because inter-tree spacing is known to
strongly affect crown development and hence the radial growth of the stem, whereas it
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Figure 3 Inferring knot annual increments. (A) Example of ring width deformations around a knot;
(B) extraction of the annual knot data.

has much less effect on height growth (Weiskittel et al., 2011). Since values of KSR; ; were
continuous and non-negative, it was modelled as a gamma distribution with a log-link:

In(KSR); s =a; +ay-HD; ;4 a3 - Agei,t +5i+¢ (2)

where In(KSR; ;) is the natural logarithm of the knot to stem ratio in a given year , Age; ,
is the age of the tree (years), a;, a3, a3 are the model parameters, §; is the random effect for
each tree (7), and ¢ is the residual error of the model.

Next, we examined the effect of KSR; ; on the number of new branches produced in a
given year by fitting a Poisson regression model, with a log-link, describing the number of
new branches per stem as a function of KSR; ¢, tree age and their interaction:

In(NBR; 1) = by + by - KSR; ; + b3 - Age; , + by - KSR; ;- Age; , + i+ ¢ (3)

where In(NBR; ;) is the natural logarithm of the number of new branches per stem in a
given year, by, by, b3, by are the model parameters, and all other variables are as previously
defined.

The models presented in Eqs. (2) and (3) were fitted using the glmer function in the Ime4
library (Bates et al., 2014) of the R statistical programming environment (R Core Team,
2014). In model fitting, we began by screening all potential tree-level explanatory variables
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and biologically plausible interaction terms. Variables were selected after calculating the
variance inflation factors (VIF), to address any potential multicollinearity issues (O’brien,
2007). Variables that were highly correlated (VIF > 4) were excluded from the models.
Variable selection for Eqgs. (2) and (3) was the result of a backwards elimination process
in which the selection was based on Akaike’s information criterion (AIC) (Akaike, 1974).
Chi-squared-based likelihood ratio tests were used to evaluate the significance of terms
that were successively dropped from the model. In the absence of a significant difference
(p > 0.05), the simplest model was retained. Parameter estimates were obtained using the
maximum likelihood method.

Individual knot models

Next, statistical models were developed to describe the temporal evolution of the
morphology of individual knots using annual ring- and tree-level characteristics as
independent variables. Initially, we attempted to fit a single model describing both
trajectory (Z; j ;) and knot diameter (D; ;) simultaneously, thereby reconstructing the
entire knot in a single step. However, this led to an underestimation of knot diameter in the
first years of growth that carried over for the entire knot profile. Therefore, separate models
were developed for each separate component. Individual knot diameter and trajectory
models were fitted to the data from a random selection of 75% of the total population of
knots, while the remaining data were used for model evaluation.

Knot diameter model. We observed relatively consistent patterns in the diameter devel-
opment of the knots. There was a rapid increase in diameter increment in the first three
years of knot growth, followed by a gradual decline of growth until branch death (Fig. 4A).
On average, branch increments reached zero at around year 25. We hence divided each
diameter profile into three sections: (1) the initiation section (years 0-3), (2) the growth
section (years 4-25) and (3) the stable or declining section (years > 25). In the initiation
section, because AD; j ; values did not follow a Gaussian distribution, D; j ; was modelled
directly. In the remaining two sections AD; j ; was used as the response variable.

Knot characteristics at time t — 1 were used to make predictions at time ¢. This ensured a
smooth transition between the different sections of the model. After the variable selection
process, the general form of the knot diameter model for each section was expressed as:

AD;jjrorDjj=c1+ ¢ ADjj 1)+ ¢ Dijr—1+ ca-GUposij+cs-1Lij
+¢6-RWij¢+c7-HDj¢ +cs - Age; , +co- DBH; ¢ +c10- Hij+3di +dij+e¢ (4)

where GUps,;,j is the relative position of the knot initiation point along the GU (varies
from 0 at the base to 1 at the stem apex, and is used to take the phenomenon of acrotony
(Powell, 1995) into account), RWj j ; is the ring width of the stem at the location of the knot
in yeart, §; and §; j are the tree- and knot-level random effects and ¢ is the residual error. All
other variables are as previously defined.

Knot trajectory model. The average annual variation of AZ; j; was typically positive
until approximately ring 40. After this point the trajectory stabilized, before decreasing
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Figure 4 Distributions of annual increments in diameter (AD;) and trajectory (AZ;) of the knot
against annual ring number from the stem’s pith. The grey line indicates the median of all observations
for a given ring number. Contours provide the distribution quantiles around the median

after ring 60 (Fig. 4B). The knot trajectory profiles were therefore separated into two
sections delineated at ring number 50. Characteristics of the knots in year t — 1 were also
included in this model, thus ensuring a smooth transition between the sections. Various
combinations of the explanatory variables were used in each section of the model. The
general form of the knot trajectory model for each section was expressed as:

AZijr=di+dy-Djj—1)+ds- AZjj—1)+ds-lij+ds-RW;ij +ds - GUposi
+ d; -HDi,t—f—dg 'Agei,t+d9 -DBH; ; + 61 +5i,j+3 (5)

where all variables are as previously defined. See Table 2 or a full description of all variable
names used in the models.
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Table 2 Definitions and abbreviations of the variables used in this paper.

Description

Tree-level variables

DBH;

Age,

HD;,

KSRy

Ring-level variables
RN

RW,

le

GUpos

Hy

Knot-level variables
AD;

Dy

AZ;

Diameter of the tree at 1.3 m at time ¢ (mm)

Age of the tree at time ¢

Ratio of total tree height to DBH calculated for each year of growth at time ¢
Ratio of total knot area increment to the stem basal area increment at time ¢

Annual ring number from the pith of the main stem at the level of each knot

Annual ring width at time ¢ (mm)

Distance from the pith of the stem at time ¢ (mm)

Relative position of the knot initiation point along the annual growth unit (varies from 0 to 1)

Position of the initiation point of the knot along the stem (ground level = 0) (m)

Annual increment of the knot diameter from time ¢t — 1 to ¢ (mm)
Predicted knot diameter at time ¢ (mm)

Annual increment of the trajectory of the knot from time ¢ — 1 to ¢ (mm)

These models were fitted using functions contained in the nime library of the R
statistical programming environment (R Core Team, 2014). A power variance function
of annual ring number from the pith at the level of each knot (RN) was included to
account for heteroscedasticity in the model residuals. In addition, a continuous first-order
auto-regressive term (AR1) was added to account for autocorrelation between successive
measurements. The model fitting process started by including a full set of potential ring-,
knot- or tree-level explanatory variables and model selection was performed using the
same backwards elimination procedure as described in the section on tree-level models.

Simulations

To analyse the influence of tree growth and competitive status on knot development, we
reconstructed a single knot at 6.1 m using the predictions from Eqs. (4) and (5) and the
stem and growth characteristics of tree T10. Then, while keeping tree height constant, we
increased the annual ring increments by 50%. The diameter and trajectory profiles of the
original knot were then recalculated. The process was repeated by decreasing the annual
stem increments of the same tree by 50% of their actual values and again predicting knot
morphology.

In a second simulation, all knots from a 1.5-m section starting at a height of 2.5 m in tree
T4 were simulated using Eqs. (4) and (5) and compared to the real knots, as extracted from
the CT images. For this simulation we used the known insertion points along the stem
and azimuthal orientation of each knot. Where appropriate, the year at which a knot was
observed to be completely occluded by the growing stem was used as the end-point of the
simulation.
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Tree age

Figure5 Scatterplots showing the evolution of KSR (total annual knot area increment/stem increment
at 1.3 m) with tree age. Time series do not start at age 0 because HD; assessments start when the stem
has reached a height of 1.3 m. Points, observed values; red lines, model predictions (Eq. (2) and Table 3).
Horizontal red line shows an equality between the total annual knot increment and the stem increment
at 1.3 m (KSR=1).

RESULTS

Tree-level models

The knot to stem increment ratio (KSR;) varied considerably with tree age. On average,
KSR was higher when trees were young and decreased rapidly in the first few years, before
stabilizing (Fig. 5). The rate of the initial decrease varied among trees. Values of KSR,
greater than 1 indicated that, in a given year, the total knot basal area increment exceeded
that of the stem. In addition to the negative relationship with tree age, KSR, ratio was
positively related to HDy, such that more slender trees allocated relatively more biomass to
their branches than to the main stem (Fig. 6). Furthermore, in a given year, the predicted
number of new branches produced was greater in trees with higher KSR, values, but the
effect of KSR; decreased with increasing tree age (Eq. (3) and Table 3).

In some trees, KSR values showed large interannual fluctuations from the general trend
(Fig. 5). The 3D reconstructions of the stem and knots for two of these trees showed large
deviations of the pith of the main stem, likely a result of leader loss or stem damage. While
one of these trees retained apical dominance in a single leader (T01), the other produced
a fork (T09; Fig. 7). The model produced a good fit to all trees except tree T03, although
visual examination of the 3D reconstruction of this stem revealed no obvious explanation
for the lack of fit.
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Figure 6 Scatterplots of observed KSR vs. HD; in each sample tree for cambial ages 5, 15, 25 and 35
at breast height. The linear regressions fitted though the points show a positive correlation between the
two variables for all ages. The shaded areas represent the standard errors.

Table 3 Fixed effects parameter estimates and standard errors of the KSR model given by Eq. (2) and
the model for the number of new branches given by Eq. (3).

Model Parameter Estimate S.E. P-value
ay —0.3956 0.11947 <0.0001
Equation (2) a 4.1717 0.23896 <0.0001
as —0.0114 0.00169 <0.0001
by 1.7864 0.15040 <0.0001
Equation (3) by 0.0354 0.00934 <0.0001
b3 0.0153 0.00105 <0.0001
by —0.0006 0.00024 <0.0001

Knot-level models

Table 4 shows the fixed effects parameter estimates and standard errors for each section
of the final knot diameter model (Eq. (4)). To evaluate the model, knot diameter profiles
were predicted and compared to observations in the evaluation dataset. Plots of the raw
residuals (observed minus predicted values) showed that, on average, knot diameter was
slightly underestimated in the middle section of the knot profiles, but overall the model
was unbiased (Fig. 8A). The mean absolute error was 0.031 and the root mean square error
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Figure 7 3D reconstruction of sections of two stems showing deviation of the pith related to possible
stem breakage.

(RMSE) 0.054. When the profile of each knot in the database was reconstructed by adding
successive annual diameter predictions, the absolute value of 50% of the residuals was
less than 2.6 mm along the pith-to-bark profiles, while the absolute value of 90% of the
residuals was less than 9.7 mm.

Table 5 shows the fixed effects parameter estimates and associated standard errors for
each section of the final model of knot trajectory (Eq. (5)). Again, predictions of knot
trajectory profiles were compared to observations in the evaluation dataset. On average,
the model was unbiased along the knot profile up to ring 75, with a slight overestimation
beyond this point (Fig. 8B). The mean absolute error for this model was 0.118 and the
root mean square error (RMSE) 0.189. When the profile of each knot was reconstructed by
adding successive annual trajectory predictions, the absolute value of 50% of the residuals
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Table 4 Fixed effects parameter estimates and standard errors for each section of the knot diameter model given by Eq. (4). Section 1, knot
initiation (1-3 years); Section 2, growth phase (4-25 years); Section 3, stabilisation and death (>25 years). Section 1 predicts the diameter and
sections 2 and 3 predict the diameter increment.

Section 1 Section 2 Section 3

Parameter Estimate S.E P-value Estimate S.E P-value Estimate S.E P-value
1 —0.0338 0.01127 0.0026 0.0139 0.00198 <0.0001
@ 0.5166 0.00219 <0.0001 0.9699 0.00150 <0.0001
c 1.0144 0.00671 <0.0001 —0.0302 0.00047 <0.0001 —0.0020 0.00006 <0.0001
c4 0.3661 0.01665 <0.0001 0.1285 0.00508 <0.0001 0.0068 0.00058 <0.0001
cs 0.0002 0.00002 <0.0001
6 0.2653 0.01055 <0.0001 0.1031 0.00094 <0.0001 0.0057 0.00053 <0.0001
cy 0.0549 0.00628 <0.0001

cg —0.0004 0.00011 0.0003 —0.0001 0.00002 <0.000<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>