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ABSTRACT 

Elegbede, C. F., Pierrat, J. C., Aguayo, J., Husson, C., Halkett, F., and 
Marçais, B. 2010. A statistical model to detect asymptomatic infectious 
individuals with an application in the Phytophthora alni-induced alder 
decline. Phytopathology 100:1262-1269. 

In some diseases—in particular, tree root infection—stages of infection 
and inoculum production level and timing are not readily observable 
because of uncertainty or time lags in symptom appearance. Here, we 
pose a criterion, based on relative hazard of disease symptoms, to 
discriminate between healthy and asymptomatic infected individuals. We 
design a statistical procedure to estimate the criterion for a 6-year survey 
of alder decline along a northeastern French river. Individual tree symp-
tom hazard was modeled with Cox’s regression model, taking estimation 

of local infection pressure as a risk factor. From an inoculum production 
experiment, we thereafter assessed the inoculum production level of 
target trees, including symptomatic and asymptomatic trees ranked 
according to their symptoms hazard. Using receiver operating charac-
teristic methods, we first evaluated the criterion performance and deter-
mined the discrimination threshold to sort out asymptomatic individuals 
into healthy and infected. Then, we highlighted the fact that the infected 
asymptomatic trees were among the major inoculum producers whereas 
severely declining and dead trees were found to be poor inoculum 
sources. 

Additional keywords: spatial point pattern analysis, survival analysis. 

 
In epidemiology, disease dynamics is often modeled using 

compartmental models (14,22) which divide the hosts into 
different categories, taking the stages of infection into account. 
Defining the categories is not always straightforward because 
some stages of disease are not easily observed for some host–
pathogen interactions. Difficulties arise particularly when infected 
hosts are in an incubation period or when they do not show 
obvious symptoms of the disease even after infection. Determin-
ing the importance of the host as an inoculum source (hereafter 
referred to as “host infectious level”), detecting hosts in the 
incubation period, and describing host behavior during disease 
development are some of the main challenges in plant epidemi-
ology (11). The problem is especially acute in the case of root 
diseases of trees such as root rot or Phytophthora disease for 
which symptoms are not readily observed and often take time to 
impact tree health in visible ways (1,2,10,27). 

In recent years, a new lethal disease has caused a considerable 
decline of alder along European rivers. The pathogenic agent, 
Phytophthora alni, was detected for the first time in the United 
Kingdom in 1993 (3,4,13). In ensuing years, the pathogen has 
been detected throughout Europe and, in particular, in France 
(38). Surveys conducted in France revealed that 16% of alder 
trees present along the watercourse in the Rhin-Meuse Basin were 
diseased (39). The disease is worrying for river managers because 
alder plays an important role in riparian ecology. As a deep-rooted 
species, it contributes to maintenance of the soil structure of river 
banks and reduces the effects of erosion. Alder root systems under 

water shelter fish from predation and strong river currents (5). 
Given the importance of ecosystem services provided by alder 
trees, epidemiological study appeared essential to monitor and 
save this component of the riparian system but actual knowledge 
of alder decline is impeded by the poor identification of infectious 
individuals. 

Whereas disease symptoms (37), the characteristics of the 
responsible pathogen and its detection (4,20), and risk factors of 
epidemics (23,39) have been documented, the evolution of a tree 
during the course of the disease and, particularly, when trees start 
to produce inoculum (i.e. become infectious) is still poorly 
known. Two external signs of the disease exist: (i) crown decline 
(i.e., sparse foliage due to abnormally small, yellow leaves and 
defoliation) and (ii) cankers on the trunk (i.e., dark necrosis, with 
sometimes tarry exudates, due to bark-killing at the base of the 
stem). Neither symptom is strictly linked with the presence of the 
disease; infected trees may show both, either, or neither of the 
symptoms. In surveys, approximately half of the declining trees 
were found to have no canker while many cankered trees did not 
decline (39). Cankers appear quickly, usually a few months after 
infection (31), and often result from direct infection of the trunk 
base during flooding through infection of lenticels by flagellated 
zoospores. In contrast, crown decline is believed to appear more 
slowly, expressing only past infection, probably because it results 
from progressive root system destruction. Although the lesions 
observed on the collar and base of the stem may girdle and kill 
the tree, in particular seedlings, crown decline was considered to 
be induced mainly by root destruction. Root colonization occurs 
through infection of fine roots by the zoospores. Infected fine 
roots are a good inoculum source under conditions such as 
flooding or wet soil, whereas the capacity of cankers to become 
inoculum sources appears limited (24,37). Thus, only trees with 
root infection should be considered to be infectious. However, 
many of these infectious trees may express no visible symptoms 
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(neither crown decline nor canker). Identifying these asymp-
tomatic infectious trees is critical to predict disease evolution. 
Assuming that asymptomatic trees with a high risk of future 
crown decline are likely candidates because they should present 
root infection, we analyzed the risk of crown decline. 

Survival analysis methods (18) are often used in epidemio-
logical studies to analyze the length of time until the occurrence 
of an event; in general, infection or mortality (29). Studies have 
focused on predicting the hazard (instantaneous rate) of the event, 
comparing the survival distributions of monitored individuals in 
order to determine the most likely to be affected by the pathogens, 
and determining the impact of potential risk factors. Cox’s regres-
sion model (6) is the most popular survival regression model used 
(18). To develop that model, variables which act as risk factors for 
individual under scrutiny are needed. Unfortunately, no tree 
characteristics that might act as a risk factor could be identified 
for infection by P. alni (39). Therefore, we decided to take into 
account the tree local environment impact. Such an approach in 
epidemiology, plant ecology, and forest sciences is often done 
using point pattern analysis within spatial statistics tools (8,12, 
36). Here, we used the number of infected neighbors and distance 
from these to assess local probability of infection with a non-
parametric kernel estimation method (12,41). 

Determining a tree infectious status from a decline likelihood 
requires the definition of a decision threshold that enables dis-
crimination between asymptomatic healthy and infected trees. 
Receiver operating characteristic (ROC) analysis, a statistical 
means for evaluating the performance of a diagnostic test (17), is 
well adapted to this type of problems. This approach has been 
used in plant disease management to develop decision-making or 
diagnosis tools when the infection process is difficult to measure 
directly (19,26,43). The use of an ROC analysis implied a 
previous description of infection status of trees using a reference 
diagnostic test, namely a gold standard test (17). 

The objective of the present study is to elaborate and validate a 
statistical procedure to discriminate between infectious and healthy 
(i.e., noninoculum producer) alder trees. This work is divided into 
three parts. First, we conducted a statistical analysis of the pluri-
annual survey of a large alder population to assess the individual 
tree hazard of crown decline. Second, from inoculum production 
experiments we determined the infectious status of symptomatic 
and asymptomatic trees sorted out according to the risk of crown 
decline. Third, we tested the accuracy of our statistical procedure 
to discriminate asymptomatic infectious trees. 

MATERIALS AND METHODS 

Observation site. In 2002, a survey was carried out on alder in 
northeastern France along the Sarre River, a tributary of the 
Moselle. The surveyed area encompassed 4.2 km along the river 
and extended 20 m inland from the river bank. Different sampling 
densities were used. In areas with low tree density, all trees were 
sampled whereas, in areas with high tree density, sampling 
intensity of 15 to 57% was used. Annually, in September and 
October, health of the sampled trees was assessed, all alder trees 
reaching a height of 1.30 m were recruited, and dead trees were 
removed from the survey. In total, 2,850 living alder trees were 
sampled over a period of 6 years, 2002 to 2007. 

For each sampled alder, information was collected on its year 
of recruitment to the sample, its coordinates (obtained by GPS or 
computed from positions of previously mapped trees), its distance 
from the river, its number of stems (for coppiced trees), and its 
health status. Tree health was defined by two scales: absence or 
presence of a canker on the trunk, noted by 0 or 1, respectively; 
and status of the crown, rated on a 1-to-4 scale, where 1 = healthy 
foliage (leaves with normal size and color and dense crown); 2 = 
defoliation of 10 to 50%, with small and yellowish leaves; 3 = 
defoliation of >50%, with small yellowish leaves and dead 

branches; and 4 = dead tree (no leaves, bark dead at the trunk 
level). The diameter of trees at a height of 1.30 m from ground 
level was measured at 2-year intervals in 2002 to 2006. The basal 
area of the trees (i.e., cross-sectional area) was computed from 
diameter measurements. 

Model to assess plant risk to crown decline. Structure of the 
model. Individual tree risk of crown decline was assessed through 
survival analysis (i.e., analysis of the time delay until appearance 
of crown decline symptoms = first rating of 2 or 3 for crown 
status independently of canker occurrence). Thus, if T is the ran-
dom variable describing time before appearance of crown decline, 
the survival function S(t) to crown decline is defined at t by: 

S(t) = Pr[T > t] = 1 – F(t) (1) 

where F is a cumulative distribution function of T. The function 
S(t) captures the probability that a tree will not have experienced 
decline yet at a specified time t (18). In order to assess S(t), the 
hazard function h(t) (18), which is the instantaneous risk of crown 
decline at time t provided that the trees remained healthy until 
that time, is defined and linked to S(t) by: 
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where ( )tS&  is the derivative of S(t) with respect to t. There-
fore, ( ) ( )( )∫−= t duuhtS 0exp . In this study, the hazard function was 
estimated using the Cox’s regression model (6,18), which 
assumes that the hazard function is the product of two functions, 
one depending only on time, h0(t), and one depending only on the 
risk factors, exp(βtZ). This model is defined by: 

h(t) = h(t,Z) = h0(t)exp(βtZ) (3) 

with Zt = [Zl,…,Zp], a p vector of covariates (risk factors); βt = 
[βl,…, βp], a vector of p parameters (exp(βtZ) characterizing how 
the hazard function changes according to subject covariates); and 
h0(t), the baseline hazard function (the hazard function when Zt = 
[0,…,0]), which characterizes how the hazard function changes 
according to the survival time. 

The coefficients of the model were estimated by the methods of 
partial likelihood (6,18), and only right censoring were taken into 
account in this study. Censoring occurred essentially when crown 
decline could not be observed; for instance, when trees disappear 
from the study prior to crown decline (e.g., because they are 
felled by fishermen). The entry date in the study was taken as the 
year of recruitment and date of decline as the first year of crown 
symptom observation (i.e., first rating of 2 or 3 for crown status 
independently of canker occurrence). The use of partial likelihood 
is based on the assumption that there were no tied times (i.e., 
declined trees were supposed not to have the same crown decline 
time). Unfortunately, because trees were surveyed once a year, 
tied survival times were observed and taken into account in the 
partial likelihood by the Efron approximation (18,30). 

The Cox’s model is semiparametric because the baseline hazard 
h0(t) is estimated by a nonparametric method. Also, the model is 
said to be a proportional-hazard model because, for two obser-
vations i and j that differ in their covariates Zi and Zj, the relative 
hazard:  
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is independent of time t. This proportional hazards assump- 
tion was checked using tests based on the scaled Schoenfeld 
(16,33) statistic. Precisely, a χ2 test is computed for each co-
variate, along with a global test for the model in whole. Sub-
sequently, relative hazard of crown decline (RHCD) was used as a 
measure of risk of crown decline and was estimated for trees with 
healthy crowns relative to the average subject tree stem from the 
data set. 

The statistical analysis and parameter estimation was realized 
using the package Survival of the R Software (R Foundation for 
Statistical Computing, Vienna). Several models were tested to 
identify pertinent covariates to assess crown decline hazard (using 
equation 3). The Bayesian information criterion (BIC) (34) was 
used for model selection. 

Tree characteristics as input explicative variables. Except for 
tree basal area g (used as a surrogate for the size of tree root 
system available for infection), several tree characteristics were 
tested. Distance d to river bank was considered because water is 
the main vector of the infectious propagules and trees along the 
riversides are probably more subjected to infection. Presence or 
absence of canker on the trunk, indicating probable infection, was 
considered through a dummy variable p. Finally, cop, a dummy 
variable, was considered for type of alder tree (either coppiced or 
not). 

Local infection pressure as input explicative variable. Avail-
ability of a local source of inoculum impacts root destruction and 
probability of crown decline and, thus, needs to be taken into 
account when estimating RHCD. Unfortunately, no tree charac-
teristics that might act as risk factors for infection by P. alni could 
be identified. To overcome this problem, we used a surrogate 
variable, based on local dynamics of new canker occurrence. 
Indeed, because canker is a quick response to infection, it was 
assumed to be a better measure of current infection dynamics than 
crown decline status. Thus, local annual probability of canker, 
denoted ct(x) (i.e., the probability that a tree, located at x and 
without cankers in year t – 1, got cankered in year t) was 
estimated for each tree. 

To estimate the local risk of canker, we used methods based on 
spatial point pattern analysis (12). In such methods, the spatial 
point distribution of a set of location describing an event (for 
instance, cankered tree) may be characterized by its intensity, 
which is the mean number of events per unit of area. In a two-
dimensional context, this intensity is the density of sampled trees 
per unit of surface, and its estimation is similar to a bivariate 
probability density estimation (12). Thus, using the point pattern 
layer, generated by the bidimensional georeferencing of trees over 
the survey area, the spatial point distribution of trees was 
statistically evaluated to obtain a smooth estimation of the local 
risk of canker applying the bidimensional kernel method (12,41). 
The kernel intensity estimation is an interpolating and smoothing 
technique for generalizing event location to an entire area. It 
consists of placing a moving tree-dimensional function (the 
kernel) of a given radius (also called bandwidth or window) that 
visits each point in turn on a smooth grid superimposed over the 
study area. The kernel function weights events within its sphere of 
influence according to their distance from the point at which the 
intensity is being estimated. For each point of the smooth grid, the 
sum of event individual kernels is calculated. Then, a smoothed 
surface of the target event spatial distribution is generated. In our 
study, this technique was applied to compute the ratio of the 
intensity estimation of new cankered trees in year t to the 
intensity estimation of noncankered trees in year t – 1 (population 
at risk the previous year). This ratio provides spatialized estimates 
of the probability of new canker over the entire study area. We 
used the quartic kernel and a fixed bandwidth of 20 m. This 
estimation was done using the package Splancs of the R software 
(R Foundation for Statistical Computing). More details using 
mathematical formula are given in the Appendix. 

Local probabilities of canker were handled as time-independent 
covariates in the model and each year period was used as a 
separate observation. The predictive effect of ct(x), ct–1(x), and  
ct–2(x) (local probabilities of cankers in year t, t – 1, and t – 2, 
respectively, for a located tree in x) until 3 years before the crown 
decline was checked. 

In addition, this estimation was used to check whether the river 
geometry affects tree infection. Indeed, estimated local prob-
ability of cankers for straight parts and curved parts of the river 
separating outside and inside of curves were compared. 

Inoculum quantification experiment for model validation. P. 
alni soil inoculum was quantified at the base of trees, using a 
baiting method (15,42), to assess the relationship between the 
hazard of crown decline and tree infection status. Also, this 
enabled us to assess inoculum production at base of trees and to 
identify which type of tree contributes the most to inoculum 
production. 

Sampling of trees to collect soil for P. alni detection. Trees 
without neighbors in a 1-m radius were selected, taking into 
account their size, crown status, and, for asymptomatic trees, 
RHCD in the following fall (relative to the average subject within 
the data set, computed from the previously developed model). 
Four groups of trees were investigated: T1, trees with healthy 
crowns, no canker, and values of predicted RHCD of 0.1–2; T2, 
trees with crown rated as 2 (i.e., moderate decline, with or with-
out canker); T3, trees with crown rated as 3 (i.e., severe decline, 
with or without canker); and T4, dead trees. In all, 10 to 25 trees 
were selected for each group, with an effort made to include both 
seedlings (considered as trees with their basal area <20 cm2) and 
large trees in each group. This was repeated in two consecutive 
years on different trees. Soil at the base of selected trees was 
sampled at 3 and 7 May 2007 (92 trees) and at 23 and 25 June and 
7 July 2008 (89 trees). Between two and four soil samples were 
taken per tree, depending on the trunk diameter, at 10 to 50 cm 
away from stem base. Litter was brushed aside and ≈500 ml of 
soil was taken with a soil borer at 5 to 20 cm of depth. All the 
samples from the base of a tree were pooled in a plastic bag, 
brought back to the laboratory, and kept at 4°C until processed. 

Baiting method for soil inoculum quantification. To quantify 
inoculum in a sample, 200 ml of soil was placed in a plastic 
container and 500 ml of distilled water was added to it. Three 
well-developed, similar-sized leaves of rhododendron cv. Cunning-
ham’s White were placed in each container floating on the surface 
of the water as baits to quantify the amount of zoospores pro-
duced. The containers were incubated at a controlled temperature 
of 19 to 20°C in the dark for 3 to 4 days, until necrosis appeared 
on the leaves. The leaves were then removed from the containers, 
dried, and kept at 4°C for 24 h in order to facilitate counts of 
necrotic spotting. Pathogen-induced necrosis appears as ≈0.5-mm-
diameter dark spots on the abaxial leaf surface. The number of 
necrotic spots induced by Phytophthora spp. per leaf was re-
corded, after which ≤10 of the necrotic spots per soil sample were 
cut with a sterilized scalpel and placed in 96-wells plates for DNA 
extraction to determine the proportion of necrosis that were 
induced by P. alni. Negative and positive controls (i.e., piece of 
rhododendron leaf incubated with either sterilized soil or soil 
artificially contaminated with P. alni) were included in each plate. 
DNA of leaf tissues was extracted using a plant DNA extraction 
kit (DNeasy96 plant kit; Qiagen, Courtaboeuf, France) following 
the manufacturer’s instructions. Polymerase chain reaction (PCR) 
tests with the species-specific primer pairs PA-F/R were per-
formed (21). PCR products were separated by gel electrophoresis 
and visualized under UV light after ethidium bromide staining in 
order to determine the proportion of Phytophthora lesions that 
were induced by P. alni for each soil sample. The total number of 
necrotic spots induced by P. alni was then estimated to define the 
infectious level of trees at the base of which each soil was 
sampled (i.e., amount of inoculum produced by those trees). 
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Assessment of the RHCD accuracy and a decision threshold 
for tree discrimination. We assumed that experiments for P. alni 
detection at the tree base were accurate enough to be used as a 
gold standard test for an ROC analysis. Trees were classified in 
two subgroups according to P. alni presence (group of cases I+) 
or absence (group of controls I–) in the soil baiting test, and the 
accuracy of a diagnostic test based on RHCD (T+ when RHCD > 
RHCD0 and T– otherwise, RHCD0 being an RHCD threshold to 
determine) was assessed. The accuracy of such diagnostic tests 
with binary outcomes is assessed in terms of the probability 
Pr(T+|I+) (namely, sensitivity, which also referred to the true 
positive proportion) that the test correctly classifies an infected 
tree as positive (T+), and the probability Pr(T–|I–) (namely, the 
specificity, which also referred to the true negative proportion) 
that the test correctly classifies an uninfected tree as negative  
(T–). Thus, to assess classification accuracy of the diagnostic test 
based on RHCD and choose an optimal decision threshold, the 
relationship between sensitivity and specificity was analyzed 
graphically. Precisely, we first plotted the ROC curve (sensitivity 
as function of [1 – specificity] at all possible decision thresholds), 
which enabled the assessment of the test without specifying a 
particular threshold value. Area under this curve (AUC) provided 
an overall measure of accuracy for the test. Briefly, AUC can 
range from 0.5 (noninformative or random discrimination stra-

tegy; corresponds to diagonal y = x) to 1 (perfect discrimination 
or accuracy). The larger the area, the better the test is (see 17 for 
more details about the meaning of the AUC). In a second step, 
because both sensitivity and specificity are of importance in our 
study, we chose a decision threshold which corresponds to a 
compromise between them. This was done using curve of 
sensitivity and specificity as function of the decision thresholds. 

Finally, the probability that P. alni was detected in the soil at 
the base of sampled trees was analyzed using a logistic regression 
model to describe how tree characteristics (e.g., crown status, as 
defined above, and tree size) might impact P. alni detection in 
soil. A logistic regression model generally is used to calculate the 
probability of a given binary outcome (here, detection or non-
detection of P. alni) as a function of a set of explanatory variables. 
For further details regarding logistic models, it is suggested to 
consult a reference work on generalized linear models (28). 

RESULTS 

Local risk of canker. Local annual probability of cankers (i.e., 
the probability that the trees without cankers in the previous year 
got cankered in the current year) was estimated for 2003 onward. 
Estimations for 2007 are shown in Figure 1. Comparison for 
straight parts and curved parts of the river separating outside and 
inside of curves showed that the local risk of cankers did not 
depend on the river geometry in 2007 (F = 0.07, df = 2, P = 0.8). 
The same results were obtained the other years (not shown). 
Pearson’s correlation between probabilities of canker for two dif-
ferent years (Fig. 2) was computed to check the degree to which 
these values were related. In general, there were small positive 
correlations (Pearson r of 0.1 to 0.4). Thus, although some 
locations tended to show either low or high canker probability 
over years, there was considerable year-to-year variation. 

RHCD. The linear predictor βtZ finally considered in the Cox’s 
regression model to estimate the hazard function and survival 
time to crown decline for nondeclining trees located in x was: 

βtZ = β1ct(x) + β2ct–1(x) + β3log(g) + β4ct(x) × log(g) + 
β5ct(x) × ct–1(x)  

(4) 

where g = the basal area and ct(x) = the local probability of canker 
in year t estimated using the equation 3. Type of trees (cop; 
coppiced or not) and distance to river bank (d) were non-
significant in the different models tested (not shown). 

Parameter estimates for the model (equation 4) are given in 
Table 1. All coefficients were statistically significant except the 
interaction between log(g) and ct, which was only marginally 
significant. The tests for Cox’s proportional hazards assumption 
are given in Table 2. We noted that tests were not significant for 

 

Fig. 2. Each graph in the lower of panel corresponds to graphs of probabilities
of canker in a year t according to probability of canker in year t – 1, whereas 
values in the panel upper correspond to Pearson’s coefficient of correlation
between probabilities of canker for the two previous years. 

TABLE 2. χ2 test for Cox’s proportional hazards assumptions 

Covariate χ2 P 

ct 1.5281 0.216 
ct–1 0.3408 0.559 
Log(g) 0.0752 0.784 
ct:log(g) 0.2011 0.654 
ct:ct–1 0.1473 0.701 
Global 6.8511 0.232 

 

Fig. 1. Plot of local probability of canker in 2007 along of the Sarre River over
the survey area and its scale. The graph follows the contours of the river from
upstream (at the bottom of each graph) to downstream. 

TABLE 1. Estimates for Cox model hazard function 

Covariate iβ̂  P Lower 0.95 Upper 0.95 

ct 3.38 0.0 2.94 3.82 
ct–1 1.14 48.10–06 0.58 1.68 
Log(g) 0.09 25.10–08 0.05 0.13 
ct:log(g) –0.09 27.10–03 –0.18 –0.01 
ct:ct–1 –2.24 13.10–06 –3.21 –1.23 
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covariates as well as for the global model, indicating that the 
assumption of proportional hazards was fulfilled. 

Altogether, the hazard function of decline in year t depended on 
local probability of cankers in year t and t – 1 and on the 
logarithm of trunk basal area. The exponents of coefficients iβ̂  
are interpretable as multiplicative effects on the hazard. Local 
probability of cankers in year t had an impact on RHCD, espe-
cially for small seedlings (Fig. 3A). For large trees, local prob-
ability of cankers in year t still had a larger impact on crown 
decline hazard than local probability of cankers in year (t – 1) 
(they have risk factors of 1.3 and 1.12, respectively). Moreover, 

seedlings (trees with small basal area) seem to have less risk of 
crown decline than old trees (Fig. 3B). 

The RHCD estimated for all trees with no canker and no crown 
decline (rate 1) in 2006 was 0.1 to 4 (Fig. 3C). Although most 
healthy trees had RHCDs close to 1, a significant number had 
high risk (1.5 to 4) and may be suspected to be already root 
infected. Thus, determining a threshold to discriminate between 
infected and uninfected trees would be very useful. 

Decision threshold of RHCD to discriminate asymptomatic 
trees between infected to uninfected. P. alni was detected on 
29% of T1 trees (trees with healthy crown and no canker) in 2007 
and 55% in 2008, indicating the presence of many infected, 
asymptomatic trees. In T1, the probability of P. alni detection was 
correlated with RHCD and the ROC curve was positively bowed 
away from the “no discrimination” line (Fig. 4A). This suggests 
that RHCD is an informative indicator. The best relative hazard 
threshold to separate the T1 group into two subgroups—T1a, the 
uninfected trees and T1b, the putatively infected asymptomatic 
trees—is 0.9 (Fig. 4B). Repeating the analysis in 2007 and 2008 
independently yielded the same threshold value of 0.9. 

The proportions of trees with detection of P. alni for the 5 
groups (T1a, T1b, T2, T3, and T4) is shown in Figure 5A. The 
logarithm of tree trunk diameter included as covariate in the 
logistic regression model to account for tree size was not sig-
nificantly correlated to the probability to detect P. alni (χ2 = 1.69, 
P = 0.194). The probability of detection for P. alni was marginally 
higher in 2008 compared with 2007 (χ2 = 3.75, P = 0.053) (Fig. 
5A). By contrast, detection greatly depended on the crown status 
(χ2 = 11.07, df = 4, P = 0.026) (Fig. 5A). 

Fig. 3. Relative hazard of crown decline. A, Evolution of the relative hazard
for a 0.1 increase in current year local probability of canker with increasing
basal area. B, Evolution of the relative hazard with increasing basal area. C,
Histogram of relative hazard for trees presenting no symptoms of
Phytophthora alni in 2006. 

Fig. 4. Model validation and decision threshold assessment. A, Receiver 
operation characteristic curve derived from the relative hazard of crown
decline (solid line) compared with the no discrimination line (straight line). B, 
Sensitivity and specificity analysis to check distinction threshold for healthy
and asymptomatic infectious. 
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Quantity of inoculum and tree infectious level. We observed 
that P. alni quantification at the base of trees (through spot 
counts) greatly depended on the crown status of the tree (Kruskal-
Wallis χ2 = 16.95, df = 4, P = 0.001) (Fig. 5B). Also, depending 
on the year, P. alni inoculum in the soil was highest at the base of 
T1b or T2 trees (i.e., trees with relatively healthy crowns). At the 
base of those trees there was both a large frequency of P. alni 
detection and a high inoculum when detection was positive (i.e., 
high number of lesions on bait leaves) (Fig. 5). Trees in the group 
T3 (severe crown decline) seemed to produce less inoculum, 
especially in 2007. Far less inoculum was present at the base of 
dead trees and asymptomatic trees with a low predicted RHCD 
(Fig. 5B, T4 and T1a, respectively). The number of spots induced 
on bait leaves when P. alni was detected was also positively 
correlated to the log of tree trunk diameter (χ2 = 21.60, df = 1, P 
< 0.001) and was significantly higher in 2008 compared with 
2007 (χ2 = 107.97, df = 1, P < 0.001). 

DISCUSSION 

In this study of P. alni-induced alder decline, we showed that 
apparent symptoms of the disease are largely insufficient to 
identify infectious trees. Indeed, trees that showed no symptoms, 
either crown decline or cankers, were among the main inoculum 
producers. An estimated crown decline hazard function enabled 
the discrimination between healthy but infected trees and asymp-
tomatic trees using a threshold of 0.9. Ignoring the presence of 
asymptomatic infected trees can result in a strong bias both in 
disease prevalence estimates and in the epidemic dispersal analy-
sis (those trees being the best source of inoculum). For example, 
in 2007, while 67.1% of the trees showed symptoms of the 
disease, either cankers or crown decline, an additional 11.3% 
could be predicted to be infected, based on the value of the 
decline relative hazard function >0.9. 

The approach used in this work enabled us to identify main 
producers of P. alni inoculum more easily. For root disease, host 
infection status is generally assessed by biological methods to 
check the presence of the responsible agent (11). This may 
quickly become heavy work when the number of surveyed plants 
increases (>705 asymptomatic alder trees in 2007 in our survey). 
Thus, it is interesting to have a decision criterion for an early 
discrimination between potentially healthy and infected hosts. 
The use of decision model for disease diagnosis, prediction, or 
management options assessment has been growing since the 
middle of the 1990s in plant epidemiology and crop protection. 
Several studies were carried out to design and evaluate risk indi-
cators usually derived from classic regression or discriminant 
analysis and used to assess a process difficult to measure directly 
(19,25,26,43). The novelty here is the use of the hazard function 
to identify infectious asymptomatic trees in a soilborne disease. 
There are only a few examples of the application of survival 
analysis to plant pathological data. Scherm and Ojiambo (32) 
provide a complete discussion on the use of survival analysis in 
botanical applications. It is important to note that there is a 
distinction between diagnostic and decision-making as practiced 
here and as generally practiced by plant pathologists. Plant 
pathologists often make decisions in the context of crop protec-
tion (19,43). Thus, although they diagnose at the level of the 
individual plant, they treat at the level of field or population for a 
given crop. Here, we used an approach analogous to the clinical 
approach, where diagnosis and decision are made at the same 
level (individual tree). The infectious status of each asymptomatic 
tree was first checked and the decision was further made about 
their individual contribution to the disease dispersal. Finally, 
although the statistical approach used provides tools to improve 
detection of infectious trees, it has some limits. This is par-
ticularly true for the use of Cox’s hazard function (6,18) because, 
here, the risk of crown decline was interpreted as a risk of 

infection but could not be used to strictly monitor the duration of 
the incubation period. 

In this work, hazard function for crown decline of asymp-
tomatic trees was estimated to depend on tree size (represented by 
basal area) and local probability of cankers. Increase in RHCD 
with increasing basal area may only indicate an increase in risk 
for old trees. However, this may also be related to the time during 
which the plant was exposed to infection because seedlings (trees 
with a small basal area) had only spent a few months in the survey 
and were less exposed to infection. Indeed, seedlings exposed to 
high local probability of canker in the current year have a high 
RHCD. 

Although one of the symptoms of the disease is cankers, the 
approach used considers only crown decline as a critical stage of 
disease progression. Cankered trees are not considered as a source 
of inoculum if they show no root infection, as may occur when 
direct trunk infection via lenticels occurs during flooding. 
Moreover, fine root destruction is deemed the most important 
cause of tree death due to P. alni infection. Nevertheless, canker 
occurrence is a good marker of local pressure of infection and 
was used to estimate the tree infection risk. It should also be a 
good marker of disease dispersal because canker formation is a 
quick response to P. alni infection, in contrast to crown decline. 

Fig. 5. Presence of Phytophthora alni in soil at the base of alder trees 
according to their crown status. A, Frequency of detection in soil. B, Amount 
of inoculum present in soil. Trees with no symptoms (T1a and T1b, no canker, 
healthy crown rated as 1 and relative hazard to crown decline respectively less
and higher than 0.9); trees with crown rated as 2 (T2), 3 (T3), or 4 (T4, dead
trees). 
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The correlation observed between RHCD and probability of 
detection of P. alni is a posteriori validation of a model used to 
describe tree crown decline and a use of local probability of 
canker as a surrogate of root infection. However, very frequent 
detection of P. alni at the base of healthy trees, even those with 
low RHCD, showed that most trees in the stand were in contact 
with pathogen inoculum. It appears to be the amount of inoculum 
to which trees are exposed and the frequency of exposure that 
matters more for disease induction. 

Tree capacity to produce inoculum depends on the size of the 
living root system, which depends on tree size and health status. 
This result suggests that a tree’s contribution to dispersal of P. 
alni should be weighted as a function of its size and crown status. 
Then, with regard to the tree’s ability to produce inoculum, three 
groups can be separated: (i) healthy trees with RHCD <0.9 and 
dead trees do not produce inoculum, (ii) trees with a declining 
crown rated as 2 and 3 are infectious, and (iii) asymptomatic 
infected trees with RHCD >0.9 are the major inoculum producer 
in the population. 

Little detection of P. alni could be observed on recently dead (1 
to 3 years) trees, and these trees were no longer significant 
inoculum producers. This confirms the limited survival of P. alni 
in soil in the absence of a living host, as has already been 
mentioned by Jung and Blaschke (23). This is in contrast to the 
usually good survival in soil of Phytophthora spp. (10) and can be 
related to the absence of resistance spores in P. alni. Indeed, this 
Phytophthora sp. does not produce chlamydospores and the 
oospores produced show limited ability to germinate, resulting 
from the hybrid status of the pathogen (7). 

Although the AUC and, therefore, the performance of the 
RHCD test do not appear faultless, this work provides tools that 
notably improve our ability to detect the main sources of inocu-
lum in the P. alni-induced alder decline. Also, it revises ex-
tensively our understanding of infection dynamics and disease 
dispersal, because the asymptomatic infected individuals are the 
main inoculum producers (much more than symptomatic trees). 
Together with this result, the approach described above proposes 
a new view of plant disease epidemiology to deal with cryptic 
diseases, and might be extended in the monitoring of tree root 
diseases as well as in soilborne disease ecology. 

APPENDIX 

Estimation of local probability of canker. The observed 
spatial point pattern of trees over the survey area was interpreted 
as a realization of a nonhomogeneous bidimensional point 
process which may be characterized by its intensity λ(x) (the 
density of sampled trees per unit of surface) (12). When con-
sidering point locations, one of the simplest density estimation, 
the “naïve estimate,” counts the number of data points in a 
defined search area surrounding a sample point and then divides 
this by the search area surface to give a spatial density in number 
per square meter. Mathematical expression of the naïve estimator 
is given by: 
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where N(Bτ(x)) is the number of trees in the area Bτ(x) and |Bτ(x)| 
is the surface of this area. In two dimensions, this naive estimator 
density is calculated at a number of sample points across the area 
of interest to describe a continuous intensity surface. 

To make the naive estimator less influenced by the edge of the 
search area, because data points near the edge have a small 
weight, it can be improved by assigning a weight to each data 
point found in the search area based on some function of its 
distance from the sample point. The weight calculations are 
performed using a number of different functions given the generic 

name “kernel function” and, hence, the method is known as a 
“kernel estimator.” The kernel estimator of λ for a bidimensional 
case (35,41) is defined by: 
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with x, the bidimensional coordinates of the sample point; xi, the 
bidimensional coordinates of the ith point (tree location in our 
case) found in the search area; n, the total number of points in the 
search area; τ, the bandwidth (also named smoothing parameter); 
and K, the kernel, such as  
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The Bτ(x) of formula 5 is, in this case, a discus of center x and 
radius τ. In our study, quartic kernel defined by  
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was used. The selection of bandwidth τ was made in two steps. 
Least square cross-validation (9,40) was used to estimate the values 
of τ on several portions of the surveyed area, and the one which was 
large enough to avoid situations without trees in the discussion was 
chosen. The same bandwidth τ of 20 m was used in all 
estimations. 

Using the previous technique, the local probability of canker in 
year t, defined as the probability that a tree which is located in a 
point x became cankered in year t given it was without cankers in 
year t – 1, was estimated by comparing the intensity of new 
cankered trees to the intensity of trees without canker the previous 
year (population at risk the previous year) through the estimation 
of the ratio: 
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with It(x), the variable which is 1 if the located tree in x is 
cankered in year t and 0 otherwise; λnc(x,t), the intensity of the 
process describing the distribution of trees that got cankered for 
the first time during year t; and λnc(x,t – 1), the intensity of the 
process describing the distribution of trees without cankers in 
year t – 1. Indeed, if λp(x,t – 1) is the intensity of the process de-
scribing the distribution of present trees in year t – 1, then: 
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hence, the estimated risk of canker is: 
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To obtain an estimation of a continuous risk of canker, as 
displayed by Figure 1, ct(x) was calculated at a number of sample 
points across the survey area of interest. 
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