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The Wave Finite Element Method applied to a
one-dimensional linear elastodynamic problem with
unilateral constraints

Carlos Yoong*, Anders Thorin, Mathias Legrand

Abstract

The Wave Finite Element Method (WFEM) is implemented to accurately capture travelling waves propagating at a finite speed within a bouncing
rod system and induced by unilateral contact collisions with a rigid foundation; friction is not accounted for. As opposed to the traditional
Finite Element Method (FEM) within a time-stepping framework, potential discontinuous deformation, stress and velocity wave fronts are
accurately described, which is critical for the problem of interest. A one-dimensional benchmark with an analytical solution is investigated.
The WFEM is compared to two time-stepping solution methods formulated on a FEM semi-discretization in space: (1) an explicit technique
involving Lagrange multipliers and (2) a non-smooth approach implemented in the Siconos package. Attention is paid to the Gibb’s phenomenon
generated during and after contact occurrences together with the time evolution of the total energy of the system. It is numerically found that the
WFEM outperforms the FEM and Siconos solution methods because it does not induce any spurious oscillations or dispersion and diffusion of
the shock wave. Furthermore, energy is not dissipated over time. More importantly, the WFEM does not require any impact law to close the

system of governing equations.
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1. Introduction

Collisions between structural components can be observed in a
variety of industrial processes, such as rock breaking equipment,
vehicles crash testing, drilling tools, and many others. Through
contact forces preventing non-physical inter-penetration of mat-
ter, a collision initiates a disturbance in the form of a stress wave
which travels away from the region of contact. Corresponding
governing equations are derived by the laws of mass conserva-
tion, momentum conservation, and energy conservation. Addi-
tional complementarity conditions are incorporated to properly
reflect the impenetrability of bodies. Analytical solutions are
only known for simple cases such as longitudinal collision of sim-
ple rods or transverse impacts on beams. For more general and
challenging configurations, the solution should be numerically
approximated.

As numerical procedures produce approximate solutions, they
inherently exhibit limitations that might be unacceptable. For
instance, the solution may feature non-physical spurious oscil-
lations, commonly known as Gibb’s phenomenon. The approxi-
mate wave propagation velocity may also be different from its
physical counterpart due to period lengthening and amplitude
decrease resulting in dispersion and dissipation errors [1]. These
potential numerical discrepancies should be avoided since they
may lead to wrong design decisions.

A considerable amount of research has been devoted to the
development of numerical techniques which attempt to overcome
the mentioned limitation [2]. These methods traditionally assume
a solution that is separated in time and space, involving three
ingredients [3]: (1) spatial discretization, (2) enforcement of the
unilateral contact constraint, and (3) time integration.

In structural dynamics, the most popular technique for spatial
discretization is the Finite Element Method (FEM). The displace-
ment u(M, t) of an arbitrary point M at time ¢ is approximated
by a finite sum u(M,t) = Y_; ¢; (M )u;(t) where each term of
the sum is separated in space and time: u; (¢) is the participation

of the shape function ¢; (M) [4]. The initial local governing
equation commonly given as a partial differential equation is thus
transformed into a set of coupled ordinary differential equations
(ODE) which are solely time-dependent. For wave propagation
problems, this form yields numerical difficulties because infor-
mation propagates at an infinite velocity through the considered
domain [5].

Unilateral contact conditions are mathematically expressed
as a complementarity relation between the contact force and
the clearance (gap) separating mechanical bodies [6] which can
equivalently be seen as a set-valued function [7]. This mathe-
matical framework drastically complicates the development of
adequate and robust solution methods. The most popular ap-
proaches enforcing unilateral contact conditions are the penalty
method [8], the Lagrange multipliers method [9], and non-smooth
techniques [10].

The semi-discretized problem in space in the form of ODEs
with unilateral contact conditions turns out to be ill-posed [7].
In order to recover uniqueness of the solution, an impact law is
incorporated to close the system of equations. This approach
is mainly used by the rigid-body dynamics community [11].
Researchers usually consider the Newton impact law which re-
lates the velocity after the impact v with the velocity before
impact v~ written as vt = —ev™, where e is a non-negative
parameter called the coefficient of restitution [10]. For a non-zero
coefficient, non-physical oscillations might arise in the displace-
ment of the contacting surface [12]. Choosing e = 0 leads to
a zero-velocity phase of the contacting surface but results in a
non-acceptable loss of kinetic energy [13].

Time integration of the semi-discretized problem can be per-
formed in various ways which vary according to the approach
considered for enforcing the constraints. The idea of numerical
time integration is to compute the state of the system advancing
from a set of initial conditions in a step-wise fashion through
time, going to a future state at time #;+, from a present state
at time #; and separated by a time-step A¢ [13]. Classical time
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Nomenclature

o mass density of the rod

A cross-sectional area of the rod

c wave velocity

E Young’s Modulus of the rod

L length of the rod

g time-dependent clearance function

g0 initial clearance between bar tip and rigid foundation
q0 external body force

u,u,u space-time displacement, velocity, and acceleration fields
uo, Vo space initial displacement and velocity fields

At time-step

Ax element length

N total number of steps (in time)

n number of elements (in space)

ti time instant

Fr.F »  boundary force acting on right/left side of the rod
vf, vi nodal velocity of the right/left side of element j
(rj+, o nodal stress acting on right/left side of element j
F j*’ 0]’.“ external nodal force/stress acting on node j

aj stress acting on element j

vj velocity of element j

Fr boundary force acting on left side of element 1
vy boundary velocity of the left side of element 1
F,,+ boundary force acting on right side of element n
v,'f boundary velocity of the right side of element n
g temporary gap

Ag’ temporary distance to rigid foundation

integration schemes in elastodynamics such as Newmark and
HHT [3] can be implicit or explicit procedures. In this frame-
work, the formulations which make no explicit use of a restitution
coefficient e essentially hide it within the procedure handling
the contact constraints. It is known that the penalty approach
possesses significant numerical limitations since the resulting
ODE are known to be stiff and the time-step has to be very
small [2, 13]. The integration in time of penalized models can
instead be performed by solvers devoted to stiff ordinary differ-
ential equations [14]. Newmark and HHT schemes can also be
adapted to incorporate Lagrange multipliers [2]. The introduc-
tion of unilateral contact constraints in an implicit scheme may
produce divergent solutions due to the additional high frequency
content [15]. This can be overcome by adding high frequency
numerical dissipation, as proposed in [16], however doing this
causes conservative systems to dissipate energy [15]. Explicit
schemes require small time-steps to ensure stability and an asso-
ciated high computational cost for large-scale simulations [4].

Time integration of non-smooth discretized formulation tar-
get systems where the contact constraint is treated by a non-
smooth approach, and are classified into: event driven methods
and time-stepping techniques [17]. The event-driven methods
are formally based on an accurate contact event detection mecha-
nism and the variable time-step is adapted such that the end of the
step coincides with such event. They accurately predict when a
contact event occurs; nevertheless, they become inefficient when
frequent transitions arise in a short period of time [13]. Most of
the implementations of these methods have dealt with discrete
systems with a few degrees-of-freedom [18]. On the other hand,
in time-stepping techniques, similar to the Newmark and HHT
families mentioned above, detection of events is considered on
the same step as the rest of the integration. They have been
proven to be convergent and robust but a small time-step is often
required [18]. Two main approaches have been proposed: (1) the
Schatzman-Paoli scheme is based on a position formulation of
the unilateral contact constraint [19] and (2) the Moreau-Jean
scheme relies on a velocity formulation of the unilateral contact
constraint renamed the velocity Signorini condition [6]. Recently,
it was proposed to enforce contact conditions at the position and
velocity levels simultaneously [20]. This leads to minimal energy
dissipation but non-physical numerical oscillations appear in the
simulations.

In the present study, a technique called the Wave Finite Ele-
ment Method (WFEM) [21] is implemented in order to numer-
ically solve a one-dimensional linear elastodynamics problem

with unilateral constraints'. Within the framework of continuum
mechanics, the WFEM discretizes the system into nodes and
elements of finite length Ax. Then, contrary to traditional finite
element techniques, the corresponding impulse-momentum prin-
ciple is enforced iteratively at each node and element in order to
establish a set of time-dependent algebraic relations that provide
the mechanical state (i.e. displacements, velocities and forces)
of all the elements and nodes. An elastic wave propagating at a
finite speed c is reproduced through iterations in time advancing
by a known prescribed time interval At = Ax/c.

A one-dimensional benchmark problem offering a known
analytical solution is investigated. The WFEM is compared to
(1) an explicit time-stepping technique combining the FEM with
forward Lagrange multipliers [9] and (2) a non-smooth approach
implemented in the software Siconos [13]. Attention is paid
to the Gibb’s phenomenon generated during and after contact
occurrences together with the time evolution of the total energy
of the system.

First, the benchmark problem is described. In a second sec-
tion, the theoretical background of the WFEM is detailed but
limited to the equations for the one-dimensional case only, and
the appropriate enforcement of the contact conditions in the
WFEM is described. Lastly, the results of the benchmark prob-
lem simulations are presented and discussed.

2. Benchmark Problem

In order to study the properties of the WFEM, a one-dimensional
elastodynamics benchmark including unilateral constraints and
exhibiting a closed-form solution is used in this work. It was first
proposed in [3] to explore the numerical properties of various
time integration schemes.

The problem consists of a homogeneous elastic rod of length L
and constant cross-sectional area A, as shown in Fig. 1, bouncing
against a rigid foundation. Its initial displacement at time ¢y = 0
is ug(x) and its velocity, vo(x) where x € [0; L] is the coordi-
nate of a point of the rod. It is subjected to a constant external
body force go which can be seen as “horizontal” gravity here.
The contacting end x = L of the rod is initially separated from
the rigid foundation by a distance g¢. Its mass density is p and E
stands for Young’s modulus. An elastic wave will thus propagate
at velocity ¢ = y/ E/p. The unknown displacement at position x
in the rod and at time ¢ is denoted by u(x, t); quantity r(z) is the

11t should be noted that a different method under the same name Wave Finite
Element Method was proposed by Mace and collaborators [22]. The WFEM
considered in the present work has a completely different ground.



contact force. The gap function is defined as g(t) = go—u(L,?).
The formulation is then:

e Local equation:

pli — Eu xx = pqo. Vx€]0;L[, Vt>0 (1)

where () is a second derivative in time while () . isa
second derivative in space.

e Boundary conditions at x = 0:

ux(0,1)=0, Yi>0 )

e Complementarity conditions at x = L:

g)=0, r()=0, r(t)gt)=0, V>0 3)

e Initial conditions:

u(x,0) = up(x), u(x,0) =wvo(x), Vxel0;L[ 4
This problem has a unique solution [3] and the variation of the

energy is equal to the work of the gravity force gy,

L L
1d > . ‘
sa [ (ei® + Eul)dx ) = | —pgourdx, Vi>0 (5)

0 0

The rod is initially at rest, that is ug(x) = vo(x) = 0, Vx €
[0; L]. By choosing a suitable set of parameters, the motion of
the rod is periodic in time and known in a closed form.

3. The Wave Finite Element Method

This section introduces the background of the one-dimensional
WFEM with emphasis on the appropriate enforcement of unilat-
eral contact conditions. The solution algorithm is also provided.
For a more detailed description of the method, the reader is
referred to [21, 23].

3.1 Formulation

The formulation targets longitudinal elastic wave propagation in a
rod with the assumption of a known and constant wave velocity c.
For t > 0 in the most general case, the rod is subjected to time
dependent boundary forces F, bi () together with the distributed
load g¢. The superscripts signs (4 or —) refer to the location
of the nodal force on the boundary, “negative” on the left side
and “positive” on the right side, as depicted in Fig. 1. The rod

Fy (@) q(x.1) = qo Fy (1)

+—— > — — — > — —— —— —— P

L

Figure 1. Homogeneous continuous rod of interest

is discretized into n elements of equal length Ax = L/n. For
a homogeneous rod, the time At = Ax/c of wave propagation
along each element is space-independent.

Quantities referring to the state of the elements will be labeled
with a subscript j = 1,2, ..., n. In addition, quantities referring
to the two nodes associated to this element will be labeled with
the same subscript j together with a superscript that defines
the location of the node: ‘“negative” sign on the left side of
element j and “positive” sign on the right side. Lastly, external
quantities acting on node j will be labeled with a subscript

Node j — 1 Node j Node j + 1
I I I
| | |
Element j — 1 Element j

Figure 2. External equivalent nodal forces

Jj =12,...,n 4+ 1 and an “asterisk” (*) as superscript. The
distributed load ¢ is replaced by equivalent nodal forces FJ* =
goAx acting on nodes j = 1,...,n + 1, see Fig. 2. On the
boundary nodes j = 1 and j = n + 1, nodal forces induced by
the distributed load take the following form:

F* = F* . = YqoAx ©
1 n+1 2 0

and the total nodal forces acting on the boundary of the dis-
cretized rod can be written as:

Fr(t)=F, (1)+ F and Ff@)=F0)+Ff, O

In Fig. 3, the discretized rod is depicted along with the boundary
forces in Eq. (7). To perform numerical time integration, discrete

Fy (1) FF (o)

-9 4 ® [ ] *—>

|
Ax

Figure 3. Boundary forces acting on the rod

time instants ; = i At,i = 0,1,..., N are defined, N being the
total number of time-steps. The time-step is assumed constant
such that At = Ax/c holds true where c is the wave velocity.

The boundary nodal forces in Eq. (7) are approximated by
step-wise values which are assumed to remain constant dur-
ing a time-step A7, and are denoted F; (¢;) and F,"(z;). Fur-
thermore, it is assumed that every internal nodal quantity for
Jj =2,3,...,n (i.e. displacement, velocity and stress) remain
constant during At, and are denoted v]i (t;) and O'j:t (t;). Only the
states (i.e. velocity and stress) of the elements may vary during a
time interval.

1
|
*
1
1

L=

State of Element j —1 1  State of Element j
oj—1t) s vj—1(%) 0, (1) ;v (%)

Figure 4. Interaction between elements j — 1 and j at time ¢;

Two adjacent elements j — 1 and j are illustrated in Fig. 4.
They are virtually separated for illustration purposes only. The
law of momentum conservation at the connecting node j yields:

,oc(v;“_l(t,-) —vj—1(t)) = O;F_I(ti) —0j-1(t;)
pe (v (ti) —vj(t;)) = —(o; (&) — 05 (i)

where the pairs (o;_1(;), 0;(4;)) and (vj_1 (), v; (#;)) are the
stresses and velocities of the two elements at time ¢;. Moreover,

®)



inner nodal equilibrium and continuity must be satisfied, that is:
of +0; (i) —0o;" (1) =0 Equilibrium
Uj_(li) = U}tl(l,')

where 0;‘ =F j* /A. Substituting Eq. (8) into Eq. (9) leads to a
relationship for the stresses and velocities at the internal nodes,
forj =2,3,...,n:

(©))

Continuity

1

oy (4) = 5(0.1' () + 0j—1(t:) + 0 + pc(v; (i) — vj—1(1)))

vy (6) = vy (1) + (0721 (6) — 0 (1)) / (pe)
(10)

From Eq. (10), the state of each element at ;1 is calculated as
follows:

oj-1(ti+1) = 0;_1 (&) + UJ-Jr_l(li) —o0j-1(t)

(1D
vi—1(tit1) = vi_y (4) + o) (6) — vj—1 (1)

The values computed by Eq. (11) are employed to determine
the nodal quantities at time #; 4+ denoted by 0j+_1(fi+1) and
v;r_l(tiﬂ) using Eq. (10). Finally, Eq. (8) is applied to de-
termine the boundary velocities by taking into account the states
of elements j = 1 and j = n. For the given boundary stresses
oy (ti) = F(t;)/A and 0,1 (t;) = F, (t;)/A, the velocities
become:

vy (6) = vi(t) — (o7 (8) — 01(1:)) / (pe),
U;T(ti) = v, (t) + (G;;r(ti) —On (fi))/(PC)
Equations (9) to (12) establish a set of simple algebraic relations
whose solution for each element and node, marching through

time with prescribed time-step A¢, approximates a longitudinal
elastic wave travelling in the rod.

12)

3.2 Floating boundary conditions

Unilateral contact conditions are such that the contacting node
shall either stick to the rigid foundation or remain free. The
switch between the two configurations might take place during
any time-step Az. This contradicts the assumption of the WFEM
which says that internal and boundary nodal quantities must
remain constant during such time intervals in order to ensure
energy and momentum conservation. This can be seen as the
compensation of ensuring the exact wave velocity. To enforce
contact constraints in the WFEM equations, Shorr developed a
concept named Floating Boundary Conditions (FBC) [21].

This concept relies on the prediction of the position of the
contacting node. If the unilateral constraint of impenetrability is
violated by the node during A¢, a temporary change is performed
to the position of the rigid foundation into a local admissible
position in order to avoid penetrating condition during time-
step At.

Element n

L= ==

Figure 5. Rod approaching the rigid foundation at #;

Consider element n of the rod impacting a rigid foundation as
displayed in Fig. 5. The gap between the rod and the foundation

at instant #; is g(#;) and the gap at the subsequent instant #; 1 is
g(t;+1). During the corresponding time-step A¢, four situations
may arise:

1. Open gap remains, g(#;) > 0 and g(t;j+1) > 0
2. Open gap g(¢;) > 0 changes to penetration g(¢;+1) < 0
3. Permanent contact g(¢;) = g(ti+1) =0

4. TInitial contact g(#;) = 0 changes to open gap g(t;+1) > 0

‘Ag(ti)lg(fi-i-l)

Lo

(a) Open gap

Ag(t;)

Lo oo
- - @- —

(b) Penetration

Figure 6. Possible contact configurations during time step At

Situations 1 or2 An open gap occurs at ¢;, such that g(z;) > 0,
as illustrated in Fig. 5. Accordingly, contact node n + 1 is free,

that is o, (i) = o, 11 Employing Eq. (12) to compute the

contact node velocity v,5 (;) yields:

Ur (1) = va(t:) + (0541 — o (t:))/ (pC)
The gap g(ti+1) is then calculated through:

gltiv1) = g(t)) + Ag(t;y) with  Ag(t) = —vf (t;)At (14)

13)

where the two states g(#;+1) > 0 or g(¢;+1) < 0 might arise. If
g(ti+1) > 0, “Situation 1” occurs and the computation procedure
continues with a free node n + 1, as depicted in Fig. 6a. On the
other hand, if g(t;+1) < 0, a penetration is detected during the
ongoing time-step: this is the “Situation 2” illustrated in Fig. 6b
and a temporary change to the position of the rigid foundation
needs to be performed into a local admissible position. To this
end, a temporary gap g’(f;) is calculated if contact is assumed to
arise at #; or a temporary gap g’(¢;+1) if contact is assumed to
occur at ;1. Both cases are expressed as:

g'(t) = g(ti) + Ag'(t)
g (tiv1) = g(ti) + Ag'(1;)
where Ag’(t;) denotes the distance that the rigid foundation has

to undergo to be in a temporary admissible position. This distance
is calculated by comparing |g(#;+1)| with g(t;):

at time ¢; (15)
at time #; 41

1. If |g(ti+1)| < g(#), the rigid foundation virtually trav-
els the distance |g(t;+1)| such that Ag’(t;) = |g(ti+1)|-
Then, a virtual gap g’(¢;+1) is calculated with Eq. (15) and
contact will occur at the subsequent time #; 11, see Fig. 7a.



2. If |g(ti+1)| > g(t;), the rigid foundation virtually travels
the distance —g(#;), hence Ag’(t;) = —g(t;). Conse-
quently, contact arises at time #; and the virtual gap g’(t;)
is calculated with Eq. (15), see Fig. 7b. In this case, cal-
culation at time #; must be performed considering that the
contacting node is not moving due to the contact condition,
such that v;f (#;) = 0.

The position of the rigid foundation can be subsequently restored
when an open gap arises again; in such a case, Ag’(t;) = 0.

Change

L=
L=

e - — -

Ag'(t;) = |g(tiy1)]

(a) Contact occurring at ; 4

Change

-—

L= = =

,,,,,,,, >

—g(t)

(b) Contact occurring at ¢;

Figure 7. Temporary change to the position of the rigid foundation

Situations 3 or 4 A contact occurs at ¢; such that g(¢;) = 0.
Then, assuming that contact remains during the time-step, the
contact stress o, (1;) is calculated with v;} (/) = 0 employing
Eq. (12):

0,7 (1) = on(ti) — pcvn(ti) + oy g (16)

where both o,f (;) < 0 (compression) and o,/ (t;) > 0 (tension)
can occur. If 0, (;) < 0, the contact condition is true and the
calculation can continue with v,f (#;) = 0. On the other hand,
if o, (i) > 0 a recalculation of the step considering a free
boundary condition is performed.

3.3 Solution Algorithm

The proposed solution algorithm 1 is a time marching procedure
where Eq. (9) to (12) are solved iteratively at each node and
element, starting from node and element j = 1. To simulate an
elastic wave propagating with finite speed c, these equations are
iterated in time advancing by a prescribed time-step At = Ax/c.
Node n + 1 is the contacting node on which the FBC principle
is implemented. The procedure at time #; can be divided in the
following steps:

1. Calculation of the velocity vy (#;) through Eq. (12) and
calculation of the velocity vy (#;4+1) and stress o1 (¢;4+1) of
element j = 1 for the subsequent time #; 1 using Eq. (11).

2. A recurrence procedure for j = 2,3,...,n is performed
to calculate all nodal quantities and states of the elements,
employing Eq. (9) to (11).

3. Assumed contact g(#;) = 0. The contact stress is calcu-
lated to determine if such an assumption is satisfied. If

Algorithm 1: Simulation Procedure

Input: number of elements 7, total number of steps /N, initial
gap go, boundary conditions at node 1 and n + 1, initial
conditions, external load gg, wave velocity ¢

fori =0: N [Time Loop] do

Discrete time instant, t; = i At;

Stress and velocity at node 1;

Stress and velocity at element 1;

for j =2 :n [Element Loop] do

Stress and velocity at node j — 1;
Stress and velocity at element j — 1;
Apply continuity and equilibrium;

end

— floating boundary conditions —

if g(z;) = 0 then

Contact occurs at node n + 1;

Calculation of contact stress: o,;" );

if 0,7 (;) > 0 then

Free boundary condition at node n + 1;
Calculate gap: g(fj+1);
Change rigid foundation position;
else
Contact occurs at node n + 1;

end

else

Free boundary condition at node n + 1;

Calculate gap: g(t;+1);

Change rigid foundation position;

end

— end of floating boundary conditions —

end

Output: displacements, stresses, velocities, contact forces

contact is activated, the position of the rigid foundation
is temporarily changed and the velocity of the contacting
node is set to v (;) = 0. Otherwise, the calculation
proceeds on node n + 1 with a free boundary condition.

4. Results

Dimensionless parameters identical to [3] are considered and
listed in Tab. 1. The rod is expected to have a periodic motion in
time with periodic bounces against the foundation. The WFEM is
compared to (1) an explicit time-marching technique combining
the FEM with forward Lagrange multipliers [9] and (2) a non-
smooth approach implemented in the package Siconos [13] 2.

Table 1. Dimensionless simulation parameters

Parameter Value
Simulation Time 20
Young’s Modulus, £ 900

Density, p 1

Rod Length, L 10
Initial Gap, go 5

External Body Force, gg 10

Wave Velocity, c = \/E/p 30

The time-step of the FEM and Siconos satisfies the CFL con-
dition [5] At < Ax/c. In Siconos, two coefficients of restitution

ZMoreau’s Time Stepping Scheme based on the #-Method is employed. For
the proposed simulations, an implicit version is considered with = 1/2.



are considered: e = 0 (inelastic) and e = 1 (perfectly elastic).
Two computations were performed to evaluate the influence of
the number of elements: (1) n = 100 and (2) n = 500 with
corresponding time-steps listed in Tab. 2. Contact node displace-

Table 2. Time-step for simulations

Method At [n = 100] At [n = 500]
FEM 1073 10~

Siconos 1073 1074

WFEM  Ax/c=3x1073 Ax/c=6x10"*

ments are shown in Figs. 8 and 12, respectively. The spurious
oscillations occurring at the first impact of the rod are depicted
in Figs. 9 and 13. Energy levels normalized with respect to the
exact constant energy are depicted in Fig. 14.

4.1 Coarse spatial discretization

The contact node displacement and energy behavior for n = 100
is depicted, respectively, in Fig. 8 and Fig. 14. FEM and Siconos
(e = 0) present an unsatisfactory energy behavior due to dissipa-
tion when the contact node impacts the foundation; such behavior
is aggravated with subsequent impacts. This is caused by the
energy dissipation properties of the time integration schemes [13,
3]. In addition, FEM does not exhibit Gibb’s phenomenon in

©n ~ h)
| M
§
Em
5]
8
R
]
] J
JU U U
0 5 10 15 20

time
Figure 8. Contact node displacement for n = 100: Exact Sol. [- - -],
WFEM [—], FEM [—], Siconos (¢ = 0) [—] and Siconos (¢ =
D [—1]

the displacement approximation, as depicted in Fig. 9, which is
due to the exact enforcement of contact constraints in displace-
ment [9]. Further, for Siconos (e = 0) spurious oscillations are
not present in the displacement approximation since the node
remains stuck to the foundation because of v = 0; however, the
complementarity impenetrability condition is violated. Siconos
(e = 1) represents a perfectly elastic collision and the total en-
ergy is conserved, as shown in Fig. 14. Nevertheless, a coefficient
e = 1 physically assumes that the velocity of the contacting node
after the impact v is the exact opposite of the velocity v~ be-
fore the impact: accordingly, the contacting node will hardly
be in a constrained position on the foundation. This is reflected
in the approximation of the contact node displacement which
features non-physical spurious oscillations after the first impact
as depicted in Fig. 9. The approximation of the contact node
displacement deteriorates after several bounces of the rod.
Contrary to the other methods, the WFEM does not dissipate
energy during unilateral contact occurrences. Furthermore, the
approximation of the contact node displacement does not present
numerical oscillations during the collision with the foundation,

- |“”‘”“"|||‘||“Iilll|‘|H|J. 1l
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Figure 9. Gibb’s phenomenon for n = 100: WFEM [—], FEM [—],

Siconos (e = 0) [—] and Siconos (¢ = 1) [—]

displacement [X 1 0_2]

and the unilateral constraint is exactly enforced as displayed in
Fig. 9 where the contact node velocity goes from a non-zero
velocity v~ to exactly a zero velocity during the contact phase,
before it retrieves a non-zero post-contact velocity v™. In other
words, it is numerically shown that the implemented formulation
of the WFEM does not “hide” neither necessitate any impact law
to be well-posed. The velocity and contact force are depicted in

velocity [x10]
0

0 2 4 6 8 10
time
Figure 10. Contact node velocity for » = 100: Exact Sol. [---],
WFEM [—], FEM [—], Siconos (¢ = 0) [—] and Siconos (e =
D[—1

Figs. 10 and 11. Siconos (e = 1) presents unphysical oscillations
during the contact phase and this behavior is aggravated with
time. FEM and Siconos (¢ = 0) predict a similar response,
where the solution has Gibb’s phenomenon in the free flying
phase without any oscillations during the contact phase. Instead,
the WFEM is capable of capturing discontinuities in the velocity
field with no undesirable oscillations: this is true for all times.

4.2 Fine spatial discretization

By increasing the number of elements to n = 500, an improved
displacement approximation is obtained for the FEM and Siconos
(e = 0) solutions, see Fig. 12. Their energy behavior still
presents dissipation as multiple impacts occur in time, as ob-
served in Fig 14. Siconos (e = 1) provides a displacement
approximation similar to its counterpart but energy is not dissi-
pated.

In Fig. 13, Siconos (e = 1) still introduces non-physical os-
cillations on the displacement of the contact node: although not
as pronounced as for n = 100, this badly affects the dynamics
of the whole system. For e = 0, the contact position is erro-



1.5

contact force [X — 103]
0.5

o N
6 8 1

0
time

Figure 11. Contact force for n = 100: Exact sol. [~ - -], WFEM [—],

FEM [—], Siconos (¢ = 0) [—] and Siconos (¢ = 1) [—]
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Figure 12. Contact node displacement for n = 500: Exact sol. [~ - -],
WFEM [—], FEM [—], Siconos (¢ = 0) [—] and Siconos (¢ =
D [—1]
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Figure 13. Gibb’s phenomenon for n = 500: WFEM [—], FEM [—],
Siconos (e = 0) [—] and Siconos (¢ = 1) [—]

neously predicted which causes the contacting node to violate
the complementarity conditions.

For the WFEM, the time-step decreases as spatial discretiza-
tion gets finer and again it is observed how the WFEM is capable
of properly approximating displacements with higher accuracy
than the other methods, and without energy dissipation as de-
picted in Fig. 14. This comes together with the fact that the
unilateral constraint is exactly enforced without numerical oscil-
lations.

4.3 Computation time
The computation time for each method is depicted in Fig. 15. All

normalized energy [X500]
0.95

0.9

0 5 10 15 20
time
Figure 14. Normalized energy for n = 100: FEM [- - -], Siconos
(e =0)[---];n = 500: FEM [—], Siconos (¢ = 0) [—]; Siconos
(e =1)[—]; WFEM [- - -]
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Figure 15. Computation time: WFEM [—], FEM [—] and Siconos
(e=0,e=1)[—]

simulations were performed with parameters listed in Tab. 1 on a
desktop computer with processor Intel Core 17-2600, CPU@3.4
GHz and 16 GiB of RAM memory. It is clear that the WFEM
outperforms its competitors. From the results depicted in Fig. 14,
it is evident that the approaches based on FEM discretization
present numerical energy dissipation that clearly affects the ap-
proximate solution and provides an erroneous prediction of the
rod dynamics. Increasing the number of elements reduces the
numerical dissipation, at the cost of a higher computational effort.

5. Conclusions

This study focused on the application of the WFEM to a one-
dimensional elastodynamics problem subjected to unilateral con-
straints. The WFEM was compared to (1) an explicit time-
stepping technique combining the FEM with forward Lagrange
multipliers and (2) a non-smooth time-stepping approach imple-
mented in the software “Siconos”. Attention was paid to the
Gibb’s phenomenon generated during and after contact occur-
rences together with the time evolution of the total energy of the
system. Additionally, the computation time of each method is
included.

From the results, it is clear that the WFEM properly cap-
tures unilateral contact induced waves propagating at a finite
speed with discontinuous deformation, stress and velocity wave
fronts. This approach provides an accurate approximation of the
solution without presenting any spurious oscillations. Energy
is not dissipated over time as opposed to what is observed with
the FEM and Siconos solvers. These advantageous numerical



properties are not affected as time increases and get improved
with a finer spatial discretization. This numerically shows that
FEM-based numerical approximations assuming a solution in
the form of a finite sum u(M,t) = >, ¢; (M )u;(t) separated in
space and time are inappropriate to accurately capture travelling
waves, which is crucial in elastodynamics involving unilateral
contact constraints. Additionally, the WFEM does not require
any impact law to retrieve the exact solution as opposed to all
FEM formulations. This is a spectacular outcome of the present
study since these impact laws are questionable in the context of
continuum mechanics.

These promising results should be complemented by further
WFEM investigations in a multi-dimensional framework. This
is possible by enforcing the impulse-momentum principle at the
connecting nodes of adjacent elements, assuming small strain,
and small element rotation. A discussion on two-dimensional
problems can be found in [21], however it is limited to rectangular
domains and elastic materials. Further studies should also focus
on the implementation of the WFEM in complex geometries,
three-dimensional domains, and large deformations problems.
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