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Abstract—The AUTOSAR standard describes an architecture
for embedded automotive systems. The lack of flexibility is a
major drawback of this architecture and updates are not easily
possible. In our work we explore the various facets of software
updates in the context of AUTOSAR embedded applications. With
few modifications that remain compatible with the development
process, we propose specific concepts for updates. Such updates
can be remotely achieved, for maintenance and/or evolution
purposes. As functional updates may lead to safety mechanisms
updates, we also highlight how safety mechanisms can be added
or updated with different level of granularity. We illustrate these
concepts and capabilities with a simple case study as a proof of
concepts. We finally draw the lessons learnt from this work.

I. INTRODUCTION

AUTOSAR (AUTomotive Open System ARchitecture) is a
standard defining a software-based architecture for automotive
embedded systems [1]. The main benefits of AUTOSAR rely
on standardized interfaces, ease of maintenance, simpler reuse
and integration of software components. Nonetheless, a major
drawback of this standard is its lack of flexibility. The complete
configuration of the system is usually done before compile time
and almost no modification is possible afterwards. Therefore,
a traditional way for updating automotive embedded software
is to reload completely the ECUs (Electronic Control Units).

Remote partial updates would allow for easier improvement
of the software within vehicles. The idea is to modify or add
tiny software entities in an ECU, e.g. the modification of an
existing functionality may lead to update a small function,
namely just a few kilobytes. Adding dynamicity would allow
a much easier and remote maintenance for the car owner who
would not necessarily need to go back to the garage. It can
also help taking advantage of the latest improvements and
technologies: a software option that was either not available
or not selected when the car was purchased can be added
afterwards. As advocated in many talks in the automotive
industry, about 90% of the functional improvements will be
software-based by the year 2020. Yet, reducing time-to-market
and allowing updates and upgrades of on-board software
remains a challenge.

Fast adaptation of embedded automotive software is clearly
very attractive for the automotive industry. The question
is: to what extent partial adaptation is possible in current
AUTOSAR-based application whereas this architecture was
not initially defined with adaptation in mind? A second
question is related to safety issues due to dynamic updates: any
change at the functional level may have an impact on safety
mechanisms, so how to adjust/improve safety mechanisms?
Safety mechanisms are, in particular, linked with Automotive

Safety Integrity Level (ASIL) as defined in ISO 26262 [2].
We show that it is possible, within an automotive embedded
system, to have dynamically updatable safety mechanisms that
come with functional modifications.

Over-The-Air (OTA) updates aim at reducing the amount
of data that need to transit to the vehicle and decreases
significantly its downtime. In practice, such updates can only
be done when the car is parked and powered-on, the driver
being informed that software need to be updated. Such fa-
cilities could also be used during some specific phases when
driving (e.g. platooning on highways) and related to car-to-X
interactions, but this is out of the scope of this work today.

This paper is organized as follows. In Section II, we shortly
describe the problem and explain our contributions. After a
short overview of the context of the work and of relevant
concepts of AUTOSAR we describe the basic principles re-
garding the introduction of flexibility within AUTOSAR in
Section III. In Section IV, we discuss the whole process of
updates development and integration. Section V focuses on
updates of related safety mechanisms. Finally, we present the
application of the various concepts developed in a case study
in section VI and related work in Section VII. We finally draw
the lessons learnt and conclude.

II. PROBLEM STATEMENT AND CONTRIBUTIONS

Updating partially an embedded software means that the
new configuration is developed and validated off-line as a
whole. This includes safety analysis and thus the determination
of the impact of updates on system safety in general, and safety
mechanisms in particular.

Our primary goal of adding functional updates in an
AUTOSAR system must comply with the requirements of ISO
26262 [2]. This means that if we want our system to remain
ISO-compliant, we must provide for ways to also update
safety mechanisms. These safety mechanisms are twofold:
some that are only related to the update added to the system,
and some are more global and impact already existing safety
mechanisms. An example of individual safety mechanisms is
a wrapper around an update to control the validity of the input
and output data. Existing safety mechanisms could also be
modified if the update is integrated into a processing chain
that has end-to-end safety mechanisms. In this case the existing
mechanism could be modified if the constraints change when
the chain is modified.

Fig. 1 presents the three possible types of allowed updates.
It is possible to add i) a functional-only update, or ii) a
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Fig. 1. Three examples of evolution of an AUTOSAR-based system

functional update with one or several associated safety mecha-
nisms, or iii) an additional safety mechanism. To this end, we
introduce few concepts in the application design beforehand,
both for functional and non-functional updates that can be
done remotely. We finally discuss the limits of the exercise
and briefly draw the lessons learnt from this work.

III. CONCEPTS FOR UPDATES

This section deals with the basic concepts for introducing
flexibility within AUTOSAR systems. We start with defining
what an update represents in AUTOSAR. We then present the
notion of Container that is a cornerstone in the preparation of
the application for receiving future updates. We also introduce
the concept of Smart Pointers that corresponds to certified
indirections that enable us to modify the application at run-
time. Finally we describe our memory management mecha-
nisms, that allow modifications of stored executables while
maintaining application consistency.

A. AUTOSAR

AUTOSAR is a layered architecture divided into four lev-
els. The bottom layer corresponds to the hardware layer. Above
stands the basic software layer that contains low-level services
and the operating system. The top layer corresponds to the
application layer divided into specific software components.
The latter are unaware of lower layers, and implement actual
functionalities. Finally, between the basic software layer and
the application layer, the Run Time Environment (RTE) acts as
an ad-hoc middleware.

1) Software Components (SWC): Software Components
(SWCs) correspond to application functions. An SWC is
defined as a group of fragments of executable code called
runnables (e.g. a C function). A runnable implements a specific
feature and can be executed either periodically or on the
occurrence of an event (e.g. the reception of input data). In
order to communicate with other SWCs or with the basic
software layer, an SWC is associated with input and output
ports.

2) Run-Time Environment (RTE): RTE can be seen as a
collection of communication channels between different SWCs
or between SWCs and the basic software. A communication
channel enables data to be sent (resp. received) by an SWC to
(resp. from) another SWC or an element of the basic software.
Its role also includes triggering the execution of functions by
sending events.

3) Operating System Principles: The operating system in
an automotive context essentially deals with the scheduling
of tasks, alarms and events. AUTOSAR OS is the real-time
OS associated with the AUTOSAR standard. It implements
a fixed priority scheduler, interrupt handling, and protection
against unintended uses of OS services.

There are two types of tasks in AUTOSAR OS: basic tasks
and extended tasks, the main difference being that an extended
task may wait for an event while a basic cannot. Thus, basic
tasks get synchronized at the beginning and at the end of their
execution only, while extended tasks can synchronize with
other tasks using events.

B. Update Definition

Section III-A defined the runnable to be the actual real-
ization of functionalities, and Software Components (SWC)
to be a hierarchical composition of runnables. Hence, the
granularity of update we consider within AUTOSAR is the
runnable. If it is possible to add a runnable, then we can add
any kind of functional updates. Adding all the runnables of a
Software Component means adding the Software Component
itself. There are three types of possible updates: addition,
modification, deletion of a functionality or a safety mechanism.

The updates usually cover a processing chain, which is
itself made of several runnables that exchange data. Modifying
an existing functionality does not impact the structure of the
processing chain (no new data exchange is added to the chain),
only the content of one or several runnables is changed. Adding
a new functionality, on the other hand, consists in: adding
one or several new runnables, adding at least one new com-
munication channel (with previously existing elements of the
processing chain, or between added elements), and modifying
existing runnables that communicate with new elements to take
into account new data. Last but not least, the impact of an
update on execution time must be carefully taken into account,
as described in Section IV-C

C. Hypotheses for Updates

In order to precisely define the accessible perimeter for
updates in the (rigid) context of AUTOSAR, we provide here
a set of working hypotheses.

a) Applicative updates only: The first and foremost
hypothesis in this work is to focus on applicative updates only.
In other words, we want to add functionalities above the RTE
(and underlying communications when necessary). Such an
hypothesis means that there are no modifications of the Basic
Software, which in turn has some consequences.

First, the Operating System used in the context of AU-
TOSAR is static and does not allow for modifications a
posteriori. Thus, the envisioned updates are assumed to be
integrated within one or several existing tasks — no new task
can be created for an update.

A second direct consequence of having no modification of
the Basic Software is that distributed updates are not possible.
Indeed, they would require a modification of the messages
transiting on low level bus (e.g. CAN), and communication
stack (within the Basic Software). Thus, the update we consider
are confined within a single ECU. In case of distributed



updates, global consistency must be ensured and updates must
be transactional.

b) Operating System and Architectural restrictions: All
the systems we deal with are single core processors. Indeed,
multi core may introduce new problems, such as deadlocks,
that are beyond the scope of this work. We do not consider
also the addition of new physical sensors or actuators, existing
hardware and drivers in the BSW of the initial configuration
are considered for the development of updates. Regarding the
scheduling scheme, we assume a Rate Monotonic one [3].

c) Periodic vs. sporadic: Finally, we mostly focus
on the addition of periodic updates. The reason for this is
that event-triggered runnables are usually placed in extended
tasks [4] which means that they need an OS-event to oc-
cur for resuming their execution. Yet, adding event-triggered
runnables would require to add new OS-events and therefore
modify the Operating System which is part of the Basic Soft-
ware. Thus, we consider that only periodic runnables will be
added to the system. This is consistent with the composition of
most automotive application, since most of the functionalities
are periodic (more than 70% for Renault testbed).

D. Basic concepts for updates

The two basic concepts introduced for updates are Con-
tainers and Smart Pointers.

A Container is the implementation of an adaptation space
within the application. It acts as a placeholder that can after-
wards be filled with an update. In this section we explain what
a container is and how it can be used for placing functional
updates. In a latter section, we will also develop how containers
can also be used for safety purposes.

A Container holds characteristics that are statically fixed:

• Activation mode (periodic or event-triggered)

• Period (when applicable)

• Priority (inherited from the task it belongs to)

• Trigger (alarm for periodic, event for sporadic)

• Status (empty, filled with an update)

Note that we do not consider here the timing aspects and
the Worst-Case Execution Time (WCET) of containers. This
is because when a container is empty, it consumes hardly
any time, and this is negligible. Instead, we use sensitivity
analysis [5] in order to take into account the variation regarding
real-time analysis and use an opportunistic approach to make
sure each update can fit in.

Runnable 1
(SW1)

Runnable 3
(SW1)

Runnable 5
(SW2) Container

Task 1

Fig. 2. Example of a task with a container

Fig. 2 presents an example of a task in which we have
added a container. Therefore, this task not only contains
runnables (from various SWCs), but also a container designed
for harboring future updates. A design time, an abitraty number

of empty containers can be added to tasks. Thus the tasks will
be equipped to face any futur update scenario.

In order to allow the system to be updated, the notion of
Smart pointers adds an extra level of indirections to the system.
Indeed, in each task, we add an indirection table that is used to
call all runnables and empty containers. This table is populated
by Smart Pointers that redirect to the proper function to call,
but also include a description and several safety mechanisms.

Primarily, a Smart Pointer contains a reference to the
runnable that will be called to realize a function. Additionally
it contains a description of this runnable that characterizes
the container, namely its period, priority and status. This
means that we can also use exactly the same mechanisms of
Smart Pointers for the containers. The difference between the
containers and the runnables in the table are their status (filled
for a runnable, empty for a containers) and the reference that
points to an actual function for the runnables and an empty
function for the containers. A Smart Pointer also contains
the ID of the runnable, which is a unique identifier for each
runnable. Note that two versions of a same runnable have
different IDs. All containers can point to the same empty
function as its only purpose is to give an initial value to all
pointers. Fig. 3 represents an example of indirection table in a
task. There may be several containers in each task since they
do not consume any time and the actual addition of an update
is subject to a prior scheduling analysis.

ID_runnable=0x56847
empty=0
period=10
priority=5
ptr_runnable=@R1

...
ID_runnable=0x96845
empty=0
period=10
priority=5
ptr_runnable=@R2

ID_runnable=0x00000
empty=1
period=10
priority=5
ptr_runnable=@empty

R1 R2 Container

ID_runnable=0x56847
empty=0
period=10
priority=5
ptr_runnable=@R1

...
ID_runnable=0x96845
empty=0
period=10
priority=5
ptr_runnable=@R2

ID_runnable=0x00000
empty=1
period=10
priority=5
ptr_runnable=@empty

R1 R2 Container

Fig. 3. Representation of indirection Table

IV. OFF-LINE AND ON-LINE PROCESS FOR UPDATES

In order to create and integrate an update, not only should
the application be prepared beforehand with the container
added to the architecture, but some steps are also necessary
both off-line and on-line afterwards in order to create and
integrate this update within the system.

Fig. 4 shows the various steps for creating and loading the
application within the system. There are two steps for this, one
which happens off-line for creating and validating the update
and the second one that occurs on-line, within the ECU to
integrate the update within the system.

In this section we detail three specific points related to
this process: i) safety issues regarding smart pointers handling
for modifying runnables and filling in containers, ii) memory
management within the ECU and iii) scheduling verification.
The first two points occur on-line for loading the update within
the ECU while the scheduling analysis must occur off-line
when the update is created and verified within its environment.

Note that when an update is created, it is paramount
to make sure that all safety criteria are met. Therefore a
careful safety analysis must be set up for determining all the
implication of the update safety-wise, and consequently add
or modify safety mechanisms, as described in Section V.
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Fig. 4. On-line and off-line steps for creating and loading an update

A. Safety issues and Smart Pointers

Regarding safety, these Smart Pointers are a single point of
failure. Indeed, if the value of a function gets corrupted, then
a wrong segment of code could end up being executed, which
could possibly have catastrophic consequences for the system.
Smart Pointers must provide additional safety mechanisms.

The first safety mechanism of Smart Pointers is based on
signatures, to check the value of the reference. Each time a
function is called using a pointer, the value of this pointer
is cross-checked with its signature. A consequence of this
mechanism is a small overhead regarding execution time, but
this overhead is negligible when compared to gains obtained
from storing Smart Pointers in RAM.

By default, indirection tables for tasks are stored in RAM
in order not to slow down the execution. Each time the ECU
is turned off, the content of the RAM is erased. A backup
of the Smart Pointers value is therefore written in FLASH.
This backup is updated each time a modification occurs in the
system (meaning that the update of the FLASH section that
contains the backup of each indirection table is part of the
global update process when a new functionality is added).

In a nutshell, the concept of Smart Pointers is the core
building brick of each indirection table for OS tasks. To ensure
safety of the references contained in these pointers, we add a
signature of the reference, and backup indirection tables in
non volatile memory. In the event that a discrepancy is found
between a reference and its signature, a recovery mechanism
loads non corrupted data stored in FLASH memory.

B. Memory Management

The way we have defined the various concepts does not
take into account any reservation of memory space. Yet, it is
important to have a sufficient amount of available non-volatile
memory for storing updates. Moreover, there should be RAM
memory available too for storing new variables. This section
deals with the handling of those two types of memory.

Regarding non-volatile memory (automotive systems typi-
cally use FLASH memory), the problem that we face is that
this kind of memory is sub-divided in sectors. Moreover, when
erasing memory, the granularity of erasure is necessarily a
complete sector, and in order to write, the memory must have
been erased beforehand. Thus, one of our main hypothesis is
that all of the updates will be written in FLASH memory after
the current program. This means that we never erase previously
loaded software. The reasons for this are twofold: first this

enables to rollback in case of problem (since all o the previous
versions of software are still available), second this means that
we do not have the problem of erasing the memory (assuming
that the initial system is loaded on a fully erased memory).

Another problem that we face is to determine at which
memory addresses each update need to be written, in order
to link properly these functions with the rest of the program.
Namely, the Smart Pointers must have the proper reference
for executing the corresponding function. For this reason, the
memory addresses are handled off-line, meaning the ECU itself
does not need to determine itself this part of the update process.
This requires to know precisely for each version of the software
the corresponding memory map.

C. Real-Time Impact of Updates

From a real-time perspective, the impact of an update can
be twofold: (1) the modification of the WCET of some tasks;
(2) the modification of the precedence constraints between
tasks. These modifications can both have a negative effect
on the schedulability of the system. Thus, it is paramount
to make sure that each time an update is added to the
system, the schedulability is unaffected. We describe how the
modification of WCET and precedence constraints are dealt
with independently and finally, we explain how all parameters
can be taken into account in order to determine if an update
can be added to a specific system.

1) Precedence Constraints: The concept of precedence, in
the case of AUTOSAR application is related to data exchanges
between tasks. A precedence constraint exists between task τi
and task τj if τj cannot start its execution before τi completes
its execution [6]. We consider that all data exchanges use the
“last-is-best” scheme, meaning there is no buffering of data
because the last data receive is the most relevant. Considering
that the scheduling scheme is fixed priority, it is possible to
use the priorities of tasks to resolve the precedence constraints:
only tasks with a higher priority can send data to tasks with
lower priorities.

In order to model precedence constraints between tasks, we
use a precedence graph and a corresponding adjacency matrix.
An example is given in Fig. 5. Without loss of generality, we
assume that the tasks are ordered by decreasing priority : task
τi has a higher priority than τi+1. Since tasks with higher
priority may only send data to tasks with lower priority, if the
adjacency matrix is lower and triangular then the precedence
constraints are respected. We use this feature to check if an
update is safe with respect to precedence constraints.
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τ3

τ1 τ2 τ3

τ1

τ2

τ3

0

1
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Fig. 5. Precedence graph (left) and adjacency matrix (right)

However, to use this feature some adaptation is required. In
AUTOSAR data is exchanged between runnables, and there-
fore the precedence constraints are expressed for runnables



communications. The precedence constraint for the task set
is inherited from the data exchange between runnables. A
simple algorithm allows to determine the precedence matrix
for the task set, given that data exchanges between runnables
are known (from the design of the application), as well as the
allocation of runnables to the tasks. This process is depicted
in Algorithm 1.

Data: Runnables Precedence Matrix, ΓN
Result: Tasks Precedence Matrix
∀ (α, β), Tasks Precedence Matrix(α, β) = 0 ;
for all (i, j) do

if Runnables Precedence Matrix(i,j) = 1 then
for all Tasks τk ∈ ΓN do

if Runnablei ∈ τk then
precede ← k

end
if Runnablej ∈ τk then

depend ← k
end

end
Tasks Precedence Matrix(precede,depend) ← 1;

end
end

Algorithm 1: Building the precedence matrix for set ΓN

2) Sensitivity Analysis: To prove that installing an update
is safe with respect to some real-time requirements, we need to
know to what extend the WCET of the tasks can be increased
while preserving the schedulability of the system. To do so,
we use the sensitivity analysis proposed by Bini and Buttazo
in [5].

In order to take advantage of this advanced result of real-
time theory, we propose the following AUTOSAR task model:

• ΓN = {τ1, . . . , τN} the set of tasks,

• ρ = {R1, . . . , RM} the set of runnables,

• Run(τi) the set of all runnables embedded in task τi,

• CRj the WCET of runnable Rj ,

• Ci =
∑
j∈Run(τi) CRj

the WCET of task τi,

• Ti the period of task τi

• M[ΓN ] the precedence matrix for tasks

In this model, task deadlines are considered to be equal
to their periods. Moreover, in AUTOSAR a task can be
configured with an activation offset. This allows to smooth the
CPU workload and avoid traffic burst on the communication
network. However, we do not take into account this parameter
in the model. All task offsets are assumed to be equal to 0.
It is a safe assumption: if the task set is schedulable with all
offsets equal to 0 then it is schedulable with any choice of
offsets [7].

The sensitivity analysis relies on the necessary and suf-
ficient schedulability condition for fixed priority preemptive
systems. It defines a region MN which encompasses all the
values of tasks WCET such that the system is schedulable.
Adapting the result to our model, this region is given by:

MN = {C1, ..., CN ∈ RN+ :

∧
i=1..N

∨
t∈Pi−1(Ti)

Ci +

i−1∑
j=1

⌈
t

Tj

⌉
Cj ≤ t } (1)

with


P0(t) = t

Pi(t) = Pi−1
(⌊

t

Ti

⌋
Ti

)⋃
Pi−1(t)

Using this region, it is possible to define metrics to evaluate
the flexibility of the system. In particular, we can determine
∆Cmaxk , the maximum increase of WCET a task τk can
endure:

∆Cmaxk = min
i=k,..,N

max
t∈Pi−1(Ti)

t− ni ·Ci

dt/Tke
(2)

where ni and Ci are vectors. Ci is the column vector of
all execution times of tasks between task τ1 and task τi and
ni =

(⌈
t
T1

⌉
,
⌈
t
T2

⌉
, ...,

⌈
t

Ti−1

⌉
, 1
)

.

With such metrics, it is possible to verify if there is enough
space in the system to add an update.

3) Update and Sensitivity Analysis: There are three neces-
sary steps to add a new runnable within an existing system:
determining containers compatible with the new runnable
characteristics, selection of containers compatible with the
precedence matrix, and proving the safety of the update with
respect to sensitivity analysis.

First, all containers compatible with the characteristics
of the runnable are determined. Once all possible locations
have been found, the second step consists in determining the
precedence matrix for the task set with this new runnable. The
locations that prevent the matrix from remaining lower and
triangular must be eliminated. The condition for promoting a
location rather than another is to minimise the factor S defined
as:

S =

N∑
i=1

i∑
j=1

M [ΓN ](i, j)

Finally, the last step is to use sensitivity analysis on our
model of the task set. We use the approach proposed by Bini
and Buttazzo[5]. The goal here is to prove that adding the
update is safe with respect to schedulability and to keep the
maximum global flexibility in the system. If there are still
several locations that are acceptable, the chosen location is the
one that maximises global flexibility (namely the ∆Cmaxk ).

V. UPDATE OF SAFETY MECHANISMS

This section presents the safety mechanisms that should be
added in an automotive system to ensure its proper function.
It first focusses on ISO 26262 [2] mechanisms and Safety
Integrity Level (ASIL), and details the extra mechanisms that
we have added specifically for providing safe updates and be
able to react appropriately in case of a problem. Then we
detail how safety mechanisms should evolve with functionality
updates. There are two levels of possible evolution for safety
mechanisms: i) a fine grain level that enables verification at



TABLE I. SAFETY MECHANISMS FOR ERROR DETECTION AND HANDLING IN ISO 26262 FOR SOFTWARE

Criticality Weak (ASIL A/B) Medium (ASIL B/C) High (ASIL C/D)
Data Flow Range check on input and output, plausibility

check, data error detection (data signature or
redundancy)

Range check on input and output, plausibility
check, data error detection (data signature or
redundancy)

Range check on input and output, plausibility
check, data error detection (data signature or
redundancy)

Control Flow Watchdog, Control Flow Monitoring Watchdog, Control Flow Monitoring
Architecture Static Recovery mechanisms Static Recovery mechanisms Static Recovery mechanisms, Diverse soft-

ware design, Independent parallel redun-
dancy

the runnable granularity, a feature that is not directly supported
by AUTOSAR, and ii) a coarse-grain level allows the addition
of end-to-end safety-related mechanisms.

A. Safety Mechanisms

1) ISO 26262 mechanisms: ISO 26262 [2] is the reference
for safety in the automotive domain. It defines methods that
should be used in order to obtain a dependable system. Al-
though ISO is defined for the various steps of the development
process of an E/E (Electrical and Electronic) system, we only
focus on software safety in this work. The Automotive Safety
Integrity Levels (ASILs) correspond to the criticality levels of
the various functionalities of the system. ASILs range from
A, which corresponds to less critical functions, to D that
represents the highest criticality level.

There are three main points that require checking, namely
data flow, control flow and architecture. Table I presents a
summary of the safety mechanisms in correlation with ASIL
and the various checking points.

When the ASIL increases, the number of verification
and safety mechanisms increases. Yet, whatever the level of
criticality, data flows need to be monitored to make sure that
the problems that may arise in the system are not related to
data transmission. For this reason, range check have to be
performed on input and output data, as well as plausibility
check (e.g. if the outside temperature is measured in summer,
it is not likely that −20◦C would be a valid value).

Control flow verification are only required for higher ASIL.
In this case it is recommended to set up watchdog and control
flow monitoring.

Finally, mechanisms are added at the architectural level to
prevent the system downtimes. The basic mechanism that must
be set up regardless of the ASIL is static recovery mechanisms,
e.g. action of reset when an error is detected. Yet, when the
functionality is truly critical (with very high ASIL), other
mechanisms must also be added, such as diverse software
design and independent parallel redundancy.

Finally during the design of the application, the principle
of Freedom From Interference should be applied. This means,
in particular, that a function with low level criticality must not
interfere and cause errors within higher criticality functions.

2) Roll-Back: The current state of an ECU regarding the
software version is handled by the ECU itself. This means that
specific mechanisms must be added for being able to detect a
problem and revert to a previous version of the software that
was properly working. Moreover the ECU must be capable to
handle this roll-back itself without any external instructions.
For this purpose, we do not erase any of the previous versions
within the ECU and implement a version stack that is stored

in non-volatile memory. This stack enables to trace back all
the versions that have been stored in the ECU.

This mechanism enables us to ensure dependability for the
software by reversing to a safe version. Indeed, if a problem is
detected when an error occurs, it is always possible to revert to
a stable and working previous version that can be considered
as degraded mode of operation.

B. Fine-Grain Safety Mechanisms

An interesting property of our approach is the possibility
to handle safety mechanisms at a runnable level. This is not
necessarily possible within the AUTOSAR standard. Indeed,
runnables are allocated to tasks, and the granularity for verifi-
cation is usually the tasks rather than the runnable itself. The
only verifications that can be done are for the data exchanges
by intercepting RTE data. This has been done for example by
using safety wrappers [8]. However, this approach is static, as
wrappers are inserted within the system before being loaded
on the ECU and cannot be modified afterwards.

We offer the possibility to introduce mechanisms that
can check data flow and control flow without modifying the
structure of an AUTOSAR system. Moreover, we make it
possible to implement safety verification at a very fine-grain
level, namely at a runnable level. This means that verifications
can be made before and after the execution of each runnable, if
necessary. This is truly innovative given the way an AUTOSAR
system is built. Indeed, the typical granularity level for safety
verification is at task level since runnables are grouped into
tasks. This means that if verifications are necessary at a
runnable level, the safety mechanisms should be integrated di-
rectly within the runnable. Yet, separation of concerns between
functional and non-functional parts is not achieved. Separation
of concern is a key concept for maintenance and software
evolution, as it has been demonstrated in many work, and that
we consider in this work.

The idea for allowing fine grain safety mechanisms is to
use the containers added in tasks in order to execute safety
assertions rather than actual functional runnables. Moreover,
our definitions of containers and smart pointers allow a lot a
flexibility since it is possible with these mechanisms to modify
the order of execution of the runnables and containers within a
task. This means that it is possible to modify the code executed
within a task so that safety mechanisms execute before and
after each runnable. This only requires a sufficient number of
containers and a real-time verification. The real-time model is
then slightly modified: the WCET of a task is the sum of all
WCET of its functional parts (runnables) and non-functional
safety mechanisms execution time.

Fig. 6 shows how the fine-grain updates of safety mecha-
nisms can be implemented. These are mechanisms that need
to be placed directly within the task around the runnable
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whose behavior they are verifying. These safety mechanisms
act as a wrapper around the runnable, e.g. to verify input
and output data. Fig. 6 shows an example where such safety
mechanisms surrounding the update are placed in containers
directly adjacent to the one where the update is placed.
This allows to perform verifications immediately before and
immediately after the execution of a runnable.

C. Coarse-Grain Safety Mechanisms

Other important mechanisms for safety are coarse-grain
mechanisms that for example allow a verification of end-to-
end timing constraints. These mechanisms need to be executed
at a task level rather than at a runnable level. In this section
we describe how to execute specific code before and after task
execution, and to be able to modify what to execute.

AUTOSAR OS provides for Pre-Task Hooks and Post-Task
Hooks [9], which are specific routines that execute before (Pre-
Task Hook) or after (Post-Task Hook) a given task. For adding
new mechanisms or modify existing mechanisms placed into
these Hooks, we use the same concepts and mechanisms,
namely Containers with Smart Pointers.

Thus in each hook, we add an indirection table and non
functional containers for executing existing safety mechanisms,
but also modify them and add new ones. The specific way
of adding this indirection level and the containers is strictly
identical to what is done for functional parts. However, only
non-functional mechanisms can be placed within pre- and post-
task hooks. Moreover, regarding real-time analysis, the WCET
of each safety mechanisms added within the hooks must be
added to the WCET of the tasks to make sure that the system
remains schedulable.

This kind of safety monitors is typically for inter-function
verifications and covers the execution of several runnables.
When updating these, there are two possibilities: either for
runnables that all belong to the same task or for runnables that
belong to different tasks. In the first case, the safety monitors
are added in the pre- and post task hooks of the same task,
and this corresponds to intra-task mechanisms. Otherwise, the
pre-task hook of one task (e.g. τ2 in Fig. 7) and the post task
hook of another task (e.g. τ1 in Fig. 7) are modified and this
corresponds to inter-tasks mechanisms.

Coarse grain safety mechanisms are used for end-to-end
verification of timing constraints, but also for checking the
consistency of the results produced for/by runnables belonging
to the same processing chain.

In a nutshell, our container mechanism can be applied both
to functional (tasks) and non-functional (hooks) parts, enabling
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Fig. 7. Two types of coarse grain safety mechanisms

the update of safety mechanisms when a functional update
occurs. It is therefore possible to add new safety mechanisms
attached to a specific update, and to modify existing ones.

VI. CASE STUDY

All the concepts for functional updates and safety manage-
ment can be applied on an example application that handles the
blinkers in a vehicle. This application provided by Renault En-
gineering was slightly modified for this work. In this section,
we show how all the concepts are implemented. Moreover,
we intend to demonstrate here, that even for an application
that can seem fairly trivial as the blinker, there is actually a
specific regulation that must be followed and some safety goals
are derived from this.

A. European Regulation for Blinkers

To begin with, it is important to highlight that there is
a specific European regulation for the blinker [10], not only
regarding the placement of the blinkers on a vehicle, but also
for its behavior.

The regulation regarding behavior states that all blinkers
on the same side of a vehicle should be synchronized and
triggered by the same physical controller. They should blink
90 ± 30 times per minute and at most one second should
elapse between the first activation of sensor and the effect on
the actuator (first time the light bulb is switched on). Then, at
most half a second later the indicator should turn off for the
first time.

B. Description of Blinker Application

1) Development Process and Preparation of the Appli-
cation for Updates: For developing the blinker application
we went through a number of steps going from the func-
tional needs (partly dictated by European regulation presented
above), to the final implementation. Fig. 9 shows the various
steps that need to be gone through for developing any AU-
TOSAR application. Note that the steps that are shown here
are only for software development.

The standard development process is slightly modified
for introducing the necessary concepts and mechanisms for
updates. Yet, it remains fully compliant with the AUTOSAR
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Fig. 9. Modified AUTOSAR development process

methodology [11]. There are three elements that are introduced
within this process for allowing future updates. First we
inserted meta-data that act as a form of signature of the
application in order to trace back all elements inserted within
the system. We also introduce both the non-functional and the
functional containers within the tasks and the pre- and post-
task hooks. Finally we add some low level mechanisms that
aim at actually loading the update within the ECU.

2) Software Functional Model: This step is necessary for
determining the various elements required in the application.
It is not part of the AUTOSAR methodology and we have
specifically added it for improving the design of automotive
embedded application. It corresponds to step 2 in Fig. 9 and
aims at designing the applicative layer of the software. In our
approach, this model is made of a set UML (Unified Modeling
Language) diagrams and constraints. We start with a use case
diagram that presents the possible use-cases of the function
we are designing. In our example, there are two use cases,
namely the turn indicator and the warn lights.

The next step of this modeling consists in designing
separately each use case and identifying every element that
is necessary to fulfill it and how these elements interact. For
this, we use for example sequence and activity diagrams to
model data flow, control flow and timing properties.

Then, once this is done for each use case, we move to
an advanced design where the elements that are common in
each use case need to be merged. In our blinker application
we merge the parts that treats data and send status to light
bulb. The chain that processes specifically data from turn
indicator and warn lights remain separated. The final product
is a complete processing chain that realizes both the turn
indicator and the warn lights. Finally, the objective is to obtain
runnables by grouping elements within the processing chain
that are functionally complementary.

Fig. 8 presents the final architecture of the blinker. Dot-

ted rectangles correspond to the actual runnables that will
then be used in our AUTOSAR model while rectangles with
rounded corners are the elementary actions that are manipu-
lated throughout the design in UML. Our final application is
made of 8 runnables (AUTOSAR Model).
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3) AUTOSAR Model: From the runnables that are identified
in the high level software model, the next step is to have
the complete AUTOSAR model. Note that here we are only
interested in the applicative software and therefore we only
show the allocation of runnable to software components,
the communications between these elements and the timing
properties. This last point is crucial for later allocating the
runnables to the OS tasks.

Fig. 10 shows the AUTOSAR model composed of 8
runnables. They are split amongst 5 SWCs: one for each sensor
or actuator, and one for data processing and status sending to
actuators.

C. Safety Analysis

In this section we show a FMECA (Failure Modes, Effects
and Criticality Analysis) [12] table in order to provide a com-
plete safety analysis for our blinker function. We only present
an excerpt from the complete FMECA table for simplification
purposes and due to space limitation.

The system we study handles both the turn indicator
part and the warn light part. The appropriate light bulb(s)
(actuators) must blink in accordance with the sensor that is
activated. This system presents two safety goals:

• The wrong blinker should not be activated (ASIL B)

• Blinkers shall comply with timing constraints from
european regulation [10] (ASIL A).



TABLE II. FMECA TABLE FOR THE BLINKER APPLICATION (EXCERPT)

Item FM Potential Causes Local Effects Upper-Level Effects Safety Level SSM ULE with SSM
1.1 FM1 Sensor Problem or No data

read/written in RTE channel
No data transmitted to blinker
processing element

No blinker is activated when
sensor is pressed

QM - -

FM2 Wrong data read/written in
RTE

Wrong data is transmitted and
processed

Wrong blinker is activated ASIL B Data redundancy,
data signature

no effect

3.1 FM1 Scheduling Problem Data is transmitted too late,
end-to-end timing violation

Blinker not compliant with Eu-
ropean regulation, user may
consider blinker bulb faulty

ASIL A End-to-End Verifi-
cation

no effect

FM2 No data read/written in the
RTE

No data is transmitted to the
actuator

Blinker fails to activate QM - -

FM3 Wrong data read/written in
the RTE

Wrong data sent to actuators Blinker activates when it should
not or fails to activate. Turn
indicator is activated instead of
warn light (loss of consistency)

ASIL B Data redundancy,
Data signature

No effect

There is also one undesirable event that is only graded with
Quality Management (QM) in ISO 26262: a problem occurs
when a sensor is activated and nothing happens on the blinker.

Blinker System

Turn Indicator 
Chain

Warn Lights 
Chain

Blinker 
Processing

Light BulbsTurn Switch
Sensor

Warn Lights
Sensor

Fig. 11. High level schematic of blinker system

Fig. 11 presents a high level view of the software part of
the blinker system. Our application is divided into two main
processing chains: one that handles the turn indicator and the
other that handles the warn lights. Then there is a part that
is common for the turn indicator and the warn light, which
is called here “Blinker Processing”. This last element then
communicates with the actuator, namely the left and the right
light bulb.

Product Functional Requirements
Turn Indicator Chain 1.1 Send turn indicator status
Warn Lights Chain 2.1 Send warn lights status
Blinker Processing 3.1 Send right blinker signal

3.2 Send left blinker signal

TABLE III. FUNCTIONAL REQUIREMENTS OF THE PRODUCTS

The exact description of the various blocks presented in
Fig. 11 is shown in Table III. This table gives the functional
requirements of each of the elements in the blinker system. It
is important to note that these elements correspond to software
parts. We do not detail here the underlying hardware.

Functional
Reqt.

# Failure Mode Product Effect

1.1 Send
turn

FM1 Loss of turn indicator
status in chain

Blinker fails to activate

indicator sta-
tus

FM2 Erroneous turn indica-
tor status

Wrong indicator is activated

3.1 Send
right blinker
signal

FM1 Wrong timing for
sending data (end-to-
end timing constraint
violated)

Blinker no longer compliant with
European regulation, blinkers do
not activate on time

FM2 Loss of right blinker
signal

Right blinker fails to activate

FM3 Erroneous value send
to right blinker

Right blinker activated instead of
left, right blinker fails to activate

TABLE IV. FAILURE MODE ANALYSIS OF THE SYSTEM (EXCERPT)

To keep the safety analysis as concise as possible, we only
present here the various steps for the turn indicator chain and

for the right light bulb. The analysis for the warn light chain
is fairly similar to the analysis for the turn indicator chain and
the right light bulb is completely symmetrical to the left one.

Task Runi Ci

Task Wls WlsRun (2.45 ms) 2.45
Task WlsP WlsP (0.15 ms) 0.15 ms
Task 10ms TssRun (2.8 ms), TssP (0.075 ms),

Logic (1.075 ms), Toggle (1.425 ms)
5.375 ms

Task 100ms FlaR (0.675 ms), FraR (0.675 ms) 1.35 ms

TABLE V. CHARACTERISTICS OF TASKS (BLINKER APPLICATION)

After determining the various products, the second step is
to determine what are the possible failure modes for our func-
tional requirements. An excerpt of the failure mode analysis
and the product effect is presented in Table IV. We can see
here that for turn indicator there are two failure modes that are
related to the data exchange, while for the blinker processing
there are not only failure mode related to problem occurring
in the data sending but also regarding timing constraints and
European regulation.

This analysis is then further developed with the actual
FMECA presented in Table II. Note that this is only the part of
the FMECA that corresponds to the failure modes presented
in table IV. The fault model we consider in this analysis is
related to physical faults. This table shows how we can use
the safety mechanisms recommended by ISO 26262 can be
placed within a given system in order to mitigate the effect of
faults that can occur within this system.

D. Real-Time Analysis

After the runnables are allocated to the tasks of the OS, We
have 2 periodic tasks and 4 event-triggered tasks. In this section
we give a description of our system following the model given
by section IV-C2.

ΓN = {Task Wls, Task WlsP, Task 10ms, Task 100ms}

The WCET for the runnables presented in Table V are
obtained using the toolbox Otawa [13], with a very simple
representation of the microcontroller architecture. We use
PowerPC hardware in the familly of MPC5510 controllers.

As already mentioned, the execution time of the safety
mechanisms that must be placed within containers (for fine
grain safety), or within pre- and post-tasks hooks (for coarse
grain safety) also need to be added to the WCET of the
task. These safety mechanisms for the present application are
mostly data verifications (placed before and after runnables),
and end-to-end verifications for timing constraints. The latter



TABLE VI. FMECA FOR THE PULSED TURN INDICATOR

Item FM Potential Causes Local Effects Upper-Level Effects Safety Level SSM ULE with SSM
4.1 FM1 Sensor Problem or No data

read/written in RTE channel
No data transmitted to blinker
processing element

Blinker does not activate 3 times QM - -

FM2 Wrong data read/written in
RTE

Wrong data is transmitted and
processed

Wrong blinker is activated,
blinker activated during an in-
correct time

ASIL B End-to-End
verification, Data
redundancy &
signature

no effect

corresponds to inter-tasks verifications between the beginning
of the turn indicator processing chain and the end of this chain
(ASIL B constraint). For this reason, the first part is placed
before the Task 10ms and the end part after Task 100ms.
This increases the execution time of each task using this
mechanism by 0.20 ms.

There are also data verification mechanisms that must be
placed for all elements of the turn indicator processing chain,
namely every runnable except from WlsRun and WlsP. We
estimate that this increases the execution time of each runnable
of 0.15 ms for verifying data before and after its execution.

And finally the precedence matrix for our tasks, obtained
using Algorithm 1, is shown on Fig. 12, where the tasks are
sorted by priority: Task Wls is the task with the highest
priority and Task 100ms with the lowest priority. In this
context we can clearly see that the matrix is lower and
triangular. Note that the “1” that appears on the diagonal only
means that there are two runnable within the same task that
exchange data. All the precedence constraints of the system
can therefore be fulfilled.

Task 100ms
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Task WlsP

Task Wls

Task 100ms Task 10ms Task WlsP Task Wls

0

1

0

0

0

0

1

0

0

0
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0

0

0

0

ΓN =

Fig. 12. Precedence matrix of tasks (blinker application)

E. Example of Update

In this case study we focus on one specific upgrade of the
system, which is the pulsed turn indicator. This section details
the characteristics of this update, the impact of this update
on both safety and real-time properties, and shows how these
issues are handled by the mechanisms we set up.

1) Design of the update: To design the Pulsed Turn Indica-
tor update, we follow the same steps as for designing any use
case. The objective of this update is to have a turn indicator
blink 3 times in case of a short impulse on the corresponding
sensor. This feature can be used in the case of lane change.

We start with an individual design of this function, with
the corresponding processing chain, activity diagram, sequence
diagram and timing and safety properties. Based on this design,
we then evaluate the impact of this new functionality on the
initial processing chain (as presented by Fig. 8).

We need an element able to detect the impulse on the sensor
and able to adjust its output so that the corresponding actuator
blinks 3 times. In our design, this role is held by the element
“TssPreprocessing” on Fig. 8. The impact of the update will
be the modification of the functional behavior of this element.

Fig. 13 shows the difference between the standard behavior
and the expected behavior of the turn indicator when the pulsed
option is added to the system.

Sensor

Actuator

Sensor

Actuator

Fig. 13. behavior of regular turn indicator (left) and pulsed turn indicator
(right)

2) Safety Analysis: Although the update we consider is
more a modification of the system rather than an addition of
new elements, for the safety analysis, we consider it as a new
part to better study the impacts. Thus, Fig. 14 shows how
the pulsed turn indicator interacts with the rest of the system
already present. Tables II, III and IV need to be revisited to
study the impact of updates within the system and determine
which safety mechanisms need to be added or modified.
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Fig. 14. High level schematic of blinker system with update

There is only one functional requirement that is attached to
the Pulsed Turn Indicator Chain which is “Send pulsed turn
indicator status”. Based on this new functional requirement we
can determine the failure modes and the product effects of the
update. This analysis is presented in Table VII.

Finally, Table VI shows the impact of the update on safety
mechanisms and how to mitigate the effects. The update has an
impact on an ASIL B function. Therefore, safety mechanisms
must be added in order to make sure that the data exchanged
between the parts of the system is not corrupted. For example
we can add cryptographic signature to check correctness of
each data item in the processing chain.

Functional
Require-
ment

# Failure Mode Product Effect

4.1 Send
pulsed
turn

FM1 Loss of turn indica-
tor status in chain

Blinker does not blink three
times. Standard behavior is ob-
served

indicator
status

FM2 Erroneous turn indi-
cator status

Wrong indicator is activated,
Blinker is triggered 3 times
when it should not be activated

TABLE VII. FAILURE MODE ANALYSIS FOR THE UPDATE



Regarding the timing properties, some end-to-end verifica-
tion need to be added to make sure that pulsed turn indicator
is properly triggered and blinks 3 times. This means that the
initial safety mechanism, that is only doing timing constraints
verification, now needs to verify that the proper functionality
is triggered by checking the number of activations.

The verification for data correctness need to be placed
within containers (placed directly within the body of the task)
and executed directly before the execution of the runnable, and
after it completes its execution to verify consistency. We also
need to modify end-to-end verifications that are placed within
pre- and post-tasks hooks. The verification in this case is inter-
tasks verification since we need to cross-check the consistency
between the input and the output of the chain.

3) Real-Time Analysis: The impact of pulsed turn indicator
on the system consists in:

• modifying the ”TssPreprocessing” runnable. The only
modification is the increase of the WCET of this
runnable is now 0.5 ms. It remains in the same task.

• adding data verifications before and after the execution
of the runnable within containers. These verifications
are similar to what was described previously, and add
0.15ms to the execution time of the task.

• modifying the end part of the end-to-end verifica-
tion that is placed within the post-task hook of
Task 100ms. This mechanism is significantly more
evolved that the initial mechanism, therefore its execu-
tion time grows. We estimate this increase in execution
time to be about 0.1 ms.

This means that the new WCET for Task 10ms is now
6,75 (sum of all WCET of runnables + all WCET of safety
mechanisms for runnables and pre- and post- task hooks).
Task 100ms has a new WCET of 1,95. We use sensitivity
analysis to check that the system remains within the boundaries
of the scheduling space, and we find that despite having
an utilization factor that is above 95%, the system remains
schedulable.

Note that we do not edit the precedence matrix since in our
example no new communication need to be added. Therefore,
the precedence matrix remains identical.

VII. RELATED WORK

A. Updates in Real-Time Automotive Embedded Systems

For introducing more flexibility in automotive embedded
systems, several approaches are possibles depending on the
level of these updates. We distinguish two main levels, which
are model-based updates and binary-based updates.

For model-based updates, Becker et al. offer a tool that
allows to define possible reconfigurations for a given system,
regarding the context of execution. This tool requires a model
of all these reconfigurations, and is easily interfaced with
AUTOSAR systems. Yet its major drawback is that it is
only compatible with a specific industrial tool called system
Desk. A more general approach [14] proposes a tool chain
based on UML an is designed for general safety critical
real-time systems. It is quite an interesting approach, but it

is not specifically design for automotive systems, let alone
AUTOSAR systems.

Binary updates for embedded systems correspond to a
necessary tool, as they allow for modifying part of the memory
of the system without re-loading the complete software. This
mean that updates are based on a system that build a tree of
differences between two versions of binary code. For example
bdiff [15] or vdelta [15] are implementations of such systems.
In the domain of automotive software, Nakanishi et al. offer
a method for creating low-level binary patched for updates.
This can be highly interesting for updates OTA (Over-The-
Air) since it reduces the amount of software that need to
be transferred. Yet, these are merely tools, but a high-level
analysis of the updates is required beforehand.

B. Safety in Automotive Systems

Nowadays, there is an increasing amount of functionalities
that are handled with embedded software. Granted that the
number of ECUs in a vehicle is limited (for reasons of cost),
this means that unrelated functionalities can be allocated to
a same ECU which could lead to interference problems [16].
Software safety, as defined in [17] is therefore a relevant matter
and new concepts have been developed to improve safety for
automotive software.

Most of the current work regarding safety in automotive
embedded systems relies on mechanisms that are added a
priori. Although some of these mechanisms can provide some
flexibility at run-time, to the best of our knowledge we are
not aware of actual systems that allow to add new safety
mechanisms at run time as in our approach.

For example, Heckemann et al. develop the concept of
Safety Cage [18] that allows for a formal verification of
the system behavior depending on the context of execution.
Another solution consists in introducing mechanisms in the
system for self-reconfiguration [19] in order to prevent down-
time. Another very wide spread method consists in adding on-
line verification mechanisms beforehand in the system. For
example, an approach consists in adding a Safety Bag which
is a set of assertions that analyses data an can correct the
effects on actuators [20]. It is also possible to add run-time
monitors that check the proper execution of the code [21].

In AUTOSAR application, it is possible to add wrappers in
order to instrument the application [8]. This enables the users
to access produced data and modify them for fault injection,
and to test the capacity of fault tolerance for the system.

All these approaches have this in common that they rely
on safety mechanisms that are introduced beforehand in the
system and that cannot be modified afterwards at run time.
What we provide in this work is a way to have evolving
safety mechanisms in the system. This property can be used
either in correlation with evolution in the functional part of the
application, or only for evolutions of the safety mechanisms.

VIII. LESSONS LEARNT AND CONCLUSION

Adaptation of embedded systems was not a main concern
in many critical application domains up to now. The eco-
nomic pressure, for time-to-market reasons, but also the new
challenges posed by the Internet of Things, impose a rapid



evolution of embedded systems. Smart cities are examples of
a specific Internet of Things where cars become connected
objects. These new trends combined with the recent innovation
concerning autonomous driving and ADAS (Advanced Driver
Assistance Systems) raise the problem of seamless evolution
of critical systems. Both functional and non-functional safety
issues have to be tackled as soon as critical embedded applica-
tion are concerned. As mentioned in the Tesla Motors website1,
for critical functions like the autopilot: “Autopilot features are
progressively enabled over time with software updates”. An
important point to mention here is that with the same set of
sensors (cameras, radars, sonars) and actuators (command and
control systems on engine, brakes, steering, etc. . . . ), a lot
of improvement and new functions can be added over-the-
air. This trend explains why software-intensive systems are
being developed very fast and their complexity is increasing
very much, leading thus to more evolutions that should be sent
quickly using remote software maintenance.

This was one of the main motivations behind this paper:
will AUTOSAR be able to support these evolutions? Our work
shows that the AUTOSAR architecture as it is today does
not offer enough flexibility to perform remote partial updates
at this envisioned scale. This is due to its basic concepts,
the software technology used, the tool-assisted development
process that, although it provides production facilities, brings
many constraints.

Although the current AUTOSAR architecture does not
comply with the new trends discussed above, we have shown
that remote partial updates are however possible. We have also
taken into account the specific questions raised by the updates
regarding real-time issues and safety.

We propose in the paper specific concepts, Smart Pointers
and Containers, to allow for both functional and non-functional
updates to be placed within an AUTOSAR system after the
ECU has been loaded. We have shown that these concepts
can be introduced in the development process in a seamless
fashion. We have listed the assumptions enabling to change
only the relevant parts of the software rather than reloading
everything. The concepts that we introduced can be further
used to implement safety mechanisms at a very fine grain level
and fulfilling the constraint of separation of concern. The latter
is very relevant for both safety and maintenance.

We make it possible to have evolving safety mechanisms,
not only on a fine grain level, but also for intra- and inter-tasks
verifications. Finally, we have shown on the example of the
blinker application how an update can be added to the system
while still respecting the safety and real-time constraints.

The final conclusion is two-fold. On the positive side,
partial updates are indeed possible in Classic AUTOSAR, with
very few concepts that are compatible with the standard as it
is today. However, the limits we observed can only be solved
with a new architecture (more conventional OS, component-
based technologies, etc. . . . ) and this is exactly the focus of
the Adaptive AUTOSAR recent initiative.
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