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Abstract

Nitrogen (N) is crucial for crop productivity. However, nowadays more than half of the N added
to cropland is lost to the environment, wasting the resource, producing threats to air, water, soil
and biodiversity, and generating greenhouse gas emissions. Based on FAO data, we have
reconstructed the trajectory followed, in the past 50 years, by 124 countries in terms of crop yield
and total nitrogen inputs to cropland (manure, synthetic fertilizer, symbiotic fixation and
atmospheric deposition). During the last five decades, the response of agricultural systems to
increased nitrogen fertilization has evolved differently in the different world countries. While
some countries have improved their agro-environmental performances, in others the increased
fertilization has produced low agronomical benefits and higher environmental losses. Our data
also suggest that, in general, those countries using a higher proportion of N inputs from
symbiotic N fixation rather than from synthetic fertilizer have a better N use efficiency.

Online supplementary data available from stacks.iop.org/ERL/9/10501 1/mmedia

Keywords: nitrogen use efficiency, country and global scales, cropping systems, crop yields,

nitrogen pollution

1. Introduction

Although malnutrition has not receded in absolute terms,
world agriculture, in the past half century, has succeeded in
increasing its production of vegetal proteins by a factor of 3
(Lassaletta et al 2014a). This has been made possible by
changes in cropping systems generally referred to as the
Green Revolution, based on the adoption of improved crop
varieties, use of pesticides, and increased application of
synthetic fertilizers, among which nitrogen was by far the
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most crucial (Tilman et al 2002, Mueller et al 2012, Sinclair
and Rufty 2012). The flipside of the coin, however, is an
increased alteration of surface and groundwater resources,
coastal eutrophication, air pollution and increased greenhouse
gas emission (Billen et al 2013, Sutton et al 2013). From this
perspective, very different situations exist, linked to the dis-
parity of cropping system development in the countries and
regions of the world (Billen et al 2014).

It is the purpose of this paper to describe these issues,
based on an original analysis of the data available in the FAO
data base since 1961 (www.faostat.fao.org). Our approach is
based on the calculation of the various components of the
arable soil budget of 124 countries and, most importantly, on
the description of the trajectory drawn from 1961 to 2009 by
these countries in terms of their total crop production (Y,

© 2014 I0P Publishing Ltd
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expressed in harvested vegetal protein, kgN ha™! yr™') and the
total N inputs onto cropland (F), excluding permanent
grassland, in the form of synthetic fertilizers, manure, sym-
biotic fixation and atmospheric deposition
(also in kgN ha~!yr~!). This approach differs from, and is
complementary to the Net Anthropogenic Nitrogen Input or
NANI approach (Howarth ef al 2012). Our aim is to analyze
cropping systems and to evaluate the excess N application on
arable land, the most sensitive components of agricultural
systems, while the NANI approach deals holistically with the
complete N cycle at the country scale, including the livestock
compartment and the effect of agricultural commodity trade
(Swaney et al 2012, Lassaletta et al 2014Db).

Using a different approach, Conant et al (2013) have
recently created a global soil N input database that enables
evaluation of trends in nitrogen use and recovery by country
for a number of important crops over the last 40 years. Their
data show that differences in efficiency of N use between
OECD and other countries have persisted and exhibit no sign
of convergence. In this paper we use the concept of the yield-
fertilization relationship in an original way compared to the
concept commonly used, relating here the mean yield inte-
grated over the entire crop rotation to the total fertilization of
the cropland soils of a given territory. While the yield-ferti-
lization relationship is normally used in conventional agr-
onomy as a tool to predict the yield increase of a given crop
that could be expected from increasing fertilization in a given
pedo-climatic context, we consider the integrative values of Y
and F as overall indicators of the agronomical and environ-
mental performances of a cropping system: the Y/F ratio is a
measure of its nitrogen use efficiency (NUE), while the F-Y
difference is the regional N surplus (or N balance) repre-
senting the potential for hydrological or gaseous losses of
nitrogen to the environment.

2. Methods

Based on FAO data, we have reconstructed the trajectory
followed by 124 countries in the past 50 years, in terms of
crop yield (Y refers to harvested crop part and is expressed in
kgN ha™' yr!) and total nitrogen inputs to cropland (F, sum
of nitrogen in manure, synthetic fertilizer, symbiotic fixation
and atmospheric deposition, in kgNha'yr™') for the
1961-2009 period. Together these countries represent 99.2%
of the world population and 99.6% of the cropland surface in
2009 (see supplementary material S1, available at stacks.iop.
org/ERL/9/10501 1/mmedia, for detailed methodology).
Total annual crop production by each country was cal-
culated taking into account the yearly harvested yield of 178
primary crops and their N content, as reported in Lassaletta
et al (2014a). The cropland surface was estimated by sum-
ming up the surfaces of all individual crops. Only in the cases
where this sum was higher than the stated value of the ‘arable
land and permanent crops’ surface area provided by the
FAOstat resources module, the latest surface area was

retained. This procedure allowed avoiding discrepancies in
the FAO data base. (See S1 for details).

Total fertilization of cropland was defined as the total N
input in the form of synthetic fertilizers, symbiotic N fixation,
manure application and atmospheric deposition onto crop-
land, excluding permanent grassland. The reason for focusing
our analysis on cropland is that the fate of the agricultural
surplus (excess N input over N export by plant harvest)
strongly differs between cropland and permanent grassland,
particularly with respect to the relative proportions of NHj;
volatilization, denitrification, leaching and storage in the soil
organic pool (Velthof et al 2009, Billen et al 2013). Note that
temporary grassland (e.g. the FAOstat crop category ‘Grasses
Nes for forage;Sil’), included within crop rotations, are con-
sidered as cropland. Yearly data on synthetic N fertilizer
application, under different N forms, for the entire period
were obtained from the Resources module of the FAOstat
database. Countries with more than 15 missing annual data
were removed from the analysis. Occasional gaps were filled
with data from the International Fertilizer Industry Associa-
tion (www.fertilizer.org/) if available and if not, by using
figures of the closest years. FAO data on annual per country
synthetic fertilizer use refer to total use in agriculture and is
provided without distinction between arable and grassland.
We therefore had to subtract from these figures the proportion
used for grassland fertilization, which in some European
countries such as Ireland and the Netherlands accounts for a
significant proportion. We have estimated the proportion of
synthetic fertilizers to grasslands at the country scales pro-
cessing the information compiled from different sources
(Richard 1951, Power and Alessi 1971, Anonymous 1992,
FAO 2006, Heffer 2013) (see S1 for details).

To estimate the crop biological nitrogen fixation by fix-
ing crops included in the FAOstat database we used a yield-
based approach, assuming that crop yield is the factor that
best aggregates variables associated with crop, soil and cli-
matic conditions including available N, soil moisture, vigor of
stand, and other management factors influencing N, fixation:

Nfixed = %Ndfa , X %« BGN ,
NHI

where %Ndfa is the percentage of N uptake derived from N
fixation, Y is the yield (expressed in kgN ha™' yr™"), NHI is the
N harvest index, defined as the ratio of the harvested material
to the total above-ground N production, and BGN is a mul-
tiplicative factor expressing the total N, fixation including
below-ground contributions associated with roots, nodules
and rhizo-deposition via exudates and decaying root cells and
hyphae. These parameters have been obtained from different
sources (Herridge et al 2008, Salvagiotti et al 2008, Laberge
et al 2009, Kombiok and Buah 2013, Alvarez et al 2014,
Anglade ef al under review). We applied a regional %Ndfa
for soybean N fixation. For sugar cane, rice, paddy and forage
products, we applied a constant rate of biological fixation per
hectare, as suggested by Herridge er al (2008) (see S1 for
details).

To estimate the animal excretion factors, we have fol-
lowed the methodology of Sheldrick et al (2003) that assumes


http://stacks.iop.org/ERL/9/105011/mmedia
http://stacks.iop.org/ERL/9/105011/mmedia
http://www.fertilizer.org/

Environ. Res. Lett. 9 (2014) 105011

L Lassaletta et al

that excretion rates, within a given livestock category, are
proportional to the slaughtered animal weights. We have
calculated different ratios for dairy and for other cattle stocks
using the dairy stocks provided in the FAOstat ‘livestock
primary’ module. These stocks have been subtracted from the
total cattle stock to estimate non-dairy cattle. As a result, a
particular excretion factor has been applied to each type of
animal, country and year. The proportion of N excreted that is
finally used as manure applied onto cropland was taken from
the estimates of Sheldrick er al (2003) at the regional level for
each type of animal. It was considered that 30% of the
available manure is lost during management and storage
before reaching the crop, as proposed by Oenema et al (2007)
for Europe and close to the value estimated by Liu er al
(2010) at the world scale. We finally discount the amount of
N that is applied to permanent grasslands by applying the
proportions provided by regions, and in some cases at the
country scale, by Liu et al (2010) (see S1 for details).
Deposition of oxidized and reduced nitrogen compounds
onto croplands was calculated from the GlobaINEWS data-
base (Seitzinger et al 2010) by extrapolating linearly between
available years. The atmospheric deposition data used in
GlobalNEWS are derived for the year 2000 from Dentener
et al (2006) and previous figures were obtained by scaling
deposition fields for this year following Bouwman et al
(2009). We calculated the input of N per ha (yearly national
average) and we applied this input per ha into the surface of
cropland considered in this study (see S1 for details).

3. Results and discussion

3.1. Y versus F trajectories of world agricultures

The trajectory followed from 1961 to 2009 by a number of
countries in terms of crop yield and total N inputs into
cropland is shown in figure 1. The results for all countries of
the FAO data base are provided in supplementary material
(S82). The Y versus F trajectory drawn by most countries
shows, at least for periods of several decades, a distinct cur-
vilinear relationship. Linear trajectories, like those described
by de Wit (1992) for individual crops were seldom observed.
Several mathematical formulations of the yield-fertilization
relationship in a given pedo-climatic and technical-agrono-
mical context have been proposed in the agronomical litera-
ture, most of them involving negative exponential functions
(Llewely and Featherstone 1997, Harmsen 2000). Nijland
et al (2008) proposed to integrate the production functions of
Liebig, Mitscherlich and Liebscher (de Wit 1992) into one
system model based on Michaelis—Menten hyperbolic rela-
tionships. Because we are expressing both output and input in
exactly the same unit (kgNha' yr™') and because we are
looking for a simple long-term integrative theoretical rela-
tionship, we decided to make use of the simplest possible
function obeying the three following properties: (i) the
function intercept should be zero; (ii) the slope of the function
should be 1 at low fertilization; (iii) the function should reach
a plateau at high fertilization. The first two properties reflect

the fact that, in the long run, harvest cannot exceed N resti-
tutions to the soil, and that the effect of low fertilization
in strongly N-limited systems is characterized by a NUE close
to 1. The third property expresses the classical law of
diminishing return and the fact that, in constant technical-
agronomical context, some other limiting factor will always
impose a ceiling to production at saturating N availability.
Two mathematical functions with only one parameter
obey both conditions: a hyperbolic function of the form
Y=Ymax*F/(F + Ymax) [1] and a negative exponential func-
tion such as Y=Ymax [l —exp(—F/Ymax)] [2]. We observed
that the former generally provides the best fit to the data. In
both cases the parameter Ymax represents the yield value
reached at saturating N fertilization, as well as the value of
fertilization at which a definite fraction of this maximum yield
is reached (this fraction being 0.5 in the case of relation [1] or
0.63 for relation [2]). Over the 1961-2009 period, certain
countries that we will call ‘type I, such as China, Egypt and
India, present a simple trajectory with regularly increasing
fertilization and gradual reduction in the crop yield response,
following a consistent and unique Y versus F relationship
(figure 1(a)).

Other countries (called ‘type II’), such as the USA, Brazil
and Bangladesh, display a historical trajectory with first a
regularly increasing fertilization and yield, fitting the Y versus
F relationship with a definite Ymax, then a turning point with
a shift of the trajectory to another relationship with a sig-
nificantly higher Ymax. This likely reflects improved agro-
nomical practices in terms of production factors other than
nitrogen, together with the pursuit of increasing fertilization.
The turning point seems to have occurred in the 1980s or later
depending on the country (figure 1(b)). The case of the USA,
for example, is consistent with a slowdown in the increase of
synthetic fertilizers inputs from the 1980s parallel to a mod-
erate increase in the yields of the most important crops
(Howarth et al 2002, Alston et al 2010).

In most European countries (see the example of France,
the Netherlands and Greece in figure 1(c)), the trajectory also
shows a bi-phasic pattern, describing a regular increase in
both fertilization and yield during the 1960-1975 period,
followed by a shift towards improved yields without further
increasing fertilization and even decreasing fertilization from
the 1980s on (‘type III’). The case of the Netherlands is the
most spectacular, as in this country, which has always used
very high rates of fertilization, the level applied in recent
years has been reduced to the same as in the 1960s with,
however, doubled yields. This trend is related to the reduction
of N inputs prescribed by European environmental policies
and regulations (van Grinsven et al 2012), which interestingly
did not prevent significant yield increases thanks to a better N
management. Note, however, that despite the increase of
NUE and decrease in N surpluses, the nitrogen surplus
emitted to the environment in many cases remains much
higher than that of other countries belonging to types I and II.

Finally, there is a small group of countries, such as
Morocco, Benin and Nigeria, whose trajectory does not dis-
play any consistent Y versus F relationship (type IV). These
countries have always very low inputs and yields. Very often,
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Figure 1. Examples of trajectories followed by countries in the Y versus F diagram. (a) Examples of type I trajectories. (b) Examples of type
II trajectories. (c) Examples of type I trajectories. (d) Examples of type IV trajectories. R? is the coefficient of determination, defined as:

R*=1- [Z(obsi — calc;)?/Y. (obsi—meanobs)z] where obs; are the observed values of yield, calc; the yield value calculated with the
relationship and meanobs is the average value of the observed yields over the period considered. Negative values of R* indicate poor fit of the

relationship on the observed values. This is often the case for the most recent period of type III trajectories because of still evolving
agronomical conditions.
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Figure 2. Past and current agricultural potential of world countries, in terms of maximum protein yield of cropping systems (Ymax).

their trajectory in the Y versus F diagram crosses the 1:1 line,
indicating higher yield than fertilization. High inter-annual
variation in the agricultural performance observed in some of
these countries could be explained by weather phenomena,
such as persistent water droughts, socio-political questions, or
sometimes could be even an artefact due to the poor quality of
our estimates of total nitrogen inputs to agricultural soil: in
particular, in those countries where shifting agriculture is
practiced, the fertilization of agricultural soil by the nitrogen
stock accumulated in forested soil during the fallow period is
not taken into account in our input estimations. However the
‘negative’ nitrogen balance displayed in the Y versus F dia-
gram can also represent the signature of an unsustainable
nitrogen mining of agricultural soils.

For type I to III countries, we were able to define the
Ymax values providing the best fit of the hyperbolic rela-
tionship [1] to the points corresponding to the 1961-1980
period or later, and another Ymax for the most recent 10-15
years. The two Ymax values obtained characterize the past
and current agricultural potential respectively, defined as the
protein yield that could be obtained from cropland at a
maximum N fertilization rate, with the corresponding crop-
ping practices (figure 2). Comparison of the two periods
shows a significant increase of Ymax in 45 countries (type 1I
and III trajectories). For a large number (55) of countries,
however, nearly the same parameter value or Ymax holds over
the 50-year period (type I trajectory), as is the case for China,
Egypt, Turkey, Chile, India and a many others. Possible N
mining is indicated by higher crop yield than fertilization for
18 countries such as Canada, Morocco, Algeria, Iraq and
Mozambique in the 1960-1980 period (see S2 for the com-
plete list). In recent years, N mining continues in 10 African
countries, as well as in Former Soviet Union countries,
Afghanistan and Paraguay. N mining has been observed in
Argentina for the entire studied period. This result is coherent
with that recently reported by Alvarez et al (2014) that
indicate a budget of the copping system in the pampean
agroecosystems, which only becomes positive when includ-
ing pasture lands. The severe problem of nutrient mining and
loss of soil fertility in African countries has been frequently
highlighted (Vitousek et al 2009, Liu et al 2010). In these
countries yields are among the lowest in the world but have
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Figure 3. 50 years trends in nitrogen use efficiency of the cropping
system of a number of countries.

apparently wide margins for improvement through better
fertilization practices, including an increasing use of legumes
in crop rotations (Vanlauwe et al 2014). However, imbalances
with other nutrients such as P could limit yield responses to N
addition (van der Velde et al 2014). In the Former Soviet
Union, after the abrupt changes which occurred from 1989,
crops may have benefitted from nutrient legacies. The results
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period 2000-2009.

of our calculations for this country, however, might also be
affected by recent and poorly documented changes like
massive land abandonment not fully documented by the FAO
(Schierhorn et al 2013).

3.2. Agronomical performances: trends in N use efficiency and
N-based yield gap

The above-described trajectories can be translated in terms of
changes in the NUE of the cropping system in the different
countries (figure 3). Type I countries display a regularly
decreasing trend of NUE. During the same period a similar
drop for the phosphorus use efficiency (PUE) has been
reported for China (Sattari et al 2014). In type II countries, the
shift in the trajectory toward an improved Ymax results in the
stabilization or in the increase of NUE. In type III countries,
the reduction of N inputs in recent years with no drop in yield
corresponds to increasing NUE.

To characterize the performance of agriculture of a given
territory, van Ittersum er al (1997, 2013) introduced the
concept of yield gap, defined as the difference between the
actual farmers’ yield of a particular cultivar and the potential
yield which could be obtained in the same place in the
absence of limitation by nutrient and water and with efficient
control of pests and diseases. Following the same line of
reasoning, but applied to the overall production of the crop-
ping systems of each country in terms of proteins, we cal-
culated (Ymax-Y)/Ymax as a dimensionless indicator of the
degree of N limitation of current agricultural yields (figure

S2-1). This indicator is high (>0.75) in North America,
Australia, most European and many sub-Saharan countries,
indicating margins for increasing yields by increasing N fer-
tilization. It is low (<0.3), on the other hand, in countries like
China, India and Pakistan, as well as in a number of Central
American and North African countries, indicating no benefit
in terms of yield to be expected from simple increase of N
fertilization in these regions in the absence of radical agro-
nomical improvement of the cropping system. George (2014)
has analyzed why crop yields in many developing countries
cannot easily respond to increased inputs due to poor agro-
nomical practices.

3.3. Environmental performances: NUE and N losses

The data we have assembled can also be used to estimate the
contribution of agriculture in the different world countries to
environmental nitrogen contamination, using the nitrogen
surplus (F-Y) as an indicator of potential losses. While in
grassland this surplus is generally stored in the soil organic
matter pool, in the case of cropland, most of it is leached
quickly as nitrate, emitted as NH;5 or denitrified as di-nitrogen,
and nitrous oxide as a by-product, thus contributing to the
nitrogen cascade of environmental contamination (Galloway
et al 2003). The data thus show the global distribution of
environmental N losses from agricultural soils (figure S2-2).
Losses are over 50 kgN ha™' yr~' in most of Europe, the Middle
East, the USA and Central America, India and China.
They remain on average below 25kgNha™'yr™ in most
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sub-Saharan Africa, the Former Soviet Union countries, and
Australia. High surplus values are associated with low NUE
(figure S2-2).

Total fertilization, as discussed above, is mainly the sum
of synthetic fertilizers, manure application and symbiotic
nitrogen fixation. Although not negligible, atmospheric N
deposition generally contributes a much smaller share. The
proportion of the three former N inputs to overall fertilization
varies a great deal among the different world cropping sys-
tems, as shown in figure 4(a). Our data show that NUE is
generally higher (and the N surplus relatively lower) for
agricultural systems with higher proportion of N inputs
derived from symbiotic N fixation (figure 4(b)). Conversely,
NUE is generally lower for a higher proportion of synthetic

fertilizers in total fertilization. This higher efficiency of
cropping systems relying largely on biological N fixation is
observed for the largest soybean producers of South America
as noted by Liu er al (2010) as well as for less productive
countries in Africa and Asia with significant production of
rice, groundnuts and beans. The higher NUE associated to
nitrogen fixation is likely explained by a higher efficiency in
the incorporation by legumes of their self-supplied nitrogen
(Herridge and Peoples 1990). Also, the increase of the price
of synthetic fertilizers might have encouraged the use of other
sources of N in a most efficient way.

3.4. Global trends

At the global scale, lumping together all cropping systems of
the world, a type I Y/F trajectory is observed, with a shift
during the 1980s from one Y/F relationship characterized by a
Ymax of ~70 kgN ha™ yr~' to an improved one with Ymax of
110kgN ha™' yr" (figure 5(a)). The overall observed global
trend is a distinct decrease of NUE in the 1961-1980 period
(from 68% to 45%), followed by a stabilization during the last
30 years around 47% (figure 5(b)). The share of the different
sources of N in the total inputs to cropland, depicted in
figure 5(c), change considerably during the last 50 years, with
synthetic fertilizers now being the largest source. Despite that
the total rate of N excreted by livestock is equivalent to
synthetic fertilizer application, the manure, rarely used effi-
ciently, finally reaches the crops at a much lower rate which
nowadays is slightly lower than crop biological N- fixation
(figure 5(c)).

4. Conclusions

Currently, only 47% of the reactive nitrogen added globally
onto cropland is converted into harvested products, compared
to 68% in the early 1960s, while synthetic N fertilizer input
increased by a factor of 9 over the same period. This means
that more than half the nitrogen used for crop fertilization is
currently lost into the environment. Even though a significant
improvement in NUE occurred in many countries after the
1980s, the present results suggest that a further increase of
nitrogen fertilization would result in a disproportionately low
increase of crop production with further environmental
alterations, unless cropping systems improve their efficiency
substantially. In that respect, improvement of agronomical
practices and development and proper application of envir-
onmental policies have been demonstrated to be efficient
strategies. A better integration of crop and livestock systems
can also contribute to increasing NUE at the local and global
scale (Herrero et al 2010, Lassaletta et al 2014a, Bonaudo
et al 2014, Soussana and Lemaire, 2014). Moreover, our data
suggest that an increase in the contribution of symbiotic N
fixation would result in increasing NUE. Peoples et al (2009)
have stressed that the potential of symbiotic nitrogen fixation
is currently largely underexploited, given that very few
countries have a fraction of arable land devoted to legume
crops greater than a few percent. Increased areas of legumes
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might be achieved by including more leguminous crops in
rotations, or by the introduction of short-duration legume
green manures or ‘catch crops’ (Blesh and Drinkwater 2013).

By evidencing the long-term response of N inputs to the
soil in terms of production and potential losses to the envir-
onment, this paper provides a summarized and comprehen-
sive diagnosis of the effective changes in agronomical and
environmental performances of the cropping systems of 124
countries of the world.
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