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Pick and Freeze estimation of sensitivity index
for static and dynamic models with dependent

inputs

Mathilde Grandjacques1, Benoît Delinchant1, Olivier Adrot2

Abstract

This article addresses the estimation of the Sobol index for static and dynamic inputs. We
study transformations in the input, whose image is an input with independent components.
They have the basic property to give the equality of the σ-algebra between a subset of inputs
and their image that allows to compute the Pick and Freeze method.
We first focus on the static case. The Gaussian and non Gaussian cases are detailed. In the
Gaussian case the dependent variables are separated into two groups of independent variables.
In the non Gaussian case we apply the conditional quantile function generally used to simulate
random vectors.
In the dynamic case the definition of the index has been slightly modified in order to take into
account the two dimensions of dependence (temporal and spatial). For Gaussian processes the
same method as previously is used. For non Gaussian processes, we propose to use a meta-
model copula to get back to Gaussian inputs. Different meta-models are studied in order to
focus on the limit, in sensitivity studies, of correlations taken as measures of dependence.

Introduction

Global sensitivity analysis (GSA) aims to pick out, in a input-output system, the variables
that contribute the most to the uncertainty on the output.

GSA is popular for systems such as non linear regression or more complex systems, which are
studied mainly by stochastic tools for independent inputs.

Many methods exist in the literature (see for example [23] and references therein). The most
used one is the Sobol index which is defined if the variables are assumed to be independent
random variables. Their probability distributions account for the practitioner’s belief in the
input uncertainty. This turns the model output into a random variable, whose total variance
can be split down into different partial variances (this is the so-called Hoeffding decomposition,
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also known as functional ANOVA, see [18]). Each partial variance is defined as the variance of
the conditional expectation of the output with respect to each input variable. By considering
the ratio of each partial variance to the total variance, we obtain the Sobol sensitivity index
of the variable [25, 26]. This index quantifies the impact of the variability of the factor on the
output. Its value is between 0 and 1, allowing to prioritize the variables according to their
influence.

However, in most applications, the parameters or the inputs are dependent due to physical
constraints. The interpretation in this case is not easy. If we want to study the sensitivity
with respect to a component say X1, it is of course not sufficient to study only X1 as it
appears explicitly in the model. It contributes to uncertainty through the other components
linked with it. So, conventional methods of sensitivity analysis cannot be used with dependent
inputs. The classical orthogonal Hoeffding decomposition must be used with precautions. In
particular the notion of interaction between two components, valid for independent cases, is
here meaningless.

Several studies have been conducted in the case of dependent parameters. Mara and al.[20],
Xu and al. [30] give approaches that are most often used for linear models and specific forms
of dependence. Da Veiga and al. [9] use a very natural idea : when we have a sample
(X(i), Y (i))i=1,...,N of the system, even if f is unknown, we can estimate E(Y |X1) and the con-
ditional moments of the output with respect to some factor of interest : X1. The use of non
parametric statistics for this kind of problem is common in other fields such as econometrics,
for instance LOESS method is quite easy in this framework. Kutcherenko and al. [17] calcu-
late a sensitivity index analogous to Sobol’s formula, from a priori knowledge of probability
distribution functions. To obtain it they propose to transform the input into a Gaussian cop-
ula. Then this copula is used as a metamodel. If we take an input with uniform marginals
and given correlation, there are a lot of models with various properties, so the misspecification
when one chooses a metamodel can be important.

A deep work on dependent inputs, starting from ideas of Stone [27] and Hooker [13], is the
work of Chastaing and al. ([5], [7]),[6]) perhaps limited by computation problems but giving a
clear formulation of the dependence role. This work is based on the existence of an Hoeffding
representation under light conditions on the density of the input:

f(X1, . . . , Xp) =

p∑
j=1

fj(X
j) +

p∑
k,j=1
k 6=j

fk,j(X
j, Xk) + · · ·+ f1,...,p(X

1, . . . , Xp) (1)

The classical orthogonality due to independence which allows easy computations of the Sobol
index is lost but a useful other form of orthogonality extends the classical one. Hierarchical
orthogonal decomposition means that a term indexed by k1, . . . , kp is orthogonal to any term
indexed by a subset of {k1, . . . , kp} and this property is sufficient to obtain (1).

In a time related framework such that :

Yt = ft ((Xs)s=0,...,t) (2)

where f(·) : Rp(t+1) → R, and the input variable is (not necessarily independent) a vectorial
process such that (Xs)s∈N ⊂ Rp. Few studies propose to study the sensitivity for dynamic
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inputs. The sensitivity is calculated at each time step t without taking into account the dy-
namic behaviour of the input. Indeed, the impact of the variability is not always instantaneous.
Therefore it seems necessary to develop a new method for dynamic dependent inputs. The
Sobol index definition has been modified in order to take into account the dynamic behaviour
of the inputs. Each partial variance is defined as the variance of the conditional expectation of
the output with respect to a certain time of observation (called memory) : (X t, . . . ,X t−k) of
the input vector variable. So the index is defined for each k ∈ [0, t] and each t. For stationary
processes we prove that the sensitivity is independent of k and converges as t→∞ at least for
very general situations but probably not for all (long memory inputs in hydrology are perhaps
a counter example).

Thus the main goal of this paper is to find an efficient method of estimation of Sobol indices
when the independence assumption on the variables is relaxed and to study the case of time
dependence.

Popular methods to calculate Sobol indices are for instance :

• Fourier methods ([8],[19]) used in a different setting, with the aim to simplify computa-
tions

• Orthogonal polynomials for example polynomial chaos [28]

• Random balance design [29]

but they require independent input components and (or) a known precise analytical form of
f .

A quite different approach, suggested by Sobol (see [26] and [10]) is the Sobol Pick-Freeze
(SPF) scheme. It is also based on the independence of components but it is more flexible on
the form of the inputs and does not take into account the shape of the input-output model. In
SPF, a Sobol index is viewed as the regression coefficient between the output of the model and
its pick-freezed replication. This replication is obtained by holding the value of the variable of
interest (frozen variable) and by sampling the other variables (picked variables). The sampled
replications are then combined to produce an estimator of the Sobol index. There is no
requirement about the knowledge of f , except the possibility to simulate the system which
is of course a severe constraint. Janon and al. ([14], [15]) give asymptotic results when the
sample size tends to infinity. Estimators are convergent, satisfy a central limit theorem and
have robustness properties.

Our proposition is to find a transformation that turns dependent inputs into independent
inputs and that keeps the sensitivity invariant. It is then possible to apply the Pick and
Freeze method to the independent variables.

The first part of the paper is dedicated to the static part. For Gaussian inputs, a general
multivariate regression gives the transformation. For non Gausian inputs a method based on
the conditional quantile method is proposed. This method is the most general to simulate
random vectors. We detail a copula type metamodel and to complete Kutcherenko and al.’s
[17] study, we show that the choice of the copula is important, concerning sensitivity analysis.
This metamodel will be used in the dynamic part.
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The second part is focused on dynamic models. We first consider Gaussian process inputs
and we can apply the same method as in the static Gaussian case. For the non Gaussian
case we consider a copula type metamodel to get back to Gaussian inputs. It is chosen
starting from each input marginal function and starting from the correlation between X t

and X t−1,X t−2, . . . . The sensitivities are computed for different simple models and we deal
with, specifically for sensitivity values, the difficulties arising from the use of correlation as a
dependence measure to build convenient metamodels.

1 Sensitivity for dependent inputs : vectorial case

1.1 Sobol index and Pick and Freeze method : independent case

Let an input-output system given by :

Y = f(X) (3)

with Y ∈ R, X = (X1, . . . , Xp) ∈ Rp

The Sobol index is defined as :

SX
J

=
Var

(
E(Y |XJ)

)
VarY

. (4)

with XJ = (Xj1 , . . . , Xjq), J = {j1, . . . , jq} ⊂ {1, . . . , p}.

Lemma 1. Sobol [26]: Let X = (XJ ,X J̄) and Y = f(XJ ,X J̄) with J̄ = {1, . . . , p} \ J .
If XJ and X J̄ are independent :

Var(E(Y |XJ)) = Cov(Y, Y X)

with Y XJ

= f(XJ , (X J̄)′) where (X J̄)′ is an independent copy of X J̄ . Copy meaning a
random vector independent of X J̄ with the same distribution.

We can deduce the expression of the index SX
J

when XJ and X J̄ are independent :

SX
J

=
Cov(Y, Y XJ

)

VarY
(5)

A natural estimator consists in taking the empirical estimators of the covariance and of the
variance. Let a N−sample {(Y (1), Y X,(1)), . . . , (Y (N), Y X,(N))} a natural estimator of SX

J

is :

ŜX
J

=
1
N

∑N
i=1 Y

(i)Y XJ ,(i) − ( 1
N

∑N
i=1 Y

(i))( 1
N

∑N
i=1 Y

XJ ,(i))
1
N

∑N
i=1(Y (i))2 − ( 1

N

∑N
i=1 Y

(i))2
(6)

Janon and al. [14] suggest an improvement using a symmetric form:

S̃X
J

=
1
N

∑N
i=1 Y

(i)Y XJ ,(i) − ( 1
2N

∑N
i=1 Y

(i) + Y XJ ,(i))2

1
N

∑N
i=1

(Y (i))2+(Y XJ,(i))2

2
− ( 1

N

∑N
i=1

Y (i)+Y XJ,(i)

2
)2

(7)
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In [14] these estimators are shown to be consistent, and if E(|Y |4) <∞, they satisfy a central
limit theorem. The variance of ŜX

J

is the lowest possible one.

1.2 General framework to reduce the dependent case to the inde-
pendent case

1.2.1 General framework

Let Y = f(X) an input-output system and X = (X1, . . . , Xp). The Pick and Freeze method
is based on the Sobol lemma which requires independent inputs. If XJ = (Xj1 , . . . , Xjq) is a
set of components on which sensitivity is computed, so XJ has to be independent of X J̄ the
set of components not in XJ . To apply the Pick and Freeze method to dependent inputs we
look for a transformation T : Rp → Rp so that there is a pair of independent vectors (V ,W )
such that :

XJ = φ(V ) (8)

X J̄ = ψ(V ,W ) (9)

(φ, ψ) measurable functions giving T with the basic property of equality of σ−algebras :

σ(XJ) = σ(V ) (10)

The equation (10) is equivalent to the existence of φ−1 a measurable function.

Under these conditions, Y has a new expression :

Y = f(XJ ,X J̄)

= f (φ(V ), ψ(V ,W ))

= f̃(V ,W )

So the conditional expectation of Y given the σ−algebra of XJ can be rewritten as :

E
(
f(XJ ,X J̄)|σ(XJ)

)
= E

(
f(XJ ,X J̄)|σ(V )

)
(11)

= E
(
f̃(V ,W )|σ(V )

)
(12)

Thus we can compute SX
J

computing SV with the new expression f̃(V ,W ) :

SX
J

= SV (13)

To apply the Pick and Freeze method to calculate the Sobol index, we apply the Sobol Lemma
1 to the input-output system :

Y = f̃(V ,W )

So, to estimate the index we need to be able to simulate large samples of (V ,W ). The simplest
example is the case of Gaussian inputs.
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1.2.2 The Gaussian case

Let X a Gaussian vector and Y = f(X) a input-output model. The multi-regression of X J̄

onto XJ is written as :
X J̄ = ΛXJ + W (14)

where W is a Gaussian vector independent of XJ and Λ a (p− q)× q matrix given by :

Λ = ΓJ̄J(ΓJJ)−1 (15)

with ΓJ̄J = E(X J̄(XJ)∗) and ΓJJ = E(XJ(XJ)∗).

Thus : {
V = XJ

W = X J̄ − ΛV
(16)

The Pick and Freeze method can be applied to the variables (V ,W ) and the Gaussian vector
W whose covariance matrix is :

E((X J̄ − ΛXJ)(X J̄ − ΛXJ)∗) (17)

can be simulated.

1.3 The conditional quantile method

We now consider a model Y = f(X1, . . . , Xp), X = (X1, . . . , Xp). We suppose that X has a
density g with respect to the Lebesgue measure.

Let:

G(xk|X1 = x1, . . . , Xk−1 = xk−1) = Gk|1,...,(k−1)(x
k, x1, . . . , xk−1)

= P(Xk < xk|X1 = x1, . . . , Xk−1 = xk−1)
(18)

the conditional distribution of Xk when (X1, . . . , Xk−1) are fixed. It results from the existence
of g that all these conditional distributions are well defined.

Lemma 2. Lévy-Rosenblatt [22] : Let (U1, . . . , Up) the random variables defined for 1 ≤ k ≤
p such that :

Uk = Gk|1,...,(k−1)(X
k, X1, . . . , Xk−1) (19)

so (U1, . . . , Up) are uniform and independent random variables.

Proof. The proof is quite obvious

P(U i ≤ u1, i = 1, . . . , p) =

∫
{U,U i≤ui}

. . .

∫
Gp|1,...,(p−1)(x

p, x1, . . . , xp−1) dxp . . .

∫
G1(x1)dx1

=

∫ uk

0

. . .

∫ u1

0

duk . . . du1

by definition of conditional distributions and chain property.
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The formula (19) can be read as : there is a not unique transformation T such that :

(U1, . . . , Up)
T−→ (X1, . . . , Xp)

Every permutation (τ(1), . . . , τ(p)) of (1, . . . , p) gives a transformation T ◦ τ with the same
properties.

We now study T−1, which can be seen as a vector of conditional quantile function.

In order to simplify the definition of inverse functions, we make a (weak) assumption on g.

Let C = closure{x, g(x) > 0} and assume:

g(x) > 0 if x ∈ interior(C) (20)

From (20), Gk|1,...,(k−1)(x
k, x1, . . . , xk−1) is a strictly increasing continuous function from R to

[0, 1] for every (x1, . . . , xk−1). Thus G−1
k|1,...,(k−1) is well defined.

So from (20) we get by induction :

Xk = G−1
k|1,...,(k−1)(U

k, X1, . . . , Xk−1)

= G−1
k|1,...,(k−1)(U

k, X1(U1), . . . , Xk−1(U1, . . . , Uk−1))

noted for simplicity :
G−1
k|1,...,(k−1)(U

k, U1, . . . , Uk−1) (21)

The following lemma is a consequence of (19) and (21)

Lemma 3. The σ−fields σ(U1, . . . , Uk) and σ(X1, . . . , Xk) are equal for every k and we have
the equality of conditional expectations as operators onto L2 (g(x)dx) :

E(·|X1, . . . , Xk) = E(·|U1, . . . , Uk)

Now :

Y = f(X1, . . . , Xp) (22)
= f(X1(U1), . . . , Xp(U1, . . . , Up)) (23)

= f̃(U1, . . . , Up) (24)

and by lemma (3):
SU

1

= SX
1

(25)

where SU
1

is given by
VarE

(
f̃(U1, . . . , Up)|U1

)
Var(Y )

, f̃ given by (24),

When we use a transformation T associated with a specific ordering, say X1, . . . , Xp we can
only compute sensibilities as SX

1

, SX
1X2

, . . . , SX
1...Xp

.
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Thus if we want to compute all first order sensitivity indices SX
k

with k = 1, . . . , p, we choose
an order among the (p− 1)! beginning by Xk.

If we want all second order sensitivity indices we need exactly
p(p− 1)

2
different orders and

so on, if we want SX
j1 ,...,Xjq we have to take an order beginning by (j1, . . . , jq).

The Sobol index SX
J

is defined as
Var

(
E(Y |XJ)

)
Var(Y )

. For every q, J = j1, . . . , jq :

SU
J

= SX
J

(26)

Before studying the estimation of SX
1

let us take the following example :

Example : Let p = 2. The input vector is assumed to be : X = (X1, X2) defined by a
uniform distribution on the triangle:

D =

{
0 ≤ x1, x2 ≤ 1
x1 + x2 ≤ 1

and the input-output model is :

f(X1, X2) = X1 +X2

We compare the index SX
1

calculated directly and the index SU
1

using the transformation T
such that : (U1, U2)

T−→ (X1, X2).

Let us calculate U1 and U2 and deduce X1 and X2 :

U1 = G(X1) = 2X1 − (X1)2 implies X1 = 1−
√

1− U1

U2 = GX2|X1(X2) =
X2

1−X1
11[0,1−X1] so X2 = U2

√
1− U1

The density of f is 2v110<v<1 and its variance
1

18
.

E(X1 +X2|X1) =
1 +X1

2
and Var(

1 +X1

2
) =

1

72
, thus the indices values are :

SX
1

= SX
2

= 1/4

Now if we use the function f̃(U1, U2) = 1−
√

1− U1 + U2
√

1− U1 :

E
(
f̃(U1, U2)|U1

)
= 1−

√
1− U1 +

1

2

√
1− U1 = 1− 1

2

√
1− U1

Var

(
1− 1

2

√
1− U1

)
= 1/72
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So : SU
1

= SX
1

.
But we can notice that SU

2 6= SX
2

. To calculate SX
2

we need to reorder the variables. It
means that :

U1 = G(X2)

U2 = GX1|X2(X1)

Then SX
2

= SU
1

with this notation.

The Hoeffding decomposition of f̃ is obtained by centering
√

1− U1 and U2 :

f̃(U1, U2) =
1

3
− 1

2

(√
1− U1 − 2

3

)
− 2

3

(
U2 − 1

2

)
+

(
U2 − 1

2

)(√
1− U1 − 2

3

)

SU
1,U2

can be interpreted as an interaction sensibility between U1 and U2. The sensitivity
with respect to X2 depends on U1 and U2 so there is no obvious interpretation in (X1, X2).

1.3.1 Pick and Freeze estimation and conditional quantile method

Starting from Y = f(X1, . . . , Xp) we have built a model Y = f̃(U1, . . . , Up) using a transfor-
mation T : U → T (X) from Rp to Rp which uses a specific order on {1, . . . , p}.
If τ is a permutation of 1, . . . , p then T ◦ τ gives the same f̃ which is permutation invariant.

f̃ can be considered as the intrinsic model associated to f . It is the only model with i.i.d
uniform variable inputs giving the same output Y . Now this model has a Hoedfding form
which is the intrinsic Hoeffding form.
In fact we use this form to define the Pick and Freeze method.

Thus the algorithm to estimate SX
1

is as follows:

1. Simulate (p − 1)−samples (U2,(i))′, . . . , (Up,(i))′), i = 1, . . . , N of uniform independent
variables.

2. Main step: Solve equations recursively :

Gk|1,...,k−1((xk,(i))′, (x1,(i))′, . . . , (xk−1,(i))′) = (Uk,(i))′ i = 1, . . . , N

Let (Xk,(i))′ be the solution, k = 2, . . . , p ; i = 1, . . . , N and for
k = 1, G1(X1,(i)) = U1,(i)

The Newton or Quasi Newton method is easy to apply here to solve these one dimensional
equations, for Gk|1,...,k−1 are continuous, strictly increasing functions of xk ([12]).

3. Compute Y (i) and Y XJ ,(i) using as inputs (X1,(i), . . . , Xp,(i)) or
(X1,(i), (X2,(i))′, . . . , (Xp,(i))′)

4. With these outputs we can estimate ŜX
1

using formula (6) or (7).
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Algorithm 1 Quantile method
Require: N,Gi|1,...,(i−1) for all i = 1, . . . , p
1: U = matrix(0, ncol = N, nrow = p) ; U ′ = matrix(0, ncol = N, nrow = p)
2: X = matrix(0, ncol = N, nrow = p) ; X ′ = matrix(0, ncol = N, nrow = p)
3:
4: U ∼ U {Simulation of a sample of Uniform variables of size N}
5: U ′ ∼ U {Simulation of a second sample of Uniform variables of size N}
6:
7: X[1, ] = Solve (G1(X) = U [1, ])
8: X ′[1, ] = X[1, ] {X[1, ] is frozen}
9: for i = 2 to p do

10: for j = 1 to N do
11: X[i, j] = Solve

(
Gi|1,...,(i−1)(X) = U [i, j]

)
12: X ′[i, j] = Solve

(
Gi|1,...,(i−1)(X) = U ′[i, j]

)
13: end for
14: end for
15:
16: Y = η(X) {Sample of size N with the variable X1[1, ] frozen}
17: Y X = η(X ′) {Sample of size N with the variable X1[1, ] frozen}
18: return Y, Y X

Remark 1. The use of conditional quantile functions is the most general key to simulate any
random vector. If Gk|1,...,k−1 is known for every k, it can be possible to simulate X(i) using the
simulation of U (i) = (U1,(i), . . . , Up,(i)) then solving this equation recursively :

Gk|1,...,k−1(xk,(i), X1,(i), . . . , Xk−1,(i)) = Uk,(i)

when the solution is X1,(i).

Remark 2. In the Gaussian case, the independence is obtained by using the properties of the
Gaussian distribution as said. In fact, the choice of uniform distribution is arbitrary, one can
choose any fixed by advance distribution, for instance Gaussian. The functions φ1, . . . , φp are
in the Gaussian case linear and T is simply a linear transformation given as follows.

For Gaussian distribution, we define sequentially [22] :

G(xk|x1, . . . , xk−1) = φ

(
xk −mk +

∑k−1
j=1(Ckj/Ckk)(x

j −mj)√
C/Ckk

)
(27)

where Cr
kj is the cofactor of Ckj in Cr when Cr is the restriction of the covariance matrix

C = (Ckj)k=1,...,p; j=1,...,p to 1 ≤ j, k ≤ r

Remark 3. We have detailed two methods to get the application :

T (XJ ,X J̄)→ (V ,W )

with (V ,W ) independent and with : σ(V ) = σ(XJ). Other methods can be of course used,
for instance Mara and al. [20].
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1.4 Applications of the two methods to meta models associated to
constrained copulas

Copulas are used to build metamodels when the information extracted from the data is incom-
plete. The information is the p repartitions F 1, . . . , F p of the p random variables of interest
(such as the input in an input-output system) ([21],[24]). The basic representation is :

Proposition 1. [24] If F 1, . . . , F p are the distribution functions of X1, . . . , Xp, then if F is
the distribution function of X , there is a function C such that :

F (x1, . . . , xp) = C(F 1(x1), . . . , F p(xp)) (28)

If F i admits a probability density f i then C admits on Rp the probability density c =
∂pC

∂x1 . . . ∂xp

Gaussian copulas associated to uniform distributions (see for instance [2]) are the most popular
.

Let a Gaussian vector Z = (Z1, . . . , Zp) whose correlation matrix is Υ.
Let Φ the standard Normal cumulative distribution :

X i = Φ(Zi) (29)

X = (X1, . . . , Xp) is a random vector with Uniform components defining completely the
uniform Gaussian copula.
Of course it can be an arbitrary choice in the set of probabilities defined on Rp with p uniform
marginals, but the copula can be constrained by a specific choice of Υ. We suppose from now
on that the p× p matrix R = (Ri,j) i=1,...,p

j=1,...,p
defined as :

Ri,j = Cor(X i, Xj) =
E(X iXj)− E(X i)E(Xj)√

Var(X i)Var(Xj)
(30)

is given and thus we want to choose Υ = (Υi,j) i=1,...,p
j=1,...,p

(the correlation matrix of the Gaussian
vector Z) so that R is the correlation matrix of X.

By a calculation of the type :

E(X iXj) =
1

2π
√

1− (Υi,j)2

∫
Φ(Zi)Φ(Zj) exp

− 1

2(1−(Υi,j)2)
((Zi)2−2Υi,jZiZj+(Zj)2

dZidZj (31)

R and Υ are linked by a simple form [1]:

Υi,j = 2 sin

(
πRi,j

6

)
(32)

Note that |Υ| = 1⇔ |R| = 1, Υ = 0⇔ |R| = 0.

Numerically :
Υi,j = 1.047Ri,j − 0.047(Ri,j)3 (33)

is a good approximation. Thus this correspondence between Ri,j and Υi,j is well defined. R
is given as a correlation matrix but nothing says that (in p dimensions) Υ = (Υi,j) i=1,...,p

j=1,...,p
is a

correlation matrix (positive type matrix). This point is related to the following definition.
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Definition 1. Let (F i)i=1,...,p a family of marginal distributions and R a correlation matrix.
We say that ((F i)i=1,...,p, R) is feasible as a Gaussian copula if and only if there is a Gaussian
vector Z = (Zi)i=1,...,p whose correlation matrix is Υ, satisfying :

X i = (F i)−1(Φ(Zi)) for i = 1, . . . , p (34)

where X has R as correlation.

We don’t discuss here the problem of feasibility. If Υ is not positive it is possible to find
correlation matrices "close to" Υ ([11]).

We now want to illustrate what happens for sensitivity values for different choices of con-
strained copulas.

Sensitivity is estimated by the Pick and Freeze method in all the cases. We have selected
the model of Ishigami, a classical toy model in sensitivity and optimisation studies defined as
follows :

Y = sin(X1) + 7 sin(X2) + 0.1(X3)4 sin(X1) (35)

(X1, X2, X3) have a uniform distribution with support [−π, π].

The correlation matrix given is :

1 0 ρ
0 1 0
ρ 0 1

 and X2 is supposed (to simplify) to be indepen-

dent of the pair (X1, X3). We consider two distributions :

• case 1 :the Gaussian copula

• case 2 : the copula given by this density probability :

fα(x1, x2, x3) =
1

8π3
(11[−π,π]2(x1, x3) + αx1x3 (36)

fα is a density probability if |α| ≤ 1

4π2
. This condition implies that :

ρ = E(X1X2) =
4π3α

3
thus |ρ| ≤ π

9
.

The sensitivity values are calculated by applying the method of conditional quantile and the
results are discussed with respect to different ρ values.

Case 1 : Gaussian copula :
Zi, i = 1, 2, 3 are defined by :

X i = π(2Φ(Zi)− 1)

where X i is uniform on [−π, π]. The correlation ρ′ of Z1, Z3 is given by :

ρ′ = 2 sin(
πρ

6
)

12



Following our previous results in section 1.2.2 we write the Ishigami model with independent
Gaussian variables Z1, Z2,W .
Z1 is defined by : (29) and W by regression :

Z3 = ρ′Z1 +
√

1− (ρ′)2W with W ∼ N (0, 1)

Thus the input-output system is now :

Y = sin(π(2Φ(Z1)−1))+7 sin(π(2Φ(Z2)−1))+0.1
(
π(2Φ(ρ′Z1 +

√
1− ρ′2W )− 1)

)4

sin(π(2Φ(Z1)−1))

(37)
As X1 X2 are independent we know that SX

1

= SZ
1

and SX
2

= SZ
2

.
To compute SX

3

we need to use the regression Z1 = ρ′Z3 +
√

1− ρ′2W in the Ishigami output
Y .

Results related to ρ are plotted in figure : 1.

ρ = 0 corresponds to the case of independent variables. If ρ = 1, SX
1

= SX
3

.

Case 2 : fα copula :
The conditional quantile method is used to calculate the indices. First as X1 and X2 are

independent variables we have :

U1 =
X1/π + 1

2

U2 =
X2/π + 1

2

U1 and U2 are uniform independent variables.
U3 is defined such that :

U3 = FX3|X1(X3) =
1

2π
(X3 + π) + παX1 (X3)2 − π2

2

U3 is a uniform variable independent from U1 and U2.
Thus :

X3 =
−1 +

√
1− 8π2αX1(1− π2αX1 − 2U3)

4απX1
(38)

The canonical formula for the Ishigami and the input given by the α−copula is obtained by
the substitution in (35). With this order 1, 2, 3 we can calculate the indices SX

1

, SX
2

, SX
1X2

(X1 and X2 are independent in this case). If we want to compute SX
3

we have to resume our
work choosing the order (3, 2, 1) for example :

U1 =
X3/π + 1

2

U2 =
X2/π + 1

2

13



and thus U3 is defined by :

U3 =
1

2π
(X1 + π) + παX3 (X1)2 − π2

2

The results are given in figure : 1. We can only compare the results for 0 ≤ |ρ| ≤ π

9
, for

instance in table : 1

These results show that the practitioner has to be cautious with the use of models with
incomplete information when sensitivities are computed. Correlation does not give, in any
case, a very good information on dependences when we compute the sensitivity of different
inputs. For a same correlation we get different copulas, which gives very different sensitivity
results.

ρ SX
1

SX
2

SX
3

copula fα 10−7 0.31 0.44 0
copula fα π/9 0.36 0.40 0.46

Gaussian copula 0 0.31 0.44 0
Gaussian copula π/9 0.30 0.50 0.08

Table 1: Sensitivity for Gaussian copula and fα copula, for different values of ρ

Figure 1: Sensitivity indices for different values of ρ′ applied to the Ishigami model for the
Gaussian copula and the fα copula

14



2 Sensitivity for vectorial stochastic process inputs

2.1 Sensitivity for vectorial stochastic process inputs and memories

Suppose that we consider an input-output system :

Yt = ft(X t, . . . ,X t−k, . . . ,X0), t ∈ N (39)

In the following section the following notations are chosen :

• (X t)t∈Z = (X1
t , . . . , X

p
t )t∈Z a stochastic vectorial process of size p.

• If J = {j1, . . . , jq} ⊂ {1, . . . , p} and J̄ = {1, . . . , p}\J , XJ
t = (Xj1

t , . . . ,X
jq
t ) is a process

of dimension q

• Xt,t−k = (X t,X t−1, . . . ,X t−k) a p× (k + 1) matrix.

• Γi,js,v = E(X i
sX

j
v)

• Γi,jbs,tc,v = {Γi,ju,v, s ≤ u ≤ t} a vector of dimension (t− s+ 2) whose generic term is Γi,ju,v.

The output process at time t depends on its past instants Yt−h and also the past instant of
the input process X t−k. Due to this phenomenon of memory, it is not wise to calculate the
sensitivity of the instant at time t in relation to the input at time t but to calculate the
sensitivity with respect to Xt,t−k.

Definition 2. k−sensitivity
The k−sensitivity is the Sobol index of Yt with respect to XJ

t,t−k for 0 ≤ k < t.
It is defined by :

SX
J

t,k =
Var

(
E(Yt|XJ

t,t−k)
)

Var(Yt)
(40)

The index is measured as the ratio of the conditional expectation of Yt when (XJ
t , . . . ,X

J
t−k)

is fixed on the total variance Yt.

The σ−algebra of functions σ(XJ
t , . . . ,X

J
t−k) increases when k increases. So :

0 < SX
J

t,k < 1 and SX
J

t,k−1 ≤ SX
J

t,k

The instantaneous sensitivity corresponds to k = 0.

Definition 3. Total sensitivity :
The total sensitivity is the sensitivity taking into account the whole past of the input XJ

t .
It is thus defined as :

SX
J

t =
Var(E(Yt|XJ

t ))

Var(Yt)
. (41)

It corresponds to k = 0.
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So, we have :
SX

J

t ≥ SX
J

t,k 0 ≤ k ≤ t

SX
J

t,k is an increasing function of k. When k tends towards infinity SX
J

t,k converges to SX
J

t .
In practice we choose k as the value from which the index SX

J

t,k does not increase in a significant
manner. This heuristic value k is called useful memory in terms of sensitivity. So the definition
is :

Definition 4. Let ε > 0 fixed. The ε−useful memory is defined as :

kε = inf
{
k, SX

J

t,h − SX
J

t,k ≤ ε, h > k
}

(42)

In applications, ε is of course chosen considering the fit quality of the input and also the
statistical errors made when estimating SX

J

k .

2.2 Stationary case

The input-output system (X t, Yt) defines a stochastic process with values in Rp × R. We
consider now the case where this process (X t, Yt)t∈N is stationary. This implies that (Yt)t∈N
and (X t)t∈N are stationary stochastic processes.

We distinguish two special cases :

• Yt = f(X t, . . . ,X t−h), h is the memory and (X t)t∈N is a stationary system. h is fixed
and f non depending on t

• There is a stationary process Y ?
t (Bernoulli shift process) such that Y ?

t = f(U t, . . . ,U 0,U−1, . . . )
is a stationary process and we consider the process associated :
Yt = ft(U t, . . . ,U 0) = f(U t, . . . ,U 0, 0, . . . )

For example :

Yt = αYt−1 +

p∑
k=1

βkX t−k

and :

Yt =
∞∑
h=0

αhβkX t−k−h

and thus it satisfies (39).

For the h memory stationary process, the invariance by translation implies that SX
J

t,k is inde-
pendent of t for every k and thus the total sensitivity SX

J

t is an increasing sequence :

lim
t→+∞

SX
J

t = lim
t→+∞

lim
t→+k

SX
J

t,k (43)

For the Y ?
t process associated to a linear Bernoulli shift we prove in [] that lim

t→+∞
SX

J

t = SX
J

∞

where SX
J

∞ is a constant. We conjecture that this result is true for a large class of non linear
Bernoulli shifts.
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2.3 Stochastic Gaussian processes

We can apply to Gaussian processes the Pick and Freeze method introduced in section 1.2.2.
To compute for instance SX

J

t,k we use the decomposition :

XJ̄
t,t−k = Λbt−k,tc,bt−k,tcXJ

t,t−k + Wt,t−k (44)

with Λt,t given by :

Λbt−k,tc,bt−k,tc =
(
ΓJJbt−k,tc,bt−k,tc

)−1
ΓJJ̄bt−k,tc,bt−k,tc (45)

ΓJJbt−k,tc,bt−k,tc is invertible.

For each t we apply the Pick and Freeze method to :

Yt = ft(XJ
t ,Λbt−k,tc,bt−k,tcXJ

t,t−k + Wt) (46)

= gt(XJ
t ,Wt) (47)

with XJ
t and Wt independent vectors.

2.3.1 Example of toy models for Gaussian inputs

We study two stationary non linear toy models given by:

Yt = 0.5Yt−1 + 0.3X1
tX

2
t (48)

Yt = X1
tX

2
t − arctan(X2

t ) (49)

X1
t , X

2
t is a V AR(1) stationary process given by:(

X1
t

X2
t

)
=

(
0.1 0.4
0.8 0.2

)(
X1
t−1

X2
t−1

)
+ ωt (50)

where ωt is a stationary Gaussian noise of covariance matrix Θ =

(
0.1 0
0 0.1

)
.

Indices are estimated with samples of size N = 10000. Results are given in figures : 2.3.1 and
2.3.1.

All the indices converge quickly to a constant. The useful memory, that is to say the time when
the index does not change significantly, is different according to the model and the variable.
It is k = 4 for the model (48) and k = 2 (variable X1) or k = 3 (variable X2) for the model
(49).
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Figure 2: Plot of Sobol indices applied to model (48) in function of k .

Figure 3: Plot of Sobol indices applied to model (49) in function of k.
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2.4 Sensitivity and meta-models for non Gaussian vectorial process
inputs

2.4.1 Non Gaussian model

A lot of variables have probability laws that are not Gaussian. For example climatic variables
(temperature, wind) heating or energy source variables are usually bounded. If we want to
study the impact of extreme cold or even a wave of heat on the indoor temperature, we cannot
use Gaussian variables because they have too heavy tails. It is the same for phenomena which
present two main values. The density of the variable, in this case, is not Gaussian but bimodal.

Starting from data, the construction of a non Gaussian stochastic process is difficult and all
the more in a multivariate context. Thus, as often in these situations, a metamodel must
be chosen. It must take into account some of the information which can be extracted from
the data and which seem the most important to the practitioner. These informations can be
qualitative or quantitative or mixed. For instance these informations concern :

• the marginal distribution of the inputs

• the time dependence structure

For marginal distributions, qualitative information is, for instance, the number of modes (im-
portant regimes). The semi-qualitative information is for instance the boundedness of the
support of the distribution. The quantitative informations can be the mean, the variance,the
skewness, the kurtosis. Information on dependence can be translated in terms of some cor-
relation coefficients or in terms of Markovian properties. Once these properties extracted or
estimated from the data we have to choose the input model and to be sure concerning our
goals that it allows to compute sensitivities with a quite good approximation. This last point
is of course an important constraint to build a metamodel of input, when we want to study
sensitivity.

The most classical problem is the following, which can be set in terms of constrained copulas :
suppose we want to build a stationary input model X t with fixed marginals (F 1, . . . , F p) and
some fixed correlations for instance : Cor(X t,X t) andCor(X t,X t−1). These correlations are
in fact the correlations estimated with the data. The fixed marginals can be estimated using
the data in a parametric family, large enough to take into account qualitative and quantitative
properties according to the practitioner’s experience on sensitivity.

Correlations are estimated empirically and require less data. Thus we need to choose a family
parametrized for instance by the first four moments of the distribution, flexible enough to allow
properties as : boundedness, bimodality, light and heavy tails. This is the case of some families
such as Pearson or Johnson [16]. Their properties in relation with our work are detailed in
the appendix.

Let the correlation matrices Rq defined by :

Rq = Cor(X t,X t−q) for 0 ≤ q ≤ Q
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Definition 5. Let R = {Rq, 0 ≤ q ≤ Q} a correlation matrix given. We say that it is a
problem (F ,R) feasible if there is a stationary stochastic process X t such that its p marginals
are given by F and the Q+ 1 first correlations are given by R.

Until to day there are no complete results on this problem [4]. The most usual way is to try to
build a metamodel associated to a Gaussian one (modified to be feasible) and which moreover
allows to compute sensitivity indices.

The given information on X t is (F 1, . . . , F p) the p marginal distributions of the stationary
process X t and the correlation matrix R = {Rq, 0 ≤ q ≤ Q} with Rq = (Ri,j

q )1≤i,j≤p.
Let Zt∈Z a Gaussian stationary process defined by :

Zi
t = (Φ−1 ◦ F i)(X i

t) (51)

We look for the correlation matrix Υ = (Υ0, . . . ,ΥQ) of Zi
t in order that :

Υi,j
q = Cor

(
((F i)−1 ◦ Φ)(Zi

t), ((F
j)−1 ◦ Φ)(Zj

t−q)
)

= Ri,j
q (52)

This can be easily done by computing integrals analogous to (31), taking Υi,j
q instead of Υi,j.

Thus Υ is now fixed. If Υ is a positive definitive matrix, it gives the first Q correlation of the
process Zt. We discuss later the case when Υ is not positive definite.

The class of stationary Gaussian VAR(Q) processes can be associated to Υ. This class has
the property to allow easy computations of sensitivities by the Pick and Freeze method.

Let
Zt = A1Zt−1 + · · ·+ AQZt−Q + ωt

with E(ωtω
∗
t ) = Θ, ωt being a Gaussian white noise.

A1, . . . , AQ can be quite easily computed from (Υ0, . . . ,ΥQ) and Θ. Zt defines a VAR(Q)
Gaussian process, which is the VAR(Q) Gaussian copula associated to X t by :

X i
t = (F i)−1 ◦ Φ(Zi

t) (53)

It may happen that Υ is not a correlation matrix (matrix not positive definite) leading to a
stationary process Zt. There are, until to day, only empirical methods ([3],[2]) to overpass
this obstacle. The most efficient is to take a smaller Q (in general Q is chosen by an Akaike
criterion) and to change R slightly.

Now to compute the sensitivity, we use the following basic facts : (F i)−1 ◦ Φ is a monotone
function, for every (t1, . . . , tq) and (j1, . . . , jq) for every q.

Thus we have the equality of σ−algebra :

σ(Zj1
t1 , . . . , Z

jq
tn) = σ(Xj1

t1 , . . . , X
jq
tn) (54)

Let Yt the output of the system :

Yt = f(X t,X t−1, . . . ,X t−k)
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for instance then :

Yt = f(T−1(Zt), . . . , T
−1(Zt−k))

= f̃(Zt, . . . ,Zt−k)

where T (Zt) =
(
(F i)−1 ◦ Φ(Zi

t)
)
i=1,...,p

Thus :

E
(
E
(
Yt|σ(X1

t , . . . , X
1
t−s)
)2
)

= E
(
E
(
Yt|σ(Z1

t , . . . , Z
1
t−s)
)2
)

(55)

for every s.

We can compute : E
(
Yt|σ(X1

t , . . . , X
1
t−s)
)
using the Pick and Freeze method already defined

for the Gaussian process (Zt)t∈Z in section 2.3.

Let us give an example.

2.4.2 Example

We study a non linear stationary model given by:

Yt = 0.5Yt−1 − 0.2 sin(U2
t ) + 0.2U1

t (56)

where U t is a stationary process with Uniform components. We suppose that the correlation
matrices are :

R0 =

(
1 R12

0

R12
0 1

)
=

(
1 0.39

0.39 1

)
RU

1 =

(
1 R12

1

R12
1 1

)
=

(
1 1.37

1.37 1

)

The correlation matrices of the Gaussian process must verify : Υij
k = 2 sin(

πRij
k

6
), where Υ is

the correlation of the process such as : Zi
t = Φ−1(U i

t )

So :

Υ0 =

(
1 0.41

0.41 1

)
Υ1 =

(
1 1.32

1.32 1

)
One of the corresponding Gaussian processes might be :

Zt =

(
0.1 0.4
0.8 0.2

)
Zt−1 + ωt

where ωt is a Gaussian noise of covariance matrix Θ =

(
0.1 0
0 0.1

)
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Figure 4: Plot of Sobol indices applied to model (56)

So to apply the Pick and Freeze method, the model used is :

Yt = 0.5Yt−1 − 0.2 sin(Φ(Z2
t )) + 0.2Φ(Z1

t )

where Φ is the distribution function and Z a Gaussian process defined as previously. To
separate the variables, we use the method developed in section 2.3.

The results are present in figure : 2.

3 Conclusion

We give a general framework for computing sensitivities for dependent inputs. In the static
case, for dependent inputs the definition of the sensitivity indices remains the same as for
independent inputs. But in the dynamic case, in order to take in consideration the temporal
dependence, the definition is slightly modified. We take into account the notion of memory
related to sensitivity, "memory" being used in the Physical sense. In the stationary case, the
index converges to a constant. The useful memory is the instant when the index does not
change.

We study transformations in the input whose image is an input with independent components.
These transformations have been detailed. They have the basic property to give the equality
of the σ−algebra between a subset of inputs and their image. This property allows to use the
Pick and Freeze method to get the sensitivities.
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When the inputs are Gaussian we first consider the static case, then the dynamic case. In
both cases the transformation consists in separating the inputs into tow groups of independent
variables.

When the inputs are not Gaussian, in the static case we use the conditional quantile functions.
They are a nodal point for the sensitivity studies and simulations. This method is the same
as the one used to simulate random vectors in general. The output Y takes the canonical
form Y = f̃(U1, . . . , Up) where (U1, . . . , Up) are p uniform independent random variables.
This canonical form allows to apply the Pick and Freeze method but also all the more or less
classical methods to compute sensitivity starting from Hoeffding formula.
We have to take precautions with the order in which we calculate the index. When we want
to calculate the index of each variable we have to start with the variable listed first and then
reorder the list and so on for the other variables.
In the dynamic case we use the metamodel copula to go back to the Gaussian case. The
metamodel chosen is an extension of the Gaussian copula applied to stochastic processes. The
correlations used for the metamodel of the non Gaussian process X t are those between X t

and X t−1,X t−2, . . . . These correlations define the dynamics of the process. A formula links
the correlations of the non Gaussian process and the correlations of the Gaussian process on
which we can apply the Pick and Freeze method.
In practical situations the notion of metamodel copula has to be managed carefully. For
the Ishigami example we have shown that the correlation used to represent the dependence
between variables can be very weak for sensitivity studies. In the case of stochastic process
inputs and sensitivity estimation the same caution is required. The specification of inputs
becomes in application very important and difficult. Metamodelisation can be improved using
some quantitative and qualitative information, essential for the practical problem and which
can be extracted from the input data. For instance, for a practitioner, instead of using the
complete probability distribution of the inputs, the information can be summarized by the
mean, the variance, the skewness and the kurtosis of all the marginal functions of the inputs.
This is the case for the copulas with Johnson (or Pearson) distribution.
Finally, we could apply the conditional quantile function method to a dynamic case but if the
processes have a too important memory the computation is heavy.

4 Appendix

Processes having marginal distributions from the Johnson translation system are defined by a
cumulative distribution function FX such as:

FX(x) = Φ(γ + δf |(x− ξ)/λ|) (57)

where γ and δ are shape parameters, ξ location parameter, λ a scale parameter and f()̇ is one
of the following function :
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f(y) =


log(y) lognormal family
log(y +

√
y2 + 1) unbounded law

log(
y

1− y
) bounded law

y normal family

(58)

Φ being the Gaussian repartition. (γ, δ, ξ, λ) system is equivalent to the mean, variance,
skewness, kurtosis one. The maximal number of modes is 2.

Let X a random variables with distribution F and Z a Gaussian normal variable such that :

F (X) = Φ(Z) (59)

equality between uniform variables.

If X is a Johnson distribution thus Z = γ + δf(
X − ξ
λ

) or X = ξ + λf−1(
Z − γ
δ

) well defined
for f is a strictly increasing function. These formula are of course simpler than (59).

Thus the construction of the metamodel is done estimating from the data for every j ;
(fj, ξj, γj, λj, δj). We have at this stage taken into account the main qualitative features
of every F j, j = 1, . . . , p (maximum likelihood can be the tool for estimation).
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