
HAL Id: hal-01194777
https://hal.science/hal-01194777

Submitted on 7 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Language for Writing System Specifications in an
Aeronautical Context

Benoît Lebeaupin

To cite this version:
Benoît Lebeaupin. A Language for Writing System Specifications in an Aeronautical Context. Re-
quirements Engineering Conference (RE), Aug 2015, Ottawa, Canada. �hal-01194777�

https://hal.science/hal-01194777
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A Language for Writing System Specifications in an
Aeronautical Context

Benoît Lebeaupin
Laboratoire de Génie Industriel

École Centrale Paris
Grande voie des Vignes, Châtenay-Malabry, France

benoit.lebeaupin@centralesupelec.fr

Abstract—The ambiguity of natural language is an issue which
predates requirement engineering. This issue is, in the general
case, obviously unsolvable, nor actually needing a solution.
However, we think that in particular contexts, it is feasible and
desirable to reduce the ambiguity of free text specifications. We
look at how specifications are actually handled in a company to
be able to propose an useful but not too disruptive method for
writing better specifications. We are currently developing and
investigating how to validate this method.

I. INTRODUCTION

Requirement engineering (RE), even if it is a relatively
young field, is quite a vast subject with different subfields
which can refer to various sciences such as computer science,
ethnography and logic. The aim of the present work is to
facilitate communication between actors who want to build
complex systems which can comprise both software and
physical parts, particularly in an aeronautical context, and could
therefore be classified as of type 1.1 in Zave’s classification
[1].

For example, an aircraft manufacturer may want to buy
landing gears from another company, an original equipment
manufacturer (OEM). To do so, the aircraft manufacturer sends
a specification document to the OEM stating what the landing
gear system shall or shall not do. The OEM itself may want to
decompose the landing gear into several subsystems, and buy
these subsystems from other parties or build them in-house
with different teams, requiring other specification documents.
Complex systems can thus be incrementally divided into smaller
parts which can be more easily designed by specialized teams.

A specification document is the way to tell the supplier what
the buyer exactly wants and is a part of the contract engaging
both parties. Obviously, it should be made the less ambiguous
possible. However, it should also be readable easily by a lot
of different persons, including aircraft certification authorities.
Thus specifications need, at least for the near future, to be
written mainly using natural language. Companies complain
about the ambiguity of natural language and estimate that it is
a major problem but cannot easily do without it.

This work aim to answer to the question “how to write
less ambiguous specifications, which are however still under-
standable and writable easily, more processable by computers
and more easily reusable ?” Eventually, we may wonder how
we can avoid using natural language. The systems we want

to specify can theoretically be anything, but practically, this
work focuses on systems which include both physical (e.g.
motors, brakes, hydraulic components...) and software parts
and which interact mainly with other technical systems (rather
than humans for example).

There are several technical challenges associated with the
question in the previous paragraph: they focus on an interface
between formal (what the system can or cannot do) and the
informal (human communication during the requirement engi-
neering process) and such interfaces are always complicated.
We also want to be able to develop a method which is useful
but which does not disturb too much existing processes and
training, or it simply will not be used in the industry. Another
challenge is the difficulty of evaluating the usefulness of such
a method.

In the following section, we will look at what previous works
in the field proposed to reduce specifications’ ambiguity and
why we think it is not adapted to the industry needs in this
particular case. In the section 3, we introduce our contribution
which focuses on the inputs and outputs of systems. The section
4 raises the complex problem of validation in the field of RE.
Eventually, we conclude and look at various perspectives which
could stem from our work.

II. RELATED WORK

We should begin by stating that “requirement engineering”
covers a lot of different things. For example, the “require-
ments” as the atomic components of an aeronautical system
specification have few things in common with the high-level
“goals” of Goal-Oriented Requirements Engineering (GORE)
in a software engineering context. A large part of research
works (such as i* [2] or KAOS [3]) in the RE domain thus
concern a different part of the RE process compared to what
we need for this work.

Another discrepancy is that, understandably when we look at
the origin of the field, most of RE works concern software-only
systems, but the systems we focus on are physical systems
which may include software. What differences does it make?
Firstly, software systems are usually considered as discrete and
various RE methods are based on this (such as the transition
axiom method [4], or Event-B [5]), but the inputs and outputs of
a motor or the ambient temperature for example, are continuous
and are better modeled as continuous. Another difference is



that physical systems directly interact with the physical world,
which adds less predictable and less formalizable parameters.

The matter of formalization is something important in
specification because it is closely linked to ambiguity: a formal
language is usually non ambiguous, but is using a formal
language the only option to communicate unambiguously?
One obvious problem is that a formal language allows to
communicate only with those who know it. Another problem
is that because of complex interactions with the physical world,
system engineers usually agree that a completely formalized
physical system specification is impossible. Thus we did not try
to develop a self-contained, completely formal language such
as Event-B, but rather tried to create something less ambiguous
than free text, but more expressive than a formal language.

One of the ways to make natural language less ambiguous
is to restrict it, for example by using templates such as “The
system shall do something with a given level of performance
in a given context” [6]. It is a general advice often found in
RE fundamentals books, however books’ authors themselves
warn against its mandatory use. In [7], the authors propose 5
templates which can be composed to support the writing of
various requirements.We think that these kinds of templates
are both too generic because they may not help engineers a
lot and too restrictive because a lot of requirements do not fit
the templates.

Controlled Natural Languages (CNL) are restrictions of
natural language by various means, depending on the type
of CNL. We can identify two main type of CNL:

• “Simplified” or “technical” languages such as Simplified
Technical English (STE) [8] are made to facilitate human
communication, particularly for non-native speakers, and
are used, for example, for technical documentation.

• “Logic-based” languages such as Attempto Controlled
English (ACE) [9] aim to facilitate human-computer
communication

Both types of languages have usually a controlled vocabulary,
composed of predefined words (which are close to protected
words in programming languages) and content words, defined
by the user. These languages also restrict the syntax, but using
different rules, adapted to the language purpose: For ACE, we
can only write sentences which are automatically and unambigu-
ously translatable into first-order logic, easily “understandable”
by a computer, whereas for “technical” languages, we could
have rules such as “sentences will be composed of less than
15 words”, since long sentences are harder to understand for
humans. Our work is closely related to “logic-based” languages:
we essentially search to have a language of this type which
includes the needs of requirement engineers.

The authors of [10] automatically extract models from
textual requirements and check that these models satisfy certain
properties. This “lightweight formal method” is interesting and
relatively economical, however it seems to need requirements
which use a very precise language and are highly structured
and regular. The aim of our work is to be able to write this
kind of requirement with the less additional cost possible.

Our work builds upon various sources1, among these, an
interesting article is [11], which will be mentioned several
times in the next section. We however did not find a lot of
works focusing on the precise needs presented here, even
if there is a real industrial demand for such methods and
tools. The CRYSTAL [12] project is focusing on this aspect:
ontologies and patterns are used to obtain less ambiguous
and more processable requirements [13]. We believe our
work is different and complete these efforts by proposing
a more flexible approach than static, predefined patterns and
by requiring less effort than the construction of a complete
ontology before beginning to write a specification.

III. CONSIDERATIONS ON SPECIFICATION WRITING

A. Observations and First Goals

Together with a literature search, we began our work by
analyzing specification documents sent to or written at Safran
and by discussing with the persons responsible of requirement
engineering in the company. The following observations are
thus obviously not representative of the state of the art of
academic RE, but we think they represent reasonably well
what actually happen in the industrial context presented earlier.

• It is practically impossible to write a non-trivial, com-
pletely formal specification.

• It is however possible to rewrite at least some parts of
existing specifications to make them less ambiguous.

• This kind of specifications is created using preexisting
work, such as client specifications and engineering studies.
The usual step of requirement elicitation is largely absent,
at least at the OEM level.

• We often find the same, or almost the same, requirements
in different specification documents.

• There are confusions between requirements, assumptions,
and “hypotheses”, where assumptions, in the sense of [11],
“describe the environment as it is in the absence of the
machine or regardless of the actions of the machine” and
hypotheses are implementation biases: suppositions the
customer makes about the design of the system.

We think that writing “better” requirements will allow us
not only to have more readable individual requirements, but
will also make the complete process easier (for example, to
determine if some given requirements should be linked to other
lower- or higher-level requirements).

How can we write “better” requirements? The first axis we
identified is to write two equivalent things the same way. It
applies of course to the vocabulary (for example, if the studied
system is a landing gear, it should not be called “the system”
in a requirement and “the landing gear” in another), but also
to syntax2:

• “The system shall transition from
OFF to STANDBY state when all the

1including internal methodology at Safran
2We will see later that the “states” mentioned here are not a good practice

in RE, but it does not change the pertinence of the example



following conditions are met: -1) The
signal ON is true -2)...”3

and
• “The system shall transition into
STANDBY state when all the following
conditions are met: -1) the OFF state
is true -2) The signal ON is true
-3)...”

are strictly equivalent, but written differently.
How then can we determine if two things are equivalent?

Basically, if they refer to the same “concept”. This is related
to what Zave and Jackson call a “designation” in [11], an
informal explanation of a term. Additionally, since we agree
with their statement that “a specification should contain nothing
but information about the environment”, what kind of concepts
can be mentioned in a specification? Zave and Jackson classify
“actions”4 into three different types:

• environment-controlled and unobservable by the system,
• environment-controlled and observable by the system,
• system-controlled and observable by the system.

They consider that actions cannot be controlled by the system if
it cannot observe them. Additionally, we think that unobservable
actions are not relevant to specifications: if we need to mention
something in a specification, then it must have an impact on
the system. If this impact can be unambiguously traced back to
observable actions controlled by the environment, it should be
done to clarify the specification instead of having unobservable
actions. If this impact cannot be traced back to observable
actions controlled by the environment, then it means either
there is no impact, or we do not know it and this will cause
ambiguity.

We therefore want to restrict what is present in a speci-
fication to the part of environment which directly interacts
with the system. The distinction inputs/outputs (environment-
controlled/system-controlled) is less absolute for physical
systems than it may be for software5, but it is still a practical
way to describe things, so we will use these terms in the rest
of the paper.

B. A Proposition of Formalization

Concretely, how can we use what is presented earlier to write
less ambiguous specifications? We consider that each require-
ment is a boolean formula, basically: “if we have such proper-
ties on the inputs, we want such properties on the outputs”. The
system respects the specification if all requirements are true.
Attached to each input/output (I/O) would be values, such as
false/true for discrete signals, or rotational speed, torque or cur-
rent for physical I/O. Using, for example, relational operators,
we can write atomic formulas and compose them using boolean

3Sentences written in this font are requirements or parts of requirements,
usually taken from an industrial specification document. They were modified
to make them generic for obvious intellectual property issues

4Once again, this is a software, event-based point of view, in our context,
“action” could be replaced roughly by “property of the environment”

5For example, the rotational speed of a motor axis may be an output for a
functional requirement and an input for a safety requirement

operators to create a requirement. For example, the require-
ment “if the signal CMD_FWD is true and the
rotational speed of the wheel axis is less
than 18 rpm then the system shall generate
a 5 N.m torque on the wheel axis” can be de-
composed into (CMD_FWD = 1), (rot_speedwa <
18 rpm) and (Twa = 5 N.m), and connected using a boolean
“and” and a boolean “implies”, where rot_speedwa is the input
modeling the rotational speed of the wheel axis and Twa the
output modeling the torque on the wheel axis.

The textual requirement is more readable and writable,
especially for non-technical people, than the “logical” form
((CMD_FWD = 1)∧ (rot_speedwa < 18 rpm)) ⇒ (Twa =
5 N.m), which explains why we are still using natural language
for specification documents. Therefore requirements should, at
least for now, stay in textual form. However, we think that en-
couraging requirement engineers to write textual requirements
which can be translated to a logical substrate should reduce
requirement ambiguity. An interesting question is which logical
substrate among the various existing ones do we choose for
our language?

We have analyzed several different industrial specifications
as well as talked with requirement engineers, and continue
to do so, to be able to know what constructs are typically
needed in a specification. There are two necessary kinds of
constructs: construct to get atomic, boolean-valued formulas
from I/O values (e.g. relational operators) and operators to get
formulas from other formulas (e.g. boolean “and”). For the
moment being, we have identified classical constructs (“and”,
“or”) or more domain-specific ones, such as “the probability
of a failure leading to X shall be less than p”, where X is a
boolean formula (for example “the rotational speed
of the wheel axis is null” which could be written
“rot_speedwa = 0”) and p a probability, usually expressed in
events per flight hour in an aeronautical context.

We have to be cautious when adding such constructs to our
language since we do not want to reintroduce the ambiguity we
aim to remove by using our language, but these construct may
not be formal: in the previous example, “failure” or “leading
to” cannot be formally defined. Since these expressions are
used in actual specifications and engineers do not seem to have
any problem interpreting them, we have to assume that these
expressions are not ambiguous even if they are not formally
defined, and are what Chantree and al. would call “innocuous
ambiguities” in [14]. We have to find, and integrate in the
language, the constructs which are useful for specification
writing and either formally defined or not formally defined,
but understood the same way by all potential readers and
writers of a specification. It may seem to be an impossible task,
but we should note that all current system specifications are
made using natural languages and the assumption that everyone
understand the same thing when reading the same sentence.
Our aim is not to create perfectly formal specifications, but to
write “less ambiguous” specifications.

We wrote earlier that environmental variables which are
not identified as I/O of the system should not appear in the



1 2

E > 4

Fig. 1. A simple state machine, “E > 4” is a guard

specification, but an user may want to write a requirement
such as “during takeoff, the system shall...”
and “takeoff” is not an input of the system. Firstly, as we
proposed, the user should be able to decompose “takeoff”
into one or more properties on one or more inputs of the
system. If he cannot do that, how is the system supposed
to “know” that the airplane is taking off? Assuming the user
does have such a decomposition, one problem could be that
this decomposition is a complicated formula A, which would
reduce the clarity of the specification and could prevent the
engineers from understanding what is the “physical” meaning of
a requirement where A appears. One conceptually simple way
to solve this problem would be to define the string “takeoff”
as equivalent to the formula, the same way we create new
variables which refer to the results of complicated formulas in
a program, and most importantly, to precise that you’re doing
so in (the preamble of) the specification. Thus the original
requirement would stay the same, but “takeoff” would refer to
a formal definition. “takeoff” is now what we call a “composed
input”.

C. The Issue of “States”

When we look at real specifications, we notice that the
example given in the previous subsection is quite simple: almost
no requirement are simply combinational, and they usually
refer to “states” (for example “In state BKWD, if
the rotational speed of the wheel axis is
less than 18 rpm and the signal CMD_BKWD
is true, then the system shall generate
a -5 N.m torque on the wheel axis”). These
states are sometimes defined in the specification by cryptic
requirements such as “The system shall have
an ON state”, but specifications never define exactly
what is a state, nor how a system can “have” them. It
can create quite ambiguous requirements such as “The
probability of inadvertent activation of
the system (transition from OFF to STANDBY
or ON state) shall be less than 10−8 per
Flight Hour”.

This problem, mentioned for example in [11], is mainly
caused by the fact that such requirements are a blatant
implementation bias. If we consider, as Zave and Jackson do,
that requirements can only be statements about the environment,
the states exist only in the environment. We consider that states

are simply what we introduced as “composed inputs” in the
previous subsection, which are simple names used as placehold-
ers for properties on the environment of a system. A simple
example could be that the condition “when in state 2”,
where the state 2 is defined by the state machine given in
fig. 1, is equivalent to the condition “if the value of
the input E has been greater than 4 in the
past”. Of course, the example is quite simple, but the principle
does not change for a more complicated state machine: the
so-called “states” are just a faster way to write properties,
particularly temporal properties, on the environment of a system.
As for other composed inputs, the definitions of the states
should be explicitly written and identified as such in the
specification.

D. More on Inputs/Outputs

What are exactly the inputs and outputs that we mention in
this paper? First of all they are abstractions of properties of
the environment. The difficult question is how much abstracted
should an I/O be? For example, a three-phase line power
supply could be modeled as one input with a “power” value,
or 2 inputs of value “tension” and “current”, or 6 inputs, 2
tension-current couple for each phase. The optimal abstraction
level will obviously depend on how the I/O is used in the
specification. A simple abstraction is easier to model but will
not have the same expressing power as more complicated ones.
For example, if we model a 3-phase line with one “power”
input, it will not be possible to express a phase loss, but in
the 6-input abstraction, a phase loss is expressed simply by
having a null current for one of the phase.

One of the way we could “give back” this expressing
power to the simpler abstractions would be to add “attributes”
to I/O, for example the 3-phase line could be modeled as
one input with a “power” value and two attributes “elec-
trical” and “three-phased”. If we know that “three-phased”
“electrical” inputs can lose a phase, and have written it in
an ontology for example, we can then write requirements
such as “If (the power supply) have (a phase
loss), the system shall...”. As for what we wrote
earlier, an attribute and its properties may not be formally de-
fined if we consider that everyone have the same interpretation
of it.

We mentioned that what is written in a specification, like I/O,
must refer to some concepts so we can know what they mean.
We can wonder if the cost of defining these concepts is too
important compared to the eventual profits, and would make
what we are proposing useless. However, in the specification
documents we study, most inputs and outputs (I/O) are defined,
although usually incompletely and imperfectly, to give a context
for the system specification or simply to help define the system
boundaries (for example by drawing a box representing the
system, linked with arrows to other boxes representing other
systems in the environment). So even if this kind of information
is not, as far as we know, currently used how we envision
it, companies do dedicate resources to create it and write it.
It means our proposal requires less resources and adaptation:



one of the point of our work is that the I/O we use should
correspond relatively well to the I/O used by system engineers
when they are writing “boxes and arrows” architectural models
such as SADT, so we can reuse what was done in these models
to write better specifications.

E. How Can We Treat Non-Formalizable Requirements?

The principle we present here is quite generic, and
we think that all requirements could be written in the
form “if we have such properties on the inputs, then we
want such properties on the outputs”. However, we do
not think it is a good idea, because the effort needed for
the conceptualization and formalization of various inputs
and outputs is too important. For example, a requirement
may demand that “The materials used in the
system shall not suffer corrosion under
the environmental conditions described in
document A Category C”, where document A is an
external, possibly normative document. We think this is an
useful requirement and that formalizing, in the specification,
the “inputs” it refers to (for example, the levels of humidity,
pH, percentage of various chemicals in the ambient air...) is
possible, but it would require too many efforts for almost no
profit, since it is presumably already done in document A and
it would reduce the readability of the specification. We notice
the same thing for a lot of requirements: they are not “formal”
and it would be too difficult to model the I/O they implicitly
refers to, so we have to continue using free text and try to
make them as unambiguous as possible. Thus, when writing a
specification document, there should be a compromise to find:
at which point do we stop modeling I/O and write the usual
free text requirements?

We think this compromise is more interesting in the aeronauti-
cal context, since the systems we focus on are technical systems,
mostly surrounded by other technical systems, whose I/O are
relatively easy to represent and formalize. It is not a surprise
that the majority of the “difficult-to-formalize” requirements
are those which involve humans, such as requirements related
to maintenance.

One way to reduce the effort needed to write these
requirements is that some of them are what we could call
“generic” requirements: requirements which are present in every
aeronautical system specification. For example, “All units
and sub-units shall be protected against
Electro Static Damage (ESD) during repair,
exchange, maintenance and handling” could be
found in any specification. For companies which are designing
several systems for the same context, it may be useful to have
a library of well written requirements of this type, which is
automatically added to a new specification document, in a
crude yet simple reuse strategy.

Related to these “generic” requirements, another
type could be the “parametric” type: requirements
that change only by a numerical value (for example
“The service life target of the system
shall be 24,000 flight cycles”) or only by the

TABLE I
CLASSIFICATION OF AN INDUSTRIAL SPECIFICATION

Number of re-
quirements in
the category

Percentage of
requirements

I/O formalism 67 39.2
generic 25 14.6

parametric 14 8.2
rest 65 38.0
total 171 100

document or part of the document it refers to, like in
“system shall not suffer corrosion under
the environmental conditions described in
document A Category C”. Once we know the pertinent
information (for environmental requirements such as the
second example, the exact reference is typically given by the
location of the system in the aircraft) engineers could directly
generate this kind of requirements without having to actually
write them. Once again, this is a relatively crude method
for reusing requirements and it was not tested to see if it is
profitable, but it could be useful and it is not necessarily done
in the industry.

F. Preliminary Results

To test the principles we propose, we tried to put each
requirement from a real aeronautical system specification from
Safran into one of these categories “generic”, “parametric”
(both introduced in the previous subsection) or “translatable
into the I/O formalism”, the results are given in the table I.
Some remarks on these results:

In the first place, the classification of the various require-
ments in these categories was not an exact process, for several
reasons: we considered that a requirement was translatable in
our formalism if we could find a translation and that translation
required only a “reasonable” effort for modeling the inputs and
outputs. Moreover, as all translation, this translation is rarely
exactly equivalent to the original requirement, especially since
the aim of this work is to better write requirements and that
some requirements in this specification were quite ambiguous.
Since we did not have access to all the specifications of
the company, we did not know for sure that “generic” and
“parametric” requirements are used in all the specifications.

These results are here only for illustration and we do not
claim that it proves that our work is useful, but our industrial
partners think they are interesting and that such cover rates
are sufficient to be of economic interest. The specification was
neither a completely finalized work nor a rough first draft, and
this is interesting because it was a relatively good specification,
but we could still find errors or ambiguity.

The requirements we could not put into the previous
categories because they were both too specific to the studied
system and too difficult to formalize may still be dealt with
using another method. For example, some were envelope
requirements: they defined where the system could be installed
in the airplane. We could imagine that these requirements could



be replaced by one requirement referring to an external CAD
model describing the installation envelop of the system.

IV. EVALUATION OF RE PRACTICES

As mentioned in [15], few works in the RE field concern or
even mention the scientific evaluation of RE practices. It is an
important problem since if we don’t have a serious evaluation
of the method presented in a paper, we, and industrial actors,
cannot be sure that this method is really useful. Experimentation
is, after all, the basis of scientific method. The main issue is how
to do these evaluations: the evaluation of a complicated design
process involving humans and subtle communications between
them, or even of a part of this process, is something quite
complicated, especially since RE authors usually come from a
computer science background and may not know experimental
methods from, for example, social sciences, which may be
quite adapted to the difficulties of evaluation in RE.

As a beginning researcher in the field of RE, the author of
this paper would like to be able to know if the ideas presented
here are useful or how they can be improved and wonders if
there exist standard, “benchmark” tests, which could be used
to compare the different steps of various RE methods.

V. CONCLUSION

We searched how aeronautical system specifications were
written at Safran and how they could be improved, notably by
discussing with engineers responsible of RE in the company. We
believe that it is possible to make requirements less ambiguous
and thus to improve the whole process of RE. One of the goal
of this work is to propose a method which could realistically be
adopted in the industry: specifications would be less ambiguous
if they were (and could be) written in first order logic instead
of natural language, but it is simply not possible to ask a whole
industry to learn first order logic.

We searched in the fields of RE, language generation, natural
language processing and controlled languages for methods
which could be used to reduce the ambiguity of requirements
in specifications. We did not find methods which could be
directly applied to our problem, but some ideas and general
concepts were found to be useful and constitute the foundation
of our work.

We proposed principles aiming to reduce the ambiguity of
natural language system specifications while trying to keep most
of the expressiveness and ease of use of natural languages. Our
work is designed to reuse as much as possible the efforts already
done in a company when it needs information. The core of our
work consists in writing the requirements as boolean formulas,
where atomic formulas are properties on the environment (the
inputs and outputs of the specified system). The results of
this process are not formal requirements, but we are trying to
obtain requirements which are the less ambiguous possible,
by linking the concepts used in a requirement to exterior and
agreed upon definitions. Of course, the work on both theoretical
and practical aspects of our proposal is not finished and will

be continued in the following years as the author finish his
PhD.

We think it is impossible to write a complete specification
without unconstrained natural language and some part of
ambiguity, so any specification writing method should be able
to tolerate free text, and compromises have to be found by
requirement engineers between an easy to write, but potentially
ambiguous or even wrong, free text and harder to write, but
hopefully less ambiguous, constrained language.

Among future works, beside the needed development and
scientific evaluation of our ideas, we think that we could write
at least some parts of specifications using more or less formal
models instead of natural language, and if we ever need to
have these parts written in natural languages, the models could
be automatically translated into natural language requirements.
Another perspective would be to be able to realize automated
reasoning on the “formalized” parts of the specification.

ACKNOWLEDGMENT

The author is supported by the Blériot-Fabre chair, co-
directed between CentraleSupelec and Safran.

REFERENCES

[1] P. Zave, “Classification of research efforts in requirements engineering,”
ACM Computing Surveys (CSUR), vol. 29, no. 4, pp. 315–321, 1997.

[2] E. Yu, “Modelling strategic relationships for process reengineering,”
Social Modeling for Requirements Engineering, vol. 11, p. 2011, 2011.

[3] A. Van Lamsweerde, “Goal-oriented requirements engineering: A guided
tour,” in Fifth IEEE International Symposium on Requirements Engineer-
ing. IEEE, 2001, pp. 249–262.

[4] L. Lamport, “A simple approach to specifying concurrent systems,”
Communications of the ACM, vol. 32, no. 1, pp. 32–45, 1989.

[5] J.-R. Abrial, Modeling in Event-B: system and software engineering.
Cambridge University Press, 2010.

[6] K. Pohl, Requirements engineering: fundamentals, principles, and
techniques. Springer Publishing Company, Incorporated, 2010.

[7] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, “Easy approach to
requirements syntax (EARS),” in Requirements Engineering Conference,
2009. RE’09. 17th IEEE International. IEEE, 2009, pp. 317–322.

[8] ASD Simplified Technical English. [Online]. Available: http://www.asd-
ste100.org/

[9] N. E. Fuchs and R. Schwitter, “Attempto Controlled English (ACE),” in
Proceedings of the First International Workshop on Controlled Language
Applications, 1996.

[10] V. Gervasi and B. Nuseibeh, “Lightweight validation of natural language
requirements,” Software: Practice and Experience, vol. 32, no. 2, pp.
113–133, 2002.

[11] P. Zave and M. Jackson, “Four dark corners of requirements engineering,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 6, no. 1, pp. 1–30, 1997.

[12] CRitical sYSTem engineering AcceLeration (CRYSTAL EU Project).
[Online]. Available: http://www.crystal-artemis.eu/

[13] A. Fraga, J. Llorens, L. Alonso, and J. M. Fuentes, “Ontology-assisted
systems engineering process with focus in the requirements engineering
process,” in Complex Systems Design & Management. Springer, 2015,
pp. 149–161.

[14] F. Chantree, B. Nuseibeh, A. De Roeck, and A. Willis, “Identifying
nocuous ambiguities in natural language requirements,” in Requirements
Engineering, 14th IEEE International Conference. IEEE, 2006, pp.
59–68.

[15] B. H. Cheng and J. M. Atlee, “Research directions in requirements
engineering,” in 2007 Future of Software Engineering. IEEE Computer

Society, 2007, pp. 285–303.


