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Optimisation globale pour la résolution de problèmes parcimonieux en norme 0

PARCIMONIEUSE

Problèmes inverses parcimonieux : on cherche x avec peu de composantes non nulles tel que y Hx.

• Norme 0 à valeurs discrètes pb combinatoire

• Méthodes approchées peu coûteuses : [1] -relaxation convexe : 

PROGRAMMATION MIXTE EN NOMBRES ENTIERS (MIP)

MIP quadratique à contraintes quadratiques :

min v∈R J v T Fv + c v, t.q.      v Bv + d v ≤ e, l b ≤ v ≤ u b , A in v ≤ b in , A eq v = b eq , v j ∈ Z, ∀j ∈ I.
• Méthodes de résolution exactes: Branch and Cut -Branch and Bound : énumération implicite des solutions min

x 1 ,x 2 f obj = -5x 1 -4x 2 t.q. x 1 + x 2 ≤ 5, x 1 ≥ 0, 10x 1 + 6x 2 ≤ 45, x 2 ≥ 0 P 0 : f obj = -23.75 x 1 = 3.75, x 2 = 1.
25

P 1 : f obj = -23 x 1 = 3, x 2 = 2
x 1 3 

P 2 : f obj = -23.333 x 1 = 4, x 2 = 0.833

REFORMULATIONS DE CRITÈRES PARCIMONIEUX

• Reformulation de la norme 0 -Variables binaires b q telles que x q = 0 ⇔ b q = 0.

x 0 = Q q=1 b q .
-Hypothèse de borne : ∀q, -M < x q < M . Alors :

min x∈F x 0 ⇔ min x∈F b∈{0,1} Q q b q t.q. -M b ≤ x ≤ M b reformulation de P 0/2 et P 0+2 x 0 ≤ K ⇔ ∃b ∈ {0; 1} Q t.q. q b q ≤ K -M b ≤ x ≤ M b reformulation de P 2/0 • Reformulation des attaches aux données 1 et ∞ min x∈F y -Hx 1 ⇔ min x∈F w∈R N n w n t.q. -w ≤ y -Hx ≤ w min x∈F y -Hx ∞ ⇔ min x∈F t∈R t t.q. -t1 N ≤ y -Hx ≤ t1 N MIP linéaires à contraintes linéaires • Un exemple : min x∈R Q y -Hx 1 t.q. x 0 ≤ K ⇔ min x∈R Q b∈{0;1} Q w∈R N n w n t.q.      q b q ≤ K -w ≤ y -Hx ≤ w -M b ≤ x ≤ M b

COÛTS DE CALCUL

• Problèmes de déconvolution parcimonieuse

x ∈ R 100 , K = 9 composantes non nulles Mise en oeuvre sous IBM ILOG CPLEX

• Réglage heuristique de la borne M :

i) Initialisation M 0 = ||H T y|| ∞ /||h|| 2 2
ii) Si la borne est atteinte en la solution ( x q = M k ), la reformulation de la norme 0 n'est pas valide. L'optimisation est alors relancée avec M k+1 = 1.1M k .

RSB P 0/2 P 0/1 P 0/∞ P 2/0 P 1/0 P ∞/0 P 0+2 P 0+1 P 0+∞ 30 dB 122 3 2.1 2.8 9.1 21 1.2 4.9 5.2 20 dB 243 [START_REF] Blumensath | Iterative thresholding for sparse approximations[END_REF] 4.7 2.6 14 28 45 [START_REF] Tropp | Computational methods for sparse solution of linear inverse problems[END_REF] 64 17 [START_REF] Mohimani | A fast approach for overcomplete sparse decomposition based on smoothed 0 norm[END_REF] 121 10 dB 513 (12) 21 45 35 [START_REF] Tropp | Computational methods for sparse solution of linear inverse problems[END_REF] 182 [START_REF] Tropp | Computational methods for sparse solution of linear inverse problems[END_REF] 206 [START_REF] Lu | Sparse approximation via penalty decomposition methods[END_REF] 121 [START_REF] Bourguignon | Exact resolution of sparse approximation problems via mixed-integer programming[END_REF] 234 [START_REF] Mohimani | A fast approach for overcomplete sparse decomposition based on smoothed 0 norm[END_REF] 141 [START_REF] Tosic | Learning joint intensity-depth sparse representations[END_REF] Temps de calcul (s) pour l'optimisation des neuf problèmes reformulés en MIP (moyennes sur 20 réalisations). Entre parenthèses : nombre de réalisations n'ayant pas fourni de solution optimale en 1000 s. Rq : exploration combinatoire complète évaluée à 1.5 an. • Prise en compte de contraintes supplémentaires (positivité, somme à 1)

• Problèmes avec parcimonie structurée [6] • Optimisation multi-objectifs RÉFÉRENCES

H 2 2

 2 = matrice de convolution x détection de discontinuités / défauts• Démélange de spectres (imagerie hyperspectrale) H = bibliothèque de spectres purs x composantes présentes + proportions• Estimation de modèles, sélection de variables, . . . , x 0 , x 0 := Card q|x q = 0

P 3 : 4 -

 34 f obj = -22.5 x 1 = 4.5, x 2 = 0 Solution sous-optimale Méthodes de coupe (Gomory, . . .) : relaxations continues successives (variables binaires) raffinement de la solution du programme continu pour converger vers une solution entière Optimum du programme continu Optimum du MIP ⇒ convergence avec preuve d'optimalité • Choix de la mesure d'attache aux données quadratique MIP quadratiques -linéaire par morceaux MIP linéaires y -Hx 1 (bruit laplacien) y -Hx ∞ (bruit uniforme)

  Optimisation possible . . . dans une certaine mesure Coût avec le bruit et le nombre de composantes Attache aux données 2 : formulation P 2/0 1 ou ∞ : formulation P 0/p • Plus de résultats dans [5]. . .

mais ne résolvent pas le problème initial

  

	-H très corrélé	conditions théoriques inapplicables
	-résultats empiriques défavorables

x 0 x 1 -méthodes gloutonnes : exploration combinatoire partielle . . .

• Travaux en norme 0 [2, 3, 4] : convergence locale • Pourtant : l'optimisation exacte en norme 0 ne re- quiert pas forcément une recherche exhaustive!