N

N
N

HAL

open science

The ultimate rank of tropical matrices

Pierre Guillon, Zur Izhakian, Jean Mairesse, Glenn Merlet

» To cite this version:

Pierre Guillon, Zur Izhakian, Jean Mairesse, Glenn Merlet. The ultimate rank of tropical matrices.

Journal of Algebra, 2015, 437, pp.222-248. 10.1016/j.jalgebra.2015.02.026 . hal-01194760

HAL Id: hal-01194760
https://hal.science/hal-01194760

Submitted on 21 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01194760
https://hal.archives-ouvertes.fr

1305.4260v1 [math.RA] 18 May 2013

arxXiv

THE ULTIMATE RANK OF TROPICAL MATRICES

PIERRE GUILLON, ZUR IZHAKIAN,
JEAN MAIRESSE, AND GLENN MERLET

ABSTRACT. A tropical matrix is a matrix defined over the max-plus semiring.
For such matrices, there exist several non-coinciding notions of rank: the row
rank, the column rank, the Schein/Barvinok rank, the Kapranov rank, or the
tropical rank, among others. In the present paper, we show that there exists
a natural notion of ultimate rank for the powers of a tropical matrix, which
does not depend on the underlying notion of rank. Furthermore, we provide
a simple formula for the ultimate rank of a matrix which can therefore be
computed in polynomial time. Then we turn our attention to finitely generated
semigroups of matrices, for which our notion of ultimate rank is generalized
naturally. We provide both combinatorial and geometric characterizations
of semigroups having maximal ultimate rank. As a byproduct, we obtain a
polynomial algorithm to decide if the ultimate rank of a finitely generated
semigroup is maximal.
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1. Introduction

Tropical matrices are matrices defined over the so-called “max-plus” or “tropical”
semiring, that is, (R U {—o0}, max, +). Tropical algebra is a rapidly growing area
and surveys with different viewpoints are available, e.g. [3] 9] [16].

The tropical semiring is a “weak” algebraic structure in which inverses do not
exist for the max operation. Tropical matrices essentially correspond to weighted
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digraphs; as such, the interplay between algebra and graph theory, and combina-
torial ideas, often have helped to bypass the lack of basic algebraic methods in the
tropical framework.

Yet, negation is still absent and the elementary process of Gauss elimination is
not feasible over the tropical setting; as a consequence, familiar algebraic concepts,
such as dependence and spanning, basically do not agree here. This drawback
has led to various notions of matrix ranks (the row rank, the column rank, the
Schein/Barvinok rank, the Kapranov rank, or the tropical rank, among others, cf.
Definition ) which, as one would expect, essentially do not coincide. Over the
years, much effort has been invested in the study of the different types of ranks and
the relations among them, see for instance [2], [14]. However the use of these ranks
for applications, especially for computation, is rather cumbrous.

In the present paper we introduce a canonical notion, termed ultimate rank,
that in a sense unifies the known ranks of tropical matrices. The ultimate rank of a
matrix is defined as the minimal rank over the closure of the semigroup generated by
the matrix, and the minimum is proven not to depend on the underlying notion of
rank. The ultimate rank of the matrix A depends only on the so-called critical graph
(see Definition ELT), with the following simple and explicit formula (Theorem [(.2)):

urk(4) = > eye(C),
cec
where € is the set of strongly connected components of the critical graph of A, and
where cyc(C') is the cyclicity of C. Therefore, unlike some of the known ranks, the
ultimate rank can be computed in polynomial time-complexity, O(n?) for an n x n
matrix (Corollary £4). The proof of the formula relies on the ultimate expansion
of tropical matrices [27].

The next step is to generalize the notion of ultimate rank to a finitely generated
semigroup of tropical matrices, defined as the minimal rank over all the matrices in
the closure of the semigroup. Determining the ultimate rank of a given matrix semi-
group is then the obvious question. Unfortunately, the algorithmic computability
of the ultimate rank is an open question. We settle the case of maximal ultimate
rank. Indeed, we provide two different characterizations, one combinatorial and one
geometric, for finitely generated matrix semigroups of maximal ultimate rank. The
combinatorial characterization (Theorem [6.4)) is provided in terms of the structure
of the associated graphs of the generators. The geometric characterization (Theo-
rem [G.9)) is the existence of a common (tropical) eigenvector for all the generators
which lies in their fundamental cells. Having these characterizations, we show that
the problem of determining whether a semigroup of n x n matrices has maximal
ultimate rank is decidable in time complexity O(|Z|n?), where Z is the set of gen-
erators.

A by-product of the present paper is to provide new insight on matrices and
semigroups of matrices with maximal tropical rank. Matrices with maximal tropical
rank are also known as non-singular or strongly reqular matrices. They have been
extensively studied in the literature, see for instance [2, [6] [7 8, 10} 14, 17, 18] 19
211, 25, [26]. They play a key role in solving linear systems of tropical equations,
in studying the optimal assignment problem, or in the theory of discrete event
systems.
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2. Preliminaries

The max-plus semiring or tropical semiring (T,V,+) is the set T = RU {—o0}
equipped with the binary operations (z,y) — max(z,y) = zVy and (z,y) — z+y.
In this structure, the “additive” operation is the maximum while the “multiplica-
tive” operation is the usual sum; their respective identity elements are —oco and 0.

Classical algebraic objects, such as vectors and matrices, have max-plus ana-
logues. The set T™ of n-dimensional vectors is a semimodule over the semiring T.
The set T"*™ of n x m matrices is a semimodule over T. A vector v having entries
v; € T, resp. a matrix A having entries A;; € T, is written as v = (v;), resp.
A = (A;;). The matrix with only —oo entries, written (—oo) is the null matrix (of
a given size).

The product of matrices is defined according to the semiring structure and is
denoted by using the special symbol ® , that is, for matrices A, B of compatible
sizes, A ® B is defined by

(A® B)ij = \/ (Aix + Byj) -

The pair (T"*", ®) forms a monoid.

It is convenient to use the following notations. As usual, we write AB for the
product A® B. For matrices A, B of the same size, we define AV B by (AV B);; =
Aij \Y Bij and write A Z B if Aij Z Bij for every Z,j (that isAVB = A) The
product A ©® A of a matrix A and a scalar A € T is defined by (A ® A);; = A + A;;.

Definition 2.1. Two matrices A and B of the same size are said to be (tropically)
equivalent if there exists A in R such that B=X® A. Let PT"*™ be the (tropical)
projective matriz set obtained by identifying equivalent matrices in T"*™. The
quotient map is denoted by 7 : T"*™ — PT"*™,

Graph theory provides an important tool in the study of tropical matrices, es-
tablished via the following correspondence.

Definition 2.2. The graph of a matriz A € T"*™, denoted by G(A), is the weighted
directed graph with nodes {1, ... ,n} and arcs (i, j) whenever A;; # —oo. The weight
of arc (i,7) is Ajj.

Powers of a max-plus matrix A can be interpreted combinatorially in terms of
directed paths in G(A). Let a walk in G(A) be a finite sequence of nodes p =
(ig,11,- - ,1¢) such that (ig,igs1) is an arc of G(A) for any k. Its length is £ and its
weight is 0 if £ =0 and A;,;, + -+ Ai,_,i, otherwise. For k € N, the entry (Ak)ij
of A¥ is equal to the maximal weight of a walk of length k from i to j in G(A).

In this paper, we consider only directed graphs, and use the classical terminology
of graph theory. A walk from i to itself is called a circuit, and a circuit of length
1 is called a loop. Moreover, a circuit is called simple if it contains each node at
most once, except for the first and last one that are the same. A graph is strongly
connected if there is a walk from each vertex in the graph to every other vertex.
A strongly connected component (written sce, for short) of a graph is a subgraph
which is strongly connected and maximal with respect to inclusion. A scc is trivial
if it consists of one node with no loop. A graph is completely reducible if it is a
disjoint union of scc. The cyclicity of a strongly connected graph is the ged of the
lengths of its circuits. For a completely reducible graph, the cyclicity is the lem of
the cyclicities of the scc.

A matrix A is called irreducible if its associated graph G(A) is strongly connected;
otherwise A is called reducible.
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3. The different ranks of a matrix

There exist several relevant notions of rank for matrices over the tropical semi-
ring, see [14] and [2] for extensive accounts. In Definition B.7] below, we recall the
main ones. To this aim, we first review some necessary concepts.

Definition 3.1.
(1) The (tropical) permanent of a matriz A € T**™ is defined by:

per(A) = \/ Ald(l) +oo Ano’(n)a (31)
oeG,
where &,, is the set of all the permutations on {1,...,n}.

(2) A matriz A € T"*" is called (tropically) singular if A = (—oc0) € T'*! or
if there exist at least two different permutations that reach the maximum in
per(A), that is,

per(A) = Z Aio(iy = Z Airiy 5

for some o # 7 in &,,. Otherwise A is called (tropically) non-singular.
If A is non-singular, we denote by 74 the unique permutation that reaches
the mazimum in [(31)).

Non-singularity is equivalent to strong reqularity in the sense of [7]. In the sequel,
we will use the following result.

Proposition 3.2. Given A, B € T"*" if AB is non-singular then A and B are
non-singular, and:
TAB = TB O TA, per(AB) = per(A) + per(B) .
This is proven in [25] Proposition 3.4].
Definition 3.3. A family of vectors x1,...,%, € T™ is linearly independent (in
the Gondran-Minoux sense) if for all disjoint I,J C {1,...,7}, and for all o; €
T,i€ TUJ, with (a;); # (—00,...,—00), we have \/;c;(a; ©x;) # V¢ 5 (0 © %;5).
Definition 3.4.
(1) The set X C T™ is tropically convex if: Vu,v € X, VA, n €T,

Aouw)VEov)=(A...,.N)+a)V((g....,n)+v) € X. (3.2)

(2) The tropically convex set generated by a finite family T of vectors of T™,
that is the set

{yeTT” | Fas)ser,as €T, y=\/(as®s)},
s€Z

is called the (tropical) convex hull of Z.

A tropically convex set is invariant by translations along the direction (1,...,1).
Therefore, it can be identified with its image in the projective space PT™. Next
result is proven in [29].

Proposition 3.5. Fvery finitely generated tropically convex set has a projectively
unique generating set which is minimal for inclusion.

Definition 3.6. The weak dimension of a finitely generated tropically convex subset
X of T" is the cardinality of the minimal generating set of X.

The topological dimension of a subset X of T" is the largest k for which there
exists an affine space K C R™ of dimension k, such that X N K has a non-empty
relative interior in K.
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Below, we apply this notion of topological dimension to finitely generated tropi-
cally convex subsets of T", for which it coincides with the other classical notions of
dimensions, such as the Hausdorff dimension or the Lebesgue covering dimension.

Consider the tropically convex set of Figure[[l The topological dimension is 2
since the set is the union of three infinite strips. The weak dimension is 3 since the
convex hull of any two finite vectors is at most the union of two infinite strips.

In general, for a given T", n > 3, the weak dimension is unbounded whereas the
topological dimension is bounded by n.

Let us define the main notions of rank for tropical matrices.

Definition 3.7. Consider a matrix A € T™*™.

Tropical rank: Let rki,(A) be the mazimal r for which there exists an r x r
non-singular submatriz of A.

Symmetrized rank: Define det™(A) (resp. det™ (A)) as in (31) but with o
ranging over permutations of even (resp. odd) sign. The symmetrized rank
tkeym @5 the mazimal v such that A has an r X r submatriz B for which
dett(A) # det™ (A).

Gondran-Minoux rank: The Gondran-Minouz row rank rkg-m.ew(A) is the
mazximal v such that A has r independent rows. The Gondran-Minouz
column rank rkg-m.c1(A) is defined similarly with respect to the columns.

Kapranov rank: The Kapranov rank rkk,(A) is defined for instance in [14}
Def. 1.2 and 3.2].

Schein/Barvinok rank: Let rkg/g(A) be the minimal r such that: 3B €
Txr . CeTr™™, A= BC eT"*™,

Row rank: Let rk,w(A) be the weak dimension of the convexr hull of the row
vectors of A.

Column rank: Let rk.(A) be the weak dimension of the convex hull of the
column vectors of A.

Two equivalent matrices have the same rank for any of the above notions. Therefore,
the different notions of ranks can be viewed as being defined on PT™*"™.

By convention, all the ranks of the null matrix (—oo) are set to 0. For a matrix
A # (—00), we check that rk,(A) > 0 for any of the above notion of rank.

None of the above notions coincide [2, Section 8]. The following relations have
been established, see [2, Theorem 8.6] for (B3) and [I4, Theorem 1.4] for [B4)):

rker(A) < rhgym(A) < { iigxzv(%) } < 1kg/p(A) < { EEZV(%) (3.3)
and
rki(A) < rkicp(A) < rkg/p(A). (3.4)

The extremal values of the ranks are of specific interest.

Rank 0: Any of the ranks is 0 iff the matrix is null.

Rank 1: It can easily be checked that rk¢(A) = 1 iff A is non-null and all
the non-null rows are tropically equivalent. Thus, rank 1 occurs (or not)
simultaneously for all ranks.

Maximal rank: Consider A € T"*". According to (B3] and 34, we have:
rki,(A) = n = rk,(A4) = n, for any of the above notions of rank. It
corresponds to the case of a non-singular matrix.

Below, we focus on the extremal ranks given by B3] and 34, that is, the
column rank, the row rank, and the tropical rank. It turns out that these three
notions of rank are related to the dimension of the “image” of the matrix. It follows
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directly from the definition for the column and row ranks, and from the next result
for the tropical rank.

Proposition 3.8. Consider a matriv A € T"*" such that: Vi,3j, A;; # —oo. Then
rki, (A) is the topological dimension of the convex hull of the column (resp. row)
vectors of A.

Proposition appears in [14, Theorem 4.2] where the proof is carried out for
matrices in R™*" but can be easily adapted. See also [8, Theorems 3.3 and 4.1].

The following examples show that these 3 notions of rank do not coincide.

Example 3.9. Consider the matrices:

L1
A= O*lO,BZ ’
0 0 1 0 00 0

0 0 0 O

for which we have:

rkey(A) =2, tkw(A) =3, rka(A) =3,
tkiy(B) =3, rkew(B) =3, rtka(B)=4.

Let Tm(A) be the convex hull of the columns of A (i.e. the image set of the mapping:
T3 = T3, x> A®x). In Figure, we have represented the set Im(A) on the left,
and the projective set w(Im(A)) on the right (represented by orthogonal projection
on the plane orthogonal to the direction (1,1,1)).

FIGURE 1. The tropically convex set Im(A) (on the left) and its
projective image 7(Im(A)) (on the right).

Complezity. Computing the row, resp. column, rank of a matrix in T"*" has
time-complexity O(n?), see for instance [9, Chapter 3.4]. Computing the tropical
rank of a matrix whose entries take only two possible values is NP-complete, see
[21, Theorem 13]. On the other hand, determining if a matrix in T™*™ has tropical
rank n (i.e., is non-singular) can be done with an algorithm of time-complexity

O(n?), see [10].
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4. Max-plus spectral theory

The results in this section are classical, and are to be used in the proofs in
g5l Observe that the tropical rank, via the definition of the permanent, involves
the maximal total weight of the decompositions of G(A) into cycles. Therefore, it
should come as no surprise that it connects to the notions below.

Definition 4.1. For a matriz A € T"*", define:

Ailiz Ai2i3 Tt Az 11
pA =\ V i j+ Rl , (4.1)

J<n 1,0

Observe that p(A) is the mazimal mean weight of the (simple) circuits of G(A).
A circuit of G(A) is called critical if its mean weight is p(A). The critical graph
of A, denoted by G.(A), is the union of all the critical circuits of G(A).

If G(A) is acyclic then p(A) = —oo and G.(A) is empty.
Definition 4.2. For Ac T, if A\ €T and u € T" \ {(—00)} are such that:
AOGu=AQu,
then A is called a (tropical) eigenvalue and u is a (tropical) eigenvector associated

to X. The set of such eigenvectors is the (tropical) eigenspace associated to \.

Observe that the set of eigenvectors associated with a given eigenvalue is tropi-
cally convex.
The next statement is a version of the celebrated max-plus spectral theorem.

Theorem 4.3. Consider a matriz A € T"*"™. We have:

(1) p(A) is the mazimal eigenvalue of A;

(2) if p(A) # —oco, the weak dimension of the eigenspace of A associated to
p(A) is equal to the number of scc of G.(A);

(8) if A is irreducible, or, more generally, if each scc of G(A) contains a critical
node, then p(A) is the unique eigenvalue.

A full proof can be found for instance in [3] Chapter 3] or [9, Chapter 4].

Recall that a square matrix A is torsion if: 3k,c > 0, A¥T¢ = A*. The next
result completes Theorem 431

Theorem 4.4. Consider a matriz A € T"*™. There exist N > 0, a torsion matrizc
T of T"*™, and a sequence (By)i of matrices of T**™ with limg, By, = (—00), such
that:

Vk > N, AF = kp(A) © (T* Vv By) . (4.2)
Furthermore, (—p(A)) © A itself is torsion (that is, we can get rid of By in ({-2))
iff each scc of G(A) contains a critical node.

Theorem (4] is a direct consequence of the so-called ultimate expansion of [27,
Theorem 5.6]. The second part of the statement is an extension of the cyclicity
Theorem [I1], see for instance [I5, Lemma 4.4].

5. The ultimate rank of a matrix
5.1. Statements. For matrices A and B of compatible sizes, we have:
rk (AB) <tk (A), rke(AB) <tk (B),
rkyw(AB) < tkyw(A4), tka(AB) < rkq(B).

It is straightforward to check these inequalities for rk.; and rk,; the case of rky, is
proven in [2, Theorem 9.4].
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In particular, rk,(A*) does not increase when k increases, for x € {col, row, tr}.
It is worth looking at the limit value. Let us start with an example.

Example 5.1. Consider

0o -1 0 -1 0o -1 0 -1
| -1 0 -1 o0 sl -1 0 -1 0
A= —00 —o0 —1 -1 = A= —00 —oco —k —k |’

—00 —oo -1 -1 —o0 —oo —k —k
for which we have limy, tke (A*) = ke (A) = 4 while limy, tke, (AF) = 1k (A) = 3.
Now, observe that the sequence (Ak)k_,Jroo converges to the matrix
0o -1 0o -1
-1 0o -1 0
—00 —00 —00 —00

B =
-0 -0 0 —0

For the limit matriz, the different ranks coincide: tkq(B) = rkpw(B) = rkey (B) = 2.

The projective semigroup generated by a matrix A € T"*™ is denoted by
m(A) = {n(A%), k € N},

and its closure is denoted by 7(A). For instance, in Example [5.1] we have w(A4) =
{m(A"), ke N}U{n(B)}.

Theorem 5.2. Consider a matriz A € T"*™. For any notion of rank (denoted %)
of Definition [37, the value of minBem tky(B) is the same. This common value

is called the ultimate rank of A and is denoted by urk(A). Furthermore, we have:
urk(A4) = Z cye(C) (5.1)
Ccec¢
where € is the set of scc of G.(A) and cyc(C) stands for the cyclicity of C.

Theorem is original. However, related results appear in the litterature. In
[20 25.7: Fact 4] it is stated that all the ranks coincide for a matrix A which is
von Neumann regular (i.e., such that 3X, AXA = A). A proof of this statement
appears in [20, Corollary 1.3]. In [25, Lemma 3.3] it is proven that rk¢,(A) is the
number of scc of G.(A) if A € R"*™ and A is idempotent (i.e., A2 = A).

If A is irreducible or, more generally, if each scc of G(A) contains a critical
node, then the projective semigroup n(A) is finite (cf. Theorem [£.4]). In this case,
m(A) = 7w(A), and we obtain:

urk(A4) = li}lgn rk, (AF), (5.2)

for any notion of rank x. The equality (52)) is not true in general as emphasized
by Example B.11

Theorem will be proved in Section Before this, we give two corollaries
and one example to illustrate the result.

Corollary 5.3. For a matriz A € T"*", the following statements are equivalent:
(1) A has maximal ultimate rank, that is, urk(A) = n;
(2) G.(A) is the disjoint union of simple circuits covering all the nodes {1,...,n};
(8) per(A) has a unique maximizing permutation and G.(A) is the graph of this
permutation.
Furthermore, if the above hold, then per(A) = np(A).

A weak version of Corollary appears in |25 Corollary 3.5].
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Proof of Corollary [5.3. According to (B.1]), the ultimate rank is n if and only if
> ceecye(C) = n, which happens if and only if G.(A) is a union of disjoint simple
circuits covering all the nodes {1,...,n}. Hence, G.(A) is the graph of a permuta-
tion 7 of {1,--- ,n}.

For any permutation o of {1,--- ,n}, w(o) = Ai151) + ... + Apy(n) is the total
weight of the edges following this permutation. Since o can be decomposed into
disjoint simple circuits o1, . .., 0y of lengths ¢4, ..., ¢; and mean weights wy, . .., wg,
we have w(o) = lywy + -+ Gow, < (b1 + -+ + £)p(A) = np(A), with equality
if and only if all of the circuits of o are critical circuits of G(A). Consequently,
per(A) =np(A) and 7 = 74. O

Corollary 5.4. The ultimate rank of A € T"*™ can be computed with an algorithm
of time-complezity O(n?).

Proof of Corollary[5.7] The value of p(A) can be computed using Karp’s formula
whose time-complexity is O(n?), see for instance [3, Theorem 2.19]. The critical
graph G.(A) can also be computed with time-complexity O(n?), see for instance [1}
Section 25.3 - Fact 13]. The cyclicity can be computed using Denardo’s algorithm
whose time complexity is again O(n?), see [13]. O

Example 5.5. Consider the matriz A defined in Example[3.9. Recall that ke (A) =
tkyw(A) = 3 and vk (A) = 2. The critical graph of A is strongly connected and has
cyclicity 1. Applying Formula (51)), we get urk(A) = 1. Let us check this directly.
We have:

0 0 0
Vk>2, AF=4%= 0 0 0
-1 -1 -1

Therefore, urk(A) = rkej(A?) = rkpy (42) =tk (A2) = 1.
5.2. Proof of Theorem We first prove the result for a matrix E which is

idempotent, that is, satisfies E? = E. In this case, m(E) = {m(E)}. So we just
have to prove that: rk,w(E) = rke(E) = rki,(E) equals the sum of the cyclicities

of the scc of G.(E). It is a direct corollary of the next lemma.

Lemma 5.6. Let E € T"*" be idempotent (i.e., E* = E) and let r denote the
number of scc of G.(F):
(1) The only eigenvalue of E belonging to R is 0; the associated eigenspace is
the convex hull of the columns of E. The column rank, resp. row rank, of
E isr.
(2) In G.(E), each node holds a loop. The tropical rank of E is r.

Proof. (1). Let K be the convex hull of the columns of E and let K be the
eigenspace associated to 0. Since E? = E, we get that E ® E.; = E.; for any

column FE.;. Thus K C K. Conversely, if u = (u;); is an cigenvector of E associ-
ated to some eigenvalue A € R, then

u=-A0Eou=\/(u; -\ ©E;.
J
Therefore, u € K, which implies both that A = 0 and that KCK. SoK =K.
But the weak dimension of K is the column rank of E (definition) and the weak

dimension of K is the number of scc of G.(E) (Theorem E3F@)). So rka(E) = r.
We obtain similarly that rkyw(E) = r.

(2). If E is null, the statement is true. Otherwise, according to the above,
p(E) = 0. Assume we are in this situation. Let i be a node of G.(E). By definition,
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there is a critical circuit from 4 to 4 of length £ > 1, that is, EY, = ¢p(E). Since
E' = E and p(E) = 0, we deduce that E;; = 0: there is a loop around i in G.(E).

Now, consider a submatrix @ of E obtained by picking up exactly one index in
each scc of G.(F) and by restricting the rows and columns to this set of indices.
By construction, the maximum mean weight of circuits is 0 in F and in @ and
per(Q) =Y, Qi = 0 is attained by the identity permutation. Assume that there
exists another permutation realizing the permanent, say mapping node i to j # i.
Then there is a circuit of weight 0 containing both 7 and j, and this circuit was
already present in G.(FE), which contradicts the fact that we selected one index per
scc. Thus, the matrix @ is non-singular, and rk¢,(F) > r. But, according to (83,
ki (E) < rk(E) = r, and we conclude that rke, (E) = 7. O

We now turn to the proof of Theorem [5.2in the general case. If G(A) is acyclic
then Theorem is clearly true. So we assume that G(A) is not acyclic, or,
equivalently, that p(A) # —oc. Observe that (—p(A)) ©® A has the same ranks,
critical graph, and cyclicity as A, but has spectral radius 0. Thus, without loss of
generality, we assume that p(A) = 0.

Set d =) e cye(C), where € is the set of scc of G.(A) and cyc(C) stands for
the cyclicity of C (right-hand side of (5])). Since the tropical rank is the minimal
one and the column and row ranks are the maximal ones, it is enough to prove
that:

(i) all matrices in w(A) have tropical rank greater or equal to d;

(ii) there is a matrix P € m(A) such that rke(P) = rkyw(P) = d.
Applying Theorem E4] we get that, for k large enough, A*¥ = T* v By. Since T is
torsion, the finite entries of T* are uniformly bounded, while the entries of By, tend
to —oo. So, for k large enough, we have:

(T*)ij # =00 = (A¥)y = (T%); .

We deduce that a non-singular submatrix of T* corresponds to a non-singular
submatrix of A¥ for k large enough. This proves that rk, (A*) > rke, (T*), for k
large enough. Let T;,¢ € I, be the matrices in the periodic part of the ultimately
periodic sequence (T%);. Observe that 7(A) = {m(A*),k € N} U {m(T}),i € I}. So
we have:

min k¢, (B) = min rktr(Tk) = minrk, (T;) .
Ben(A) k el

Since the sequence rkq; (T%) is non-increasing, we deduce that rk;,(7}) is the same
for all . Observe that there exists a matrix 7},j € I, which is idempotent. By
Lemma 5.6 rke(7};) is equal to the number of scc of G.(7;). Now, the same
argument as above shows that G.(T*) = G.(A%), for k large enough. So G.(T;) =
G.(A*) for some ¢, and 1k, (7}) is equal to the number of scc of G.(A*). Let B be
the boolean adjacency matrix of G.(A). Then B’ is the boolean adjacency matrix
of G.(AY) = G.(Tj). In particular B* is idempotent, and the theory of boolean
matrices (see e.g. [5, Chapter 3.4]) tells us that the scc of G(BY) = G.(A*) are
exactly the cyclicity classes of G(B) = G.(A). We conclude that the number of scc
of G.(A%) is d. So we have rk,(T}) = d.

To prove (ii), we notice that, according to Lemma [5.0] rka(7}) = rkiw(T}) =
ki, (7)) = d. It completes the proof.

5.3. Visualization and ultimate rank. Visualization is a standard notion al-
ready appearing for instance in [I2], and recently developped in [28]. We prove
a result on the visualization of matrices with maximal ultimate rank, Theorem
5.I0H(4), that plays an important role in Section
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For any finite vector u = (uq,...,u,) € R", define diag(u) € T**" by:
w  ifi=j,

—oo ifi#j. (53)

diag(u);; = {
For A € T"™" set A = diag(—u)A diag(u), where —u = (—u;);. The entries of
A satisfy:
Aij = Aij + Uj — Uj. (54)
Matrices A and A share many properties.

Lemma 5.7. Given a matrix A € T" ™ and a finite vector u € R™, set A=

-~

diag(—u)Adiag(u), then p(A) = p(A), Ge(A) = G.(A), per(A) = per(A), and
rk, (A) = rk.(A) for all the ranks of Definition[57
The proof of the lemma is straightforward.
Definition 5.8. A matriz A € T"*" is said to be visualized (resp. strictly visual-
ized) if:
Aij = p(A) for all (i, j) € Gc(A4),
Aij < p(A) (resp. < p(A))  for all (i,5) ¢ Ge(A).
A finite vector u = (u;); € R™ is called a (strict) visualization of A if the matriz
diag(—u)Adiag(u) is (strictly) visualized.
We now define the fundamental cell introduced in a different form in [§].

Definition 5.9. The fundamental cell of a non-singular matriz A € T"*"™ is defined
as the set

]:(A) = {X cR" | V’L,Vj 7é TA(i), Aij =+ z; < AiTA(i) 4+ Trp(i) = (A QX)z} .
The fundamental cell of a singular matriz A is empty, F(A) = 0.

Let us mention several properties of the fundamental cell which can be obtained
by adapting the results from [8] and [25].

Let A be non-singular. The fundamental cell F(A) is non-empty and its topo-
logical dimension is n since it is an open set. Consider the mapping ¢4 : R* —
R", x — A ® x. We have

F(A) =3 ({x e R", 3y € R",x = pa(¥)}) -

(The set {x eR™ dy e R",x = pa (y)} is defined for any matrix A, and is non-
empty if and only if A is non-singular.) The restriction of ¢4 to the domain F(A)
is the affine map given by:

wa: F(A) — R,
XY, Yi = Aira() T Try(i) -
In particular, on the domain F(A), the map ¢4 is an isometry for the euclidean
distance.

The next theorem summarizes the results that we need about visualizations.

Theorem 5.10. Let A € T"*™ be a matriz with p(A) # —oo.

(1) The visualizations of A are the vectors u € R™ such that A®u < p(A) ©u.
(2) There exists a strict visualization of A.

Assume that G.(A) contains all the nodes {1,...,n}.
(8) The visualizations of A are the eigenvectors (associated to p(A)).

Assume that G.(A) is the disjoint union of circuits covering all the nodes {1,...,n}
(equivalently, that urk(A) =n).
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(4) The strict visualizations of A are the eigenvectors (associated to p(A)) be-
longing to the fundamental cell.

Proof. Property (1) is folklore. Let us prove it for completeness sake. First, the
vector u € R" is a visualization of A if and only if

Vi, 7, Ay +uj —u; < p(A) . (55)
Indeed, assume (&A) holds and consider a critical cycle (i1,...,4k,9k+1 = 1) of
G(A), then:
k k
Z Aigigpr + Uiy — Uiy = ZAieie+1 =kp(A) .
=1 =1

Thus, (B.5) implies that A;,i,,, + i, — ui, = p(A) for all £.
Second, we have the following equivalences:

[Vi,j, Aij + Uj — Uj < p(A)] < [V’L, max(Aw + u]') < p(A) + ’U,Z]
J

= [AOu<p(4)ou].

This completes the proof of property (1).

Property (2) is proven in [28, Proposition 3.4].

To obtain property (3), it suffices to show that [AOu < p(4) OQu]=[AGu=
p(A)Ou]. Assume that u € R” satisfies A©u < p(A)Ou, and fix an arbitrary node i.
Since G.(A) contains all the nodes, there exists a critical arc (4, 7). By property (1),
the vector u is a visualization of A. In particular, we have A;; + u; — u; = p(4),
see (). Hence, (A®u); > A;j +u; = p(A) + u;. So we have proved that
A®u>p(A) ©u. We conclude that A ©®u = p(A) © u.

Let us show property (4). Assume that urk(A) = n, then, the visualizations
of A are its eigenvectors by property (3). Let u be an eigenvector. Then u is a
visualization which is strict if and only if A;; + u; —u; < p(A) for (4,7) & Ge(A).
By Corollary (.3, we have

[(1,5) & Ge(A)] = [ # 7a(@)],

where 74 is the unique maximizing permutation of A. Therefore, the visualization u
is strict if and only if

Vi, Vi #1ai), Ay t+uy <p(A) +ui=(A00); = Air, ) + Ursi) 5
which is equivalent to saying that u belongs to F(A). O

6. The ultimate rank of a semigroup of matrices

6.1. Statements. Let us extend the notion of ultimate rank to a semigroup of
tropical matrices.

Definition 6.1. Let S C T™*™ be a semigroup of tropical matrices. The ultimate
rank of S, denoted urk(S), is defined by:
urk(S) = min{rk,(A) | A € 7(S)} = min{urk(4) | A € n(S)}.

We do not know if the ultimate rank of a given finitely generated semigroup is
algorithmically computable. However, we prove a partial result. Indeed, we give
two characterizations of the case of maximal ultimate rank, one combinatorial and
one geometric. As a by-product, we obtain a polynomial-time algorithm to decide
if the ultimate rank is maximal.

Lemma 6.2. Let S be a finitely generated semigroup of matrices of T"*™. Assume
that VP € S,urk(P) =n. Then w(S) is finite.
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Proof. In [15], Theorem 2.1], it is proven that a finitely generated torsion semigroup
of PT™*™ is finite (i.e., the Burnside problem has a positive answer in PT"*").
Therefore, we only have to prove that 7(S) is torsion, i.e., for any P € S, there
exist k,c > 0, such that 7(P**¢) = 7(P").

Since urk(P) = n, by Corollary 53] all the nodes of G(P) are critical. Then, by
Theorem [£.4] the matrix (—p(P)) ® P is torsion, or, equivalently, P is projectively
torsion. [

Lemma enables to obtain a simplified characterization of finitely generated
semigroups of maximal ultimate rank.

Lemma 6.3. Let S be a finitely generated semigroup of matrices of T"*™. Then
[urk(S) =n| < [VP e S, urk(P) =n].

Proof. Obviously, we have [urk(S) = n} = [VP € S,urk(P) = n] Conversely,
assume that VP € S, urk(P) = n. By Lemma [6.2] 7(S) is finite, and, in particular,
7(S) = 7(S). We conclude that urk(S) = n. O

Let us state the main results.

Theorem 6.4 (Combinatorial characterization). Let S = (Z) be the semigroup
generated by a finite set T of matrices in T™*",
For A € Z, define AeTn by: Vi, 7, Eij = Aijj —p(A). Set M =\ 47 A. We
have urk(S) = n if and only if the following three properties are satisfied:
(C1): VA€ Z, urk(A) =n;
(C2): p(M) = 0;
(C3): VAeZ,Vi,je{l,...,n},

(1,7) € Ge(M), Aij = Mij| = (i, 7) € Ge(A).

Theorem 6.5 (Geometric characterization). Let S = (Z) be the semigroup gener-
ated by a finite set T of matrices in T"*™. We have urk(S) = n if and only if the
following property holds:

(G): the generators have a common finite eigenvector that belongs to the in-
tersection of their fundamental cells;

or, equivalently, if the following two properties hold:
(G1): YA eI, wk(A) =n;
(G2): the generators have a common strict visualization.

The proofs of Theorems and are given in §6.21 To the best of our knowl-
edge, Theorem [6.4] is completely original. Theorem refines [25, Theorem 3.1]
which states that: [urk(S) = n] = the matrices in the semigroup have a common
eigenvector. The proof of [25, Theorem 3.1] is different from our proof and relies
on Kakutani fixed point Theorem.

Corollary 6.6. Let S = (Z) be the semigroup generated by a finite set T of ma-
trices in T"*™. There exists an algorithm of time-complezity O(|Z|n?) that decides
whether urk(S) = n.

Proof. We use the characterization in Theorem Property (C1) can be checked
in O(|Z|n?) using Corollary -4l The matrix M can be computed in O(|Z|n?) and
p(M) can be computed in O(n®) using Karp’s formula, see [3, Theorem 2.19]. So
property (C2) can be verified in O(|Z|n? + n3). Checking property (C3) requires
to compute G.(M) and G.(A) for every A € Z, which can be done in O(|Z|n?), see
for instance [, Section 25.3 - Fact 13]. O
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6.2. Proof of Theorem and Theorem We carry out the proofs of
Theorems and together. Let S = (Z) be the semigroup generated by the
finite set Z of matrices in T™*™. For simplicity and without loss of generality, we
assume that p(A) = 0 for any A € Z. (Otherwise, we replace A by —p(A) ® A.)
Set M =\/ o7 A. Set:

(P1): wk(S) =n;

(P2): Properties (C1), (C2), and (C3) in Theorem 6.4}

(P3): Properties (G1) and (G2) in Theorem G5l
The structure of the proof is:

(P1) = (P2) = (P3) = (P1).

[(P1) = (P2)]. Assume (P1) holds. Then, (C1) is obvious. Let us prove
(C2), that is p(M) = 0. Observe that, for any A € Z, we have M > A, so that
p(M) > p(A) = 0. Now, (C2) follows from the following lemma.

Lemma 6.7. Assume that (C1) holds and that p(M) > 0. Then, there is a prod-
uct P of at most n matrices of T for which urk(P) < n.

Proof. Since p(M) > 0, there is a simple circuit, say (i1, , ik, ik+1 = 41), with
positive weight w in G(M). For each ¢ € {1,...,k}, choose A(¢) € Z such that
A(0)iyipn = Miyi,,,, and define P = A(1)--- A(k). Observe that p(P) > P;; >
w > 0. Assume that urk(P) = n. According to Proposition B2l and Corollary (.3
we must have

p(P) = —per(P) = = 3 per(A(0)) = 3 p(A() =0.

So we have reached a contradiction, showing that urk(P) < n. O
Now let us prove property (C3). We need a preliminary lemma.

Lemma 6.8. Assume that (C1) and (C2) hold. We have:
(i) VP €S, p(P) = 0;
(i) a visualization of M is a visualization for any P in S.

Proof. By Theorem [.I0+H(1), a visualization v of M satisfies M © v < v. Given a
matrix A € Z, we have
AOv<Mov<v.

Therefore, by Theorem B.I0H1) again, v is a visualization of any generator A.
Now any generator A has maximal ultimate rank by property (C1). According to
Corollary B3] all the nodes of G(A) are critical. By Theorem [B.I0H(3), it implies
that v is an eigenvector of A. Since v is a common eigenvector of the generators, it
is a common eigenvector for all the matrices in the semigroup: VP € S, POv = v.
It implies, by Theorem B.I0H(1), that v is a visualization for P. It also implies
that p(P) > 0. Since P = A; --- A, for some ¢ and A; € Z, we get that P < M*,
implying that p(P) < p(M*) = 0. We conclude that p(P) = 0. O

From now on, we assume without loss of generality that M is strictly visualized
and that all the matrices of the semigroup are visualized. This is possible for the
following reason. Recall that for any P € T"*™ and u € R™, the matrices P and
and diag(—u) ® P ® diag(u) have the same ranks, critical graph, etc, see Lemma
B7 Let v be a strict visualization of M, which exists by Theorem 510l By Lemma
68 v is a visualization for the matrices in the semigroup. Now replace A by
diag(—v) © A © diag(v) for A € Z, and M by diag(—v) © M © diag(v).

Lemma 6.9. Assume that (C1) and (C2) hold but (C3) does not. Then, there is
a product P of at most n matrices of T such that urk(P) < n.
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Miyiq = A(2)igig

F1cUure 2. Ilustration of the proof of Lemma

Proof. Property (C3) does not hold. So there exists B € Z and (ig,41) € G.(M)
such that: B, = M;y, = 0, but (ig,i1) & G.(B). The critical arc (ig,41) can
be completed into a critical circuit (ig, 41,42, ..,%¢,%0+1 = i0) of G.(M). For each
k=1,...,£, we choose a matrix A(k) € Z such that A(k) = M, Set
P=A(1)---A(f) and 7 = T4(p) 0 - - - 0 Ta(1)- (See Figure[2l)

By construction, P;,;, = 0. We have:

(PB)iyi, > P;

T lhk41 klk41°
170

+ B =0.

10 1001
Since PB is visualized by assumption and p(PB) = 0 by Lemma [6.8(i), we get
(PB);,i; = 0. There is a loop around 4y in G.(PB). Let us prove that there is
another critical circuit going through i in G.(PB).

Let j # i1 be such that (ig, j) € G.(B). By visualization, B;,; = 0. Therefore,
(PB)iyj 2 Piyig + Big; =0 = (PB)iy; =0.
Let k € N be such that (7 o 7)*1(j) = j. We have:

To(rpon)t(j)=15'(/) =i = (PB)'P), =0 = (PB);{'=0.

Jiy

Thus, in G.(PB), there is a circuit going from ¢; to j and back to ¢;. Consequently,
we have built a product PB € S of at most n matrices whose critical graph contains
two different circuits passing through a node. Then, urk(PB) < n by Corollary 5.3l
O

Since (P1) holds, property (C3) follows from Lemma [6.9 This completes the
proof.

(P2) = (P3)].

First of all, Property (G1) is the same as Property (C1), so it follows from (P2).

To prove that (G2) holds, let us assume as above that M is strictly visualized
and that the matrices in S are visualized. We are going to show that the generators
are strictly visualized which will prove (G2).

Consider A € T with A;; = 0 for some ¢,j € {1,...,n}. Then M;; > A;; = 0.
Thus M;; = 0, and by strict visualization (i,j) € G.(M). We conclude by (C3)
that (4,7) € G.(A). This means precisely that A is strictly visualized.

The fact that (G1) plus (G2) is equivalent to (G) follows directly from Theorem
B.I0-(4).

[(P3) = (P1)].

Let u € R™ be a common eigenvector of all the generators that lies in the

intersection W = (1 ;7 F (A), which exists according to property (G). Let us show
that every P € S, written as a product A; --- Ay, A; € Z, is non-singular.



16 PIERRE GUILLON, ZUR IZHAKIAN, JEAN MAIRESSE, AND GLENN MERLET

Denote by d(- ,-) the Euclidean distance of R™. Since W is a non-empty
intersection of finitely many open sets, there exists ¢ > 0 such that the ball
B = {x € R" | du,x) < e} C W. We use the notations: ¢; : x = 4; O x,
and pp : x — P ®x. Recall that ¢; is an affine isometry on F(A4;), see §5.31 Since
A; ®u = u, we obtain that ¢;(B) = B. By composition, we get that pp(B) = B.
In particular, 8 is included in the image of pp, or, equivalently, in the tropical
convex hull of the columns of P. Since B is of topological dimension n, we get that
the tropical convex hull of the columns of P is of topological dimension n. Using
Proposition [3.8) we conclude that P is non-singular.

Therefore, we have proved that all the matrices in S have tropical rank n. In
particular, given a matrix P in S, all the products P* have tropical rank n, which
implies that the ultimate rank of P is n. According to Lemma[6.3] this implies that
the ultimate rank of S is n.

6.3. Examples. We illustrate Theorems and using four successive exam-
ples. All the matrices in these examples belong to T3*3 and are non-singular.
Their projective fundamental cells belong to PR3, and are represented (in R?) by
orthogonal projection on the plane orthogonal to the direction (1,1, 1).

Here is a general observation that is useful for the examples below. For u €
R", define the matrix diag(u) € T™*" like in (53). The fundamental cell of
diag(—u)A diag(u) is the translation of the fundamental cell of A by —u.

Example 6.10. Consider the matrices:

0 -2 -2 0 -5 -2
A= -2 0 —2|, A= 1 0 1],
-2 -2 0 -2 =5 0
where Ay = diag(—u) ® 4; © diag(u) for u = (0,—3,0). We have uwrk(4;) =
urk(As) = 3. For each matriz, the fundamental cell is the interior of the set

of eigenvectors. Here the intersection of the fundamental cells is non-empty, see
Figure[3. Applying Theorem [60, we conclude that urk(A;, As) = 3.

FIGURE 3. In gray, the fundamental cells of A; (left) and Ay (right).

We can also recover the result using Theorem[6.4l We have

0 -2 =2
AVvA,=| 1 0 1],
-2 =2 0

for which p(A1 V A2) = 0 and G.(A1 V A2) = G.(A1) = Gc(Az2), so condition (C3)
of Theorem [6.4] holds as well.
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Example 6.11. Consider the matrices:

0 -2 -2 0 -5 -1
Bi=|-2 0 2|, By=]| 1 0 2],
-2 -2 0 -3 -6 0

where By = A1 and By = diag(—v) © By ©® diag(v) for v = (0,-3,1). Here again,
we have urk(B;) = urk(B2) = 3.

FIGURE 4. In gray, the fundamental cells of By (left) and By (right).

For each matriz, the fundamental cell is again the interior of the set of eigen-
vectors. But now the intersection of the two fundamental cells is empty, see Fig-
ure [§l Then urk(Bi,Ba) < 3, by Theorem [6.5, and one can check that indeed
I‘ktr(BlBQ) = 2.

Moreover, we can prove that urk(By, Bs) = 2. Indeed, the intersection of the sets
of eigenvectors has topological dimension 2, see Figure[dl The common eigenvectors
of B1 and By are also eigenvectors of any matriz in (B1, Ba). Therefore, a matriz
in (B1, Ba) has a set of eigenvectors of topological dimension at least 2, hence is
not of rank 1.

We can confirm that urk(Bi, B2) < 3 using Theorem [6.4 Consider

0 -2 -1
BV By = 1 0 2
-2 =2 0

fO’f’ which p(Bl \/BQ) =0. We have (2,3) S gc(Bl \/BQ), (B2)23 = (Bl \/B2)23, and
(2,3) € G.(B2), so condition (C3) of Theorem [6-]) fails.

Example 6.12. Consider the matrices:

-2 0 -2 -1 0 -1
Ci=|-2 -2 0|, Cy=|-1 -1 0
0 -2 -2 0 -1 —1

Observe that Cy vV Cy = Cy. The conditions of Theorem are clearly satisfied,
implying that urk(Cy, C3) = 3.

This can also be checked using Theorem [6.3. The fundamental cells of the two
matrices have been represented in Figure[d. Each matriz acts as a rotation of angle
—27/3 and center (0,0,0) on its respective fundamental cell. In particular, (0,0,0)
is the unique eigenvector of both C1 and Cs, and it belongs to the intersection of
the fundamental cells.
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©

FIGURE 5. The fundamental cells of C; (white) and Cs (gray).

Example 6.13. Consider the matrices:

—2 0 -2 -1 02 -0.8
Di=|-2 -2 0|, Dy=|-12 -1 01,
0 -2 -2 —02 -1 -1

where D1 = C1 and Dy = diag(—w) © Cy © diag(w) for w = (—0.2,0,0). On their
fundamental cell, the two matrices act as a rotation of angle —2m /3 with respective
centers (0,0,0) and (0.2,0,0). Therefore, they have no common eigenvector, and
hence urk(Dy, D3) < 3 by Theorem [GA Furthermore,

-1 02 -0.8
DivDy=| —-12 -1 01,
0 -1 -1

with p(D1 V D3) = 0.2/3, and applying Theorem we double-check that we have
urk(Dy, D3) < 3.

@

FIGURE 6. The fundamental cells of Dy (white) and Dy (gray).

We check that urk(D1DaD1) = 1 so we have urk(D1, Do) = 1. (This last result
can also be recovered using [23, Theorem 7.3.1].)

6.4. Projectively bounded semigroups. In obtaining Theorems[G.4land[6.5] the
assumption that the semigroup of matrices is finitely generated is used only twice.
First, to prove Lemmas and [6.3] second, to define matrix M in Theorem
So we obtain the following extension for free.

Definition 6.14. A subset Z of non-null matrices in T"*"™ is projectively bounded
if SUp g7 MaXA,; Ay er |Aij — Ape| < +00.
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Theorems and hold if we replace in the statements: (i) “finite set Z” by
"projectively bounded set Z”; (ii) “Set M =\/ 4., A” by “Set M = sup 4.7 A” (for
Theorem [6.4); (iii) “urk(S) = n” by “VP € S,urk(P) =n".

7. Summary and open issues

Next table summarizes the known results for the time-complexity of the two
basic questions concerning the rank.

Deciding if maximal | Computing
rker(A) Polyn. [10, [7] NP-hard [21]
rkei/rkew (A) | Polyn. [9] §3.4] Polyn. [9] §3.4]
urk(A) Polyn., Cor. 54 Polyn., Cor. B4
urk(S) Polyn., Cor. 77

Two points are worth emphasizing. First, computing the ultimate rank of a
matrix is of polynomial time-complexity, while computing the initial rank of a
matrix could be NP-hard. Second, the general question about the decidability of
computing the ultimate rank of a matrix semigroup is still open.

Problem 7.1. How to compute the ultimate rank of a finitely generated matriz
semigroup ?

In the present paper, we have proved that the problem of determining whether
the ultimate rank is maximal is solvable in polynomial time. Another solvable case
is that of semigroups of ultimate rank 0. Indeed, the case of rank 0 is equivalent to
mortality, which is known to be decidable and NP-complete [4].

Before approaching the general case of arbitrary ultimate rank, an intermediate
important case is that of ultimate rank 1. This case is generic [24], more precisely,
if two generators are “chosen randomly”, the probability that the semigroup has
ultimate rank 1 is equal to 1. Also some sufficient conditions for ultimate rank 1
are given in [23] Chapter 7]. Yet, the decidability of the question “Is the ultimate
rank equal to 17”7 is still open.
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