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A SPECTRAL INEQUALITY FOR THE BI-LAPLACE OPERATOR
JEROME LE ROUSSEAU AND LUC ROBBIANO

ABSTRACT. On a compact Riemannian manifold with boundary, we prove a spectral in-
equality for the bi-Laplace operator with so-called “clamped” boundary conditions, that
is, homogeneous Dirichlet and Neumann conditions simultaneously. This spectral in-
equality allows one to observe finite sums of eigenfunctions for this fourth-order elliptic
operator, from an arbitrary open subset of the manifold. Moreover, the constant that ap-
pears in the inequality grows as exp(Cu'/#) where u is the largest eigenvalue associated
with the eigenfunctions appearing in the sum. This type of inequality is known for the
Laplace operator. As an application, we obtain a null-controllability result for a higher-
order parabolic equation. The proof is based on the derivation of different types of Car-
leman estimates for an elliptic operator related to the bi-Laplace operator: in the interior
and at some boundaries. One of these estimates exhibits a loss of one full derivative. Its
proof requires the introduction of an appropriate semi-classical calculus and a delicate
microlocal argument.

Keyworbps: high-order operators; boundary value problem; spectral inequality; interpola-
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1. INTRODUCTION

Let A be the positive Laplace operator on a compact Riemannian manifold (€2, g), of dimension
d > 1, with nonempty boundary Q. In local coordinates, itreads A = —A = [g|™"/% 3 ; iy Di(lal'/*6" D)),
where D = —id.

For boundary conditions, say of homogeneous Dirichlet type', we denote by 0 < w; < --- <
w; < ---, the eigenvalues of the operator A, associated with a family (¢;) e of eigenfunctions
that form a Hilbert basis for L2(€2). We refer to this selfadjoint operator as to the Dirichlet Laplace
operator. The following spectral inequality originates from [[LR95, .Z98, JL.99].

Theorem 1.1. Let O be an open subset of Q. There exists C > 0 such that

172
(1.1) llellp2q) < Cetv lleellz2(), @ >0, u€Span{¢;; w; < w}.

It provides an observation estimate of finite sums of eigenfunctions. The constant C e in
the inequality is in fact optimal if & € Q [J1.99, LL.12], and can be seen as a measure of the
loss of orthogonality of the eigenfunctions ¢; when restricted to &. This inequality has various
applications. It can be used to prove the null-controllability of the heat equation [LLR95] (see
also the review article [LLL.12]), the null-controllability of the thermoelasticity system [[.298], the
null-controllability of the thermoelastic plate system [BNO2, MilO7], and the null-controllability

'What we describe is yet valid for more general boundary conditions of Lopatinskii type for the Laplace
operator.
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of some systems of parabolic PDEs [ ]. It can also be used to estimate the (d — 1)-Hausdorff
measure of the nodal set of finite sums of eigenfunctions of A, in the case of an analytic Rie-
mannian manifold [ ], recovering the result of [ ], that generalizes a result of [ ] for
eigenfunctions.

It is quite natural to wish to obtain a similar spectral inequality for higher-order elliptic op-
erators on €, along with appropriate boundary conditions. The bi-Laplace operator, that can be
encountered in models originating from elasticity for examples, appears as a natural candidate
for such a study. If the boundary conditions used for the bi-Laplace operator precisely make it
the square of the Laplace operator A (with its boundary conditions) then the spectral inequality is
obvious as the eigenfunctions are the same for the two operators and 4; > 0 is an eigenvalue of
the bi-Laplace operator if and only if \//l_] is one for the Laplace operator. To be clearer, let us
consider the positive Dirichlet Laplace operator A. If A2 is the bi-Laplace operator on Q along
with the boundary conditions ujpo = 0 and Aupg = 0, then the family (¢;) ey introduced above,
is in fact composed of eigenfunctions for A2 associated with the eigenvalues A i = w?. This set of
boundary conditions is known as the “hinged” boundary conditions. We refer to this operator as
to the “hinged” bi-Laplace operator, and, for this operator, with Theorem 1.1, we directly have the
following spectral inequality, for & C Q,

1/4
(1.2) lull 2y < Cellull 2y A >0, ue Span{g;; A; < A).

One can be naturally inclined to consider another set of boundary conditions, the so-called “clamped”
boundary conditions, ujpo = 0 and d,u;po = 0, where v is the outward normal to 9. We refer to
this operator as to the “clamped” bi-Laplace operator. It is sometimes referred to as the Dirichlet-
Neumann bi-Laplace operator. Eigenfunctions of the “clamped” bi-Laplace operator are not re-
lated to eigenfunctions of the Dirichlet Laplace operator. In fact, observe that an eigenfunction
of the “clamped” bi-Laplace operator cannot be an eigenfunction for the Laplace operator A, in-
dependently of the boundary conditions used for A. Indeed, from unique continuation arguments,
if a H? function ¢ is such that Ap = A¢ on Q and ¢j9q = d,dao = 0, then ¢ vanishes identi-
cally. Thus, a spectral inequality for the “clamped” bi-Laplace cannot be deduced from a similar
inequality for the Laplace operator A with some well chosen boundary conditions. Yet, such an
inequality is valuable to have at hand, in particular as the “clamped” bi-Laplace operator appears
naturally in models. It is however often disregarded in the mathematical literature and replaced
by the “hinged” bi-Laplace operator for which analysis can be more direct, in particular for the
reasons we put forward above.

The main purpose of the present article is to show that a spectral inequality holds for the
“clamped” bi-Laplace operator and, more generally, to provide some analysis tools to carefully
study fourth-order operators that have a product structure. Carleman estimates will be central in the
analysis here and we shall show how their derivation is feasible when the so-called sub-ellipticity
condition does not hold, which is typical for product operators. If B is the “clamped” bi-Laplace
operator, that is, the unbounded operator B = A? on L?*(Q), with domain D(B) = H*(Q) N HS(Q),
which turn B into a selfadjoint operator, let (¢;) jen be a family of eigenfunctions of B that form a
Hilbert basis for L>(Q), associated with the eigenvalues 0 < i < --- < u j < -+ (the selfadjoint-
ness of B and the existence of such a family are recalled in Section 1.7 below). We shall prove the
following spectral inequality.

Theorem 1.2 (Spectral inequality for the “clamped” bi-Laplace operator). Let & be an open subset
of Q. There exists C > 0 such that

1/4
lleell 2y < Cet lleell 25 u>0, wueSpan{p;; u;j < uj.
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Note that the spectral inequality of Theorem 1.2 was recently obtained in one space dimension
in [Gao]. Yet, therein, the factor eCH g replaced by ec“l/z, yielding a weaker form of the spectral

inequality.
We shall present a null controllability result for the parabolic equation associated with B which
is a consequence of this spectral inequality. Such a result can be found in [ ] in the case of

analytic coefficients. Here, coefficients are only assumed smooth. We may foreseen that regularity
could be lowered as low as W' for the coefficients in the principal part of the operator. This
would require further developments that would significantly increase the size of the present article.

The proof of the spectral inequality is based on Carleman estimates for the fourth-order operator
P=D}+B.

The subject of the present article is connected to that of unique continuation, in particular
through the use of Carleman estimates. Moreover, the spectral inequality of Theorem 1.2 is a
quantified version of the unique continuation property for finite sums of eigenfunctions. There is
an extensive literature on unique continuation for differential operators; yet, positive results require
assumptions on the operator or on the hypersurface across which unique continuation is pursued.
For instance, a simple-root assumption is often made following the work of A. Calderén [ Jor
the celebrated strong pseudo-convexity condition is assumed following the work of L. Hérmander
[ , ]. For second-order elliptic operators (with smooth complex coefficients) these as-
sumptions are fulfilled. However, for higher-order operators they may not be satisfied. Counter
examples for the non uniqueness of fourth-order and higher-order operators with smooth coeffi-
cients can be found in [ ]and [ ]. See also the monograph [ ] for manifold positive
and negative results. The question of strong unique continuation is also of interest for higher-order
operators; see for instance [ ] for a positive result and [ ] for a large class of negative
results. Note that the above literature concerns unique continuation properties away from bound-
aries. For the result of Theorem 1.2 the analysis we use mainly focuses on the neighborhood of the
boundary of the open set 2. There are few results on unique continuation near a boundary. Under
the strong pseudo-convexity condition the unique continuation property can be obtained, even for

higher-order operators; see [ ] and [ ]. For the operator P = Dﬁ' + B that we consider
here, the strong pseudo-convexity property fails to hold near the boundary and also away from it.
General approaches as developped in [ , ] cannot be used. This is one of the interests of

the present article.

1.1. On Carleman estimates. Carleman estimates are weighted a priori inequalities for the solu-
tions of a partial differential equation (PDE), where the weight is of exponential type. For a partial
differential operator Q away from boundaries, it takes the form:

lle™wllz2 < lle™ Owllp2, w € C(Q), T2 7.

The exponential weight involves a parameter 7 that can be taken as large as desired. Additional
terms in the Lh.s., involving derivatives of u, can be obtained depending on the order of Q and on
the joint properties of Q and ¢. For instance for a second-order operator Q, such an estimate can
take the form

(1.3) 2 ull 2 + V2™V ull 2 < €™ Qull;z, 7> 710, U € CO(Q).

One says that this estimate is characterized by the loss of a half derivative. This terminology
originates from the underlying semi-classical calculus where one gives the same strengths to the
parameter 7 and to D. Whereas Q is a second-order operator, the 1.h.s. only exhibits derivatives or
powers of T of order 3/2. For most operators, this cannot be improved [ , ]. In the
proof of a Carleman estimate on introduces the so-called conjugated operator Q, = e Qe™ "™, and
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estimate (1.3) reads
2 1/2
PR + T2Vl S 10l T2 710, v=eMu, ue E(Q).

This type of estimate was used for the first time by T. Carleman [ ] to achieve uniqueness
properties for the Cauchy problem of an elliptic operator. Later, A.-P. Calderén and L. Hérmander
further developed Carleman’s method [ , ]. To this day, the method based on Carleman
estimates remains essential to prove unique continuation properties; see for instance [ ] for
an overview. On such questions, more recent advances have been concerned with differential
operators with singular potentials, starting with the contribution of D. Jerison and C. Kenig [ ].
There, Carleman estimates rely on LP-norms rather than L?>-norms as in the estimates above. The
proof of such L? Carleman estimates is very delicate. The reader is also referred to [ , ,

]. In more recent years, the field of applications of Carleman estimates has gone beyond the
original domain; they are also used in the study of:

o Inverse problems, where Carleman estimates are used to obtain stability estimates for the
unknown sought quantity (e.g. coefficient, source term) with respect to norms on mea-
surements performed on the solution of the PDE, see e.g. [ , , , 1;
Carleman estimates are also fundamental in the construction of complex geometrical op-
tic solutions that lead to the resolution of inverse problems such as the Calderén problem
with partial data [ s ].

e Control theory for PDEs; Carleman estimates yield the null controllability of linear par-
abolic equations [ ] and the null controllability of classes of semi-linear parabolic
equations [ , , ]. They can also be used to prove unique continuation
properties, that in turn are crucial for the treatment of low frequencies for exact control-
lability results for hyperbolic equations as in [ 1.

To indicate how the spectral inequality of Theorem 1.2 for the bi-Laplace operator B can be
proven by means of Carleman estimates, we first review a method, that yields the spectral inequal-
ity of Theorem 1.1 for the Laplace operator A.

1.2. A method to prove the spectral inequality for the Laplace operator. The method we
describe here originates from [ ]. We consider the operator P4 = Df +AonZ=(0,5g) X Q,
for some Sg > 0 meant to remain fixed. We also pick 0 < @ < S¢/2. Three different types of
Carleman estimates are proven for the operator P4: (i) in the interior of (0,S¢) X Q; (i1) at the
boundary {s = 0} x Q; (iii) at the boundary (a,S¢ — @) X 0Q. The three regions where these
Carleman estimates are derived are illustrated in Figure 1. It is simpler to first describe Case (i),
that is, the estimate in the interior. In Figure 1, this corresponds to the neighborhood V| of some
point z() € Z. There, the Carleman estimate for this operator P, is of the form described above,
that is,

(1.4) P2e W2z + T e Wl z) < lle™ Pawllizz)s

where the weight function ¢ = ¢(z) is real-valued with a non-vanishing gradient, 7 is a large
positive parameter, and w is any smooth function compactly supported in V. In fact, this estimate
holds if the so-called sub-ellipticity condition is fulfilled by P4 and ¢. If pa(z, ) is the principal
symbol of P4, the sub-ellipticity condition in V| reads

. 1 - .
(1.5) paz,{+itdp(z)) =0 = 2_l.{pA(Zv§ +itdg(2)), pa(z, { + itde(2))} > 0,
forz e Vi, ¢ e R¥! and t > 0. It is in fact equivalent to a Carleman estimate of the form (1.4) for
Py (see [ Jor[ ]). Observe that p(z, { + itdy(z)) is the semi-classical principal symbol

of the conjugated operator Py, = e"*Ppe™"%.
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Ficure 1. Location and geometry of the three types of estimates. Dashed
are level sets for the weight functions ¢ used in the Carleman estimates.
Arrows represent the directions of the (non vanishing) gradient of ¢.

The function ¢ is chosen of the form ¢(z) = exp(—y|z — zV1?) and V; is an annulus around z(V,
thus avoiding where the gradient of ¢ vanishes (see Figure 1). For y > 0 chosen sufficiently large,
one can prove that the sub-ellipticity condition (1.5) holds and thus estimate (1.4) is achieved (see
e.g. [LROS] or [LL12]).

From estimate (1.4), one can deduce the following local interpolation inequality, for all » > 0

chosen sufficiently small, for some 6§ € (0, 1) (see e.g. [ D,
N 5
(1.6) Ml a3 < Wit (IPavilzg) + Ml aeoy) v e HX ).

We now consider Case (ii). In a neighborhood V> of a point z? € {0} x &, one can derive an
estimate of the same form as (1.4), yet, with two trace terms in the r.h.s., that is,
an X P2 Wiz < 1€ Pawlliag + (1€ Wis=0+ i1 ) + 1€™905Wi5=0¢ |20

=0,

for T > 79 > 1 and w smooth up to the boundary {s = 0}, with supp(w) N Z C V,, with V, as
represented in Figure 1. This can be obtained by locally choosing a weight function of the form
©(2) = exp(yy¥(z)) with ¥(z) such that 9,¢(z) < —C < 0 in V, and choosing the parameter y > 0
sufficiently large (see e.g. [ D.

From estimate (1.7) one deduces the following local interpolation inequality: there exist V C V,
and ¢ € (0, 1) such that

_ o
(1.8)  Wlmwaz) < V2, (IPavliz) + Ws=0tlii ) + 0vis=0rl2) - v € HA (),

We finally consider Case (iii). In a neighborhood of a point z® € (@, So — @) X dQ, one can
derive an estimate of the same form as (1.4), yet, with a single trace term in the r.h.s., that is,
(1.9) z PP Wiz <l Pawllizizy + 72 1e™Wiaal i (0.s0-arxon):

=0,
for T > 79 > 1 and w smooth up to the boundary (a, S¢ — @) X 0Q, with supp(w) N Z C V3, with
V3 as represented in Figure 1. This can be obtained by locally choosing a weight function of the
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form ¢(z) = exp(yy¥(z)) with ¥(z) such that d,¥(z) < —C < 0 in V3, where v is the outward normal
to 0Q2, and choosing the parameter y > 0 sufficiently large (see e.g. [ D.

From estimate (1.9) one deduces the following local interpolation inequality: there exist V C
V3, with V neighborhood of z® in Z, some open subset .2 C V3 with positive distance to the
boundary, and ¢ € (0, 1) such that

— o
(110)  Wlivnz) < W0, (IPavliegy + Mlme) s ve HAZ), vosoxon = 0.

The three interpolation inequalities (1.6), (1.8), and (1.10) can be used to form a global interpo-
lation inequality, by means of compactness arguments. In particular, the interior inequality (1.6)
permits the “propagation” of the estimate. Then, there exists ¢ € (0, 1), such that

_ 0
(1.11) Ml a.s0-a) S W25 (IPavllz2z) + M=ol ) + 105mis=0 20 >

for v € H*(Z) satisfying v0.s,)xao = 0. This inequality then implies the spectral property for the
Laplace operator [ | foru = X, .<,uj$; € Span{¢;; w; < w}, if applied to a well chosen
function v(s, x), namely,

1/ 1/2

v(s,x) = ) uja)]_. zsinh(a)j $)¢ j(x).

wisw
1.3. Qutline of the proof of the spectral inequality for the bi-Laplace operator. Above we
described how Carleman estimates can be used to prove a spectral inequality of the form given
in Theorem 1.1 for the Laplace operator. To prove the spectral inequality of Theorem 1.2 for
the “clamped” bi-Laplace operator, we shall prove several Carleman estimates for the following
fourth-order elliptic operator P = D?¥ + A% on (0, S¢) x Q. As for P4 above, we shall prove such
estimates at three different locations: (i) in the interior of (0,S() X Q, in Section 2; (ii) at the
boundary {s = 0} x Q, in Section 3; (iii) at the boundary (@, So — @) X dQ, in Section 4. In
Section 5, these three types of estimations are then used to achieve local interpolation inequalities
that can be used to prove, first, a global interpolation inequality and, second, the spectral inequality
of Theorem 1.2.

Cases (i) and (ii). The weight functions that we shall use will be the same as that used for the
operator P4 for Cases (i) and (ii). In Case (ii), the estimate we obtain for P takes the form

-12 4-
V ||Z4IIT e DY ullr2z) < €™ Pull 2z
a|<

M

7/2—j J J
+ (T / ]|estu|s:O+|L2(Q) + |estuls:O+|H7/2—.i(Q))e

0

J

for functions localized near a point 7? € {0} x 0, with & c Q. We have observation terms at the
boundary {s = 0}. Note that this estimate is characterized by the loss of half-derivative, similarly
to the estimate one can derive for P4. In fact, the sub-ellipticity condition holds in V, despite
the fact that P, = e¢™¥Pe™™ can be written as a product of two operators, P, = 0105, as, here,
char(Qp) N char(Q;) = 0.

In Case (i), however, the estimate we obtain is characterized by the loss of one full derivative,
taking the form

3 TN DUl 2 < Nl Pull 2z,
la|<4

for functions compactly supported away from boundaries. In fact, this loss cannot be improved as
explained in Section 1.4. Here also, the operator P, can be written as a product of two operators,
P, = 010>, and here, as opposed to Case (ii), we have char(Q1) N char(Q») # 0.
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We provide fairly short proofs of the Carleman estimates in Cases (i) and (ii) in Sections 2 and
3. Note, however, that the loss of a full derivative in Case (i) does not create any obstruction to the
derivation of a local interpolation inequality in Section 5.

Remark 1.3. Sub-ellipticity does not hold in V. The reader should note that the failure of the
sub-ellipticity property does not automatically imply a loss of one full derivative. The phenomena
that can occur require a fine analysis to be understood. This is carried out in [ ]. Roughly
speaking, if sub-ellipticity does not hold, and if some iterated Poisson brackets vanish up to order
k and an iterated Poisson bracket of order k + 1 is positive, then an estimate can be obtained
with a loss of k/(k + 1) derivative. In the present case, as we can prove that the loss of one full
derivative cannot be improved, we then know that all the iterated Poisson brackets used in [ ]
vanish. The essential problem is that the conjugated operator P, can be written as a product of
two operators Q1 Q», and in the case char(Q;) N char(Q;) # 0, not only does sub-ellipticity not
hold, but we see that the iterated Poisson brackets also vanish.

Case (iii). This case is delicate and the derivation of the Carleman estimate at the boundary («, S o—
a) X 0Q) is one of the main results of the present article. This case is also precisely where we have
to take into account the boundary conditions for the bi-Laplace operator B. The estimate we obtain
in Case (iii) in Section 4 is characterized by the loss of one full derivative and, as for case (i), this
cannot be improved as explained in Section 1.4. This is a source of major complications for the
proof of the Carleman estimate itself. As in Case (i) this, however, does not create any obstruction
in the derivation of the local interpolation inequality in Section 5. In fact, the proof of the local
Carleman estimate in V3, a neighborhood of a point of the boundary («, So — @) X dQ, requires
microlocal arguments. This implies the introduction of microlocalization operators that realize
some partition of unity in phase space over V3. For each induced microlocal region, a Carleman
estimate is derived. One region is less favorable: there, the fourth-order conjugated operator P,
can we written as a product of four first-order factors, and two of them fail to be elliptic. Moreover,
their characteristic sets intersect; sub-ellipticity does not hold there and, in fact, this generates a
loss of a full derivative in the estimation. There, the a priori estimate one derives permits to only
estimate the semi-classical H>-norm, viz., [Wll3+ = 3w 12 + |Wllg3. In other microlocal regions
over V3, the conjugated operator P, exhibits at most a non elliptic first-order factor only yielding
a half derivative loss as sub-ellipticity holds. If one does not proceed carefully, the derivation in
the least favorable region yields error terms that can be of the same strength as the norm ||w||3 -,
preventing to conclude positively to the Carleman estimate.

We define the weight function in the form ¢(z) = ”¥® and keep track of the parameter 7 that is
meant to be large. The function y is chosen such that d,¢ < —C < 0 in a neighborhood of a point of
the boundary where we try to derive the Carleman estimate. The use of an exponential form for the
weight function can already be found in the seminal work of L. Hérmander ([ , Section 8.6]
and [ , Section 28.3]), in connexion with the celebrated notions of pseudo-convexity and
strong pseudo-convexity. This introduces a second large parameter. Several authors have derived
Carleman estimates for some operators in which the dependency upon the second large parameters

is explicit. See for instance [ ]. Such result can be very useful to address applications such
as inverse problems. On such questions see for instance [ , , s . In[ 1,
an analysis framework is introduced, based on the Weyl-Hormander calculus ([ 1, [ ,

Sections 18.4-18.6]), that allows one to describe the explicit dependency of Carleman upon the
second large parameter y for general classes of operators. That analysis is carried out away from
boundaries. Here, we use that approach by mean of a tangential Weyl-Hormander calculus. The
introduction of the second large parameter y allows us to handle some error terms in the derivation
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of the Carleman estimate in V3. This is however not sufficient to have control over all the error
terms that appear in the region where sub-ellipticity does not hold.

Yet, when one attempts to derive the estimate, one realizes that the derivation is possible in the
case ¢, and thus ¢, only depend on the normal variable to the boundary. Yet, for the interpolation
inequality we wish to derive at the boundary (@, S¢ — @) X 9Q, some convexity of the level sets
of the weight function ¢ is needed: ¢ cannot be constant along the boundary. This is illustrated
in Figure 1 (in the neighborhood V3). We thus introduce the function ¥, = ¥(ez’, zy), where 7/
denotes the tangential variables and zy denotes the normal variable (in local coordinates where
the boundary is given by {zy = 0}), and we set ¢(z) = ¢”%@. Here, ¢ is a small parameter,
g € (0, 1). Keeping track of the dependency of the microlocal estimates in this third parameter too
then allows one to obtain a Carleman estimate, at the boundary, with a weight function with some
convexity of its level sets with respect to the boundary. This is precisely done by extending some
of the work of [ ] and introducing a Weyl-Hormander, with three parameters: the large semi-
classical parameter 7, the second large parameter 7y, and this new parameter € € (0, 1) that controls
the convexity of the level sets of the weight function. Note that even in the case ¥ = ¥(z,), the
proof of the Carleman estimate relies on taking the second parameter y sufficiently large (see the
end of Proposition 4.25 below). The introduction of the parameter € alone would not be sufficient.
Only the joint introduction of the two parameters allows us to conclude positively to the Carleman
estimate in the microlocal region where a full derivative is lost.

All the different microlocal estimates need to be derived within the refined semi-classical calcu-
lus with three parameters. Arguments are based on the ellipticity or sub-ellipticity of the different
factors building the fourth-order operator P, and the position of theirs roots in the complex plane.
This analysis follows in part from the different works [ , R , s ].

Eventually, the various microlocal estimates we obtain need to be patched together. This implies
commutators of the fourth operator P, and the microlocal cut-offs, generating some third-order
error terms that can be handled thanks to the better microlocal estimates obtained away from the
least favorable region.

1.4. On Carleman estimates for higher-order elliptic operators. If Q is an elliptic operator of
even order m, and ¢ is a weight function such that the couple (P, ¢) satisfies the sub-ellipticity
condition (as stated above), then a Carleman estimate can be obtained, even at a boundary, for
instance with the results of [ ]. We use those results in Section 3 for the proof of the Carleman
estimate at the boundary {s = 0}.

If m > 4, it is however quite natural to not have the sub-ellipticity condition, in particular if the
operator Q is in the form of a product of two operators, say Q = Q1 Q». Denote by ¢, g1, and ¢, the
principal symbols of Q, Q, and Q, respectively. The conjugated operator Q, = e™*Qe™ "™ reads
Qp = Q1,002, with O, = e Qre™™, k = 1,2. If we have char(Q ) N char(Q;,) # 0 then the
sub-ellipticity condition fails to hold. In fact, if g, q1,4, and g», are the semi-classical principal
symbols of Q,, Q1 ,, and Qs , thatis, g, = q(z,{ +itde(z)) and qi, = gi(z, { +itde(2)), k = 1,2,
we can write

(Gyr 4o} = 19161 (@r 0 D26} + 10261 (@1 o @16} + Fl1.0l 1G240,

for some function f. Thus {q,, g,} vanishes if g1 , = g2, = 0. Then, the sub-ellipticity property
of (1.5) cannot hold for Q.

Observe that in the above example we have d, q(z,{ + itdp(z)) = 0 if q2(z,{ + itdp(z)) =
q1(z,¢ + itde(z)) = 0. The following proposition (that applies to operators that need not be
elliptic) shows that in such case of symbol “flatness”, the Carleman estimate we can derive for Q
exhibits at least a loss of one full derivative.
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Proposition 1.4. Let Q = Q(z, D;) be a smooth operator of order m > 1 in Z, an open subset of
RN. Assume further that there exist a smooth weight function ¢(z), C > 0, 1 > 0, a multi-index a
with 0 < |a| < m, and 6 > 0 such that

(1.12) 1)1 DYy < Clle™ Quill 2,

for T > 11 and for u € € RN) with supp(u) C Z. Let q(z, () be the principal symbol of Q. If there
exist 20 € Z, Lo € RN and t¢ > 0 such that 96’ # 0, with 6y = {y + itode(zp), and

q(z0,60) = q¢(20,£0,70) =0,  d.rq(z0,60) = 0,
then 6 = 0.

In other words, if there is a point (xo, £o, 7o) where the symbol g, vanishes at second order, then
if a Carleman estimate holds it exhibits at least the loss of a full derivative.
We refer to Section A.1 for a proof.

Remark 1.5.  This loss of at least one full derivative shows that the analysis of [ ] cannot be
applied here, as it concerns Carleman estimate with losses of less that one derivative. In particular,
one can check that iterated Poisson brackets used in [ ] all vanish at points where g, vanishes
at second order.

In dimension greater than 1, this proposition applies to the bi-Laplace operator B introduced
above on the manifold Q. If a(x, £) is the principal symbol of the Laplace operator in a local chart
V, for all xo € V, there exists & and 7o > 0 such that a(xg, & + itod¢(x0)) = 0. Then, the symbol
b = a? vanishes at second order at (x0, &0 + iTodxp(xp). Hence, we cannot hope for a Carleman
estimate for B with a loss of less than one full derivative. In fact, such an estimate can be obtained
by using twice in cascade the Carleman estimate for the Laplace operator. This is consistent, as
the estimate for the Laplace operator exibits a loss a half derivative in dimension greater than 1 (if
@ is chosen such that sub-ellipticity holds — see [ D.

In dimension one, however, B = Djt and the conjugated operator (D, + im’<,a(x))4 is elliptic (in
the sense of semi-classical operators) if dp(x) # 0 in Q. Then, the resulting Carleman estimate is
characterized by no derivative loss.

Concerning the operator P = D‘S‘ + Bin Z = (0,8 9) X Q, that is central in the present article, we
write P = PP, with Py = (~1)%iD? + A. Setting Py, = ™ Pre™™, with semi-classical principal
symbols given by

Pro(z. &, 7) = (=DFi(o + itd59(2))* + a(x, € + itdp(z)), k= 1,2,

where z = (s,x) € Zand ¢ = (0,&) € R'*¥ = RV, Letd > 2. If, for some zp € Z, we have
050(z0) = 0, if we choose & € R? and 7 > 0 such that a(xo, &o +itodyp(z0)) = 0, then for g = 0,
we have ¢y = (0,&) € RY and 6y = (0, &) + ito(0, dxg(20)) and py (20, {0, T0) = Pi(20,60) = 0
and d, ;p(zo,600) = 0, where p and py are the principal symbols of P and Py, k = 1,2. Hence, in a
neighborhood of zg, Proposition 1.4 applies.

This situation occurs in Cases (i) and (iii) described in Section 1.3 and Figure 1. In the neigh-
borhoods V| and V3 introduced there, we have points where d5¢ vanishes (as can observed by the
shapes of the level sets of ¢ in Figure 1). This explains why we can only obtain estimates with a
loss of one full derivative for those cases. In case (ii), however, this does not occur, and there we
obtain an estimation with only a loss of a half derivative.

1.5. Some perspectives. The present article deals with the natural “clamped” boundary condi-
tions, that is, homogeneous Dirichlet and Neumann conditions simultaneously. In the light of
the results obtained here and those that can be obtained for very general boundary conditions of
Lopatinskii type in [ , ], for instance for unique continuation through the derivation
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of Carleman estimates at the boundary for general elliptic operators with complex coefficient in
cases where the sub-ellipticity property hold, one is inclined to attempt to prove estimates similar
to those proven in the present article, in the case of an operator, such as the operator P = D + B
studied here, for which the sub-ellipticity condition cannot hold everywhere and for general bound-
ary conditions of Lopatinskii type.

Here, we considerer the bi-Laplace operator B = A2. It would be of interest to consider more
general polyharmonic operators such as A, k € N, on Q along with natural boundary conditions,

e.g.,
k—1
Upo = O,...,av Upn = 0,

or more general Lopatinskii type conditions.

1.6. Notation. We shall use some spaces of smooth functions in the closed half space. We set

FSE®Y) = (u—: ue S®Y).

R
The reader needs to be warned that in some sections z € RY will denote (x, s), with x € R? =

RN-1 and s € R, and thus, there, zy = s. This is the case in Section 3. In other sections, z will

denote (s, x), and thus there zy = x,4. This is the case of Section 4 and Appendices A.2 and B.

Some specific notation for semi-classical tangential operators will be introduced in Section 3.1,
and they allow us to derive the Carleman estimate for D‘S‘ + B at the boundary {0} x Q (Cases
(i) above). Semi-classical calculus is characterized by the presence of a large parameter denoted
by 7 here, that is precisely the large parameter that appears in the Carleman estimates (for readers
familiar with semi-classical analysis this is done by taking T = 1/h where # is the Planck constant.)

A special class of semi-classical calculus is also introduced in Section 4.1 and is characterized
by three parameters. This calculus is essential in the proof of the Carleman estimate for D? + B at
the boundary (0, S o) X dQ (Case (iii) above).

In this article, when the constant C is used, it refers to a constant that is independent of the
semi-classical parameters, e.g. T, v, €. Its value may however change from one line to another. If
we want to keep track of the value of a constant we shall use another letter.

For concision, we use the notation < for < C, with a constant C > 0. We also write a < b to
denotea < b < a.

We finish this introductory section by stating some basic properties of the “clamped” bi-Laplace
operator that will be used at places in this article (some were implicitly used above).

1.7. Some basic properties of the bi-Laplace operator. We recall here some facts on the “clamped”
bi-Laplace operator. We define the operator B = A% on L*(Q) with domain D(B) = H4(Q)OH§(Q).

Proposition 1.6. The operator (B, D(B)) is selfadjoint on L*(Q) and maximal monotone.

In particular, if g > 0, there exists C > 0 such that, for any f € L*(Q), there exists a unique
u € D(B) such that

(1.13) Au+pu=f, and |lullgq) < Cllfllzg)-

This can be proven by first finding a unique solution in Hé(Q) with the Lax-Milgram theorem and
then applying Theorem 20.1.2 in [ , Section 20.1].

As a consequence of Proposition 1.6 we have the existence of a Hilbert basis for L>(Q) made
of eigenfunctions.
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Corollary 1.7. There exist (i1j) jexn C R, and (¢;) jen C D(B) such that
O<pr Spp <+ Spj<---, }Lrgoﬂj=+m, Byj = pjpj,
and the family (¢;); forms a Hilbert basis for LX(Q).

Corollary 1.8. The operator (B, D(B)) generates an analytic Cy-semigroup S (t) on L*(Q).
ForT >0, yo € L*(Q), and f € L*(0, T; H2(Q)), there exists a unique

y € LA([0, T1; HY(Q) N €([0, T1; LX) N H'(0, T; H*()),
given by y(t) = S (t)yo + fot St — s)f(s)ds, such that

Oy +ANy=f forte(0,T)a.e.,
Y0,7)x8Q = 0vYy0,1)xee = 0,
Yii=0 = Y0 in Q.

2. ESTIMATE AWAY FROM BOUNDARIES

2.1. Simple characterisitic property of second-order factors. We consider the augmented op-
erator P = Dg‘ + Bin Z = (0, S0) X Q, remaining away from boundaries here. We write

2.1 P = PPy, with P, = (-D’iD? + A.

Here, we show that P and P, both satisfy the so-called simple characteristic property in the case
of a weight function whose differential does not vanish.

Let £(z, ), with (z,£) € RN x RY, be polynomial of degree m in £, with smooth coefficient in z.
For z — M(z) € RV \ {0}, we introduce the map

pZ,{,M : R+ - Ca

2.2) 0  l(z, ¢ +iOM(2)).

Definition 2.1. Let W be an open set of BN . We say that ¢ satisfies the simple-characteristic
property in direction M in W if, for all z € W, we have { = 0 and 6 = 0 when the map p, ;s has a
double root.

We can formulate this condition as follows
(2.3) Uz, { +i0M(2)) = d (2, { +iOM(2))(M(z)) =0 = (=0,6=0.

Lemma 2.2. Let W be an open set of RN. If N > 3 and £(z,0) is of order two (with complex
coefficients) and elliptic for z € W, then for any map z — M(z) € RN\ {0}, ¢ satisfies the simple-
characteristic property in direction M in W.

Proof. The proof can be adapted from classical ideas (see [ , proof of Proposition 1.1, Chap-
ter 2] or [ 1). We consider the polynomial f; ;s (f) = €(z,{ + tM(z)) where ¢ is a complex
variable, forz € W, l € R,

If £ is colinear to M(z), e.g. { = aM(z) then f,, m(t) = (@ + )2€(z, M(z)). Because of the
ellipticity of ¢, £(z, M(z)) # 0, and we only have ¢ = —a as a double real root for f.

We set J = RV \ Span(M(z)), which is connected as N > 3. Let now ¢ € J, that is, £ is not
colinear to M(z). As py is elliptic, the roots of f; sy cannot be real numbers. We denote by m* ()
and m~({) the number of roots with positive and negative imaginary parts, respectively. We have
2 = m*()+m~({). Since roots are continuous w.r.t. £ and cannot be real, they remain in the upper-
or lower-half complex plane as £ varies in J, as J is connected, meaning that m* and m™ are then
invariant. In particular, m* () = m*(={) and m~ () = m~(={). Observing however, that if 7 is a
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root of t — £(z,{ + tM(z)) then —1g is a root of ¢ — £(z, —¢ + tM(z)), we find that m*(0) = m™(={).
This gives m* () = m™({) = 1. Hence, complex roots are simple.

In any case, we see that if the map 6 = p_, y = f; m(if) has a double real root 6 then 6y = 0
and ¢ = 0. The simple characteristic property is thus fulfilled. |

If we consider a weight function ¢ = ¥ (s, x), for the operators Py, k = 1,2, introduced in (2.1),
we have the following proposition.

Proposition 2.3. Let k = 1 or 2. Assume that dy # 0 in (0,S¢) X Q. Then, Py satisfies the simple
characteristic property in direction dys in (0, S o) X Q.

Proof. Here, the dimension is N = d + 1. The case d > 2 is treated in Lemma 2.2. It only remains
to treat the case of dimension d = 1. Then, the principal symbol of A reads a(x, &) = a(x)&2, with
a(x) > C > 0. We set M(z) = (My(2), Mg(2)) = dyi(2) € RN \ {0}. We write p in place of P(z.20.M)
for concision.

With ¢ = (0, €), we have

p(0) = pi(z0, £ +i0M) = (=1)i(0 + i0My)* + a(x0)(& + iOM,)*
= a(x0)& — a(x0)(OM)* — 2(= D00 M,, + i((—1)0? — (=1)X(OM,)? + 20a(x0)EMp).

We thus have 19gp(6) = —a(xo)9M§ — (-DroM, + i(a(x)éM; — (=1)¥0M?2). Assuming that
My # 0, if dgp = 0 we find
3

a(xp)éM,

)k—( O)f ’f, and o = —a/(xo)z.g-'—?
o MO’

This yields p = a(x0)&*(1 + (~1)ia(xo)M2 /M2 )(1 + a(x0)*M/M%). In this case, we thus have
p =0gp =0ifand only if 6 = 0 and ¢ = (0, ¢) = (0,0).

We assume now that M, = 0. Since M # 0, we find that dgp = 0 implies 6 = 0 and & = 0. Then
p = 0 gives o = 0. Hence, in any case, the simple characteristic property is fulfilled. |

0=(-1

2.2. Local Carleman estimates away from boundaries. Let V be an open subset of Z = (0, § )%
Q. With z = (s, x). Let L = L(z, D;) be a differential operator of order m, with smooth principal
symbol, £(z, {).

Definition 2.4. Let ¢(z) be defined and smooth in v End such that |dy| > C > 0. We say that the
couple (L, ¢) satisfies the sub-ellipticity condition in V if we have

Uz, +itpz) =0 =

%{8(1,{ + itdp(2)), €(z, £ + itdp(2))} = {Re l(z, { + itdp(2)), Im €(z, { + itde(z))} > 0,
forallze Vand € RV and 7 > 0.

Let (z) be smooth in V and such that [dy| > C > 0in V. We define ¢(z) = exp(y¥(2)).
Sub-ellipticity for the couple (Py, ¢) can be easily achieved by the following lemma.

Lemma 2.5. The couple (Py, ) satisfies the sub-ellipticity condition in V fory > 0 chosen suffi-
ciently large.

Proof. By Proposition 2.3 we see that Py satisfies the simple characteristic property in direction
dy in V. This implies that ¢ is strongly pseudo-convex with respect to Py in the sense given in
[ , Section 28.3] at every point in V. We then obtain that the couple (Py, ¢) satisfies the sub-
ellipticity condition in V for y > 0 chosen sufficiently large by Proposition 28.3.3 in [ ]. m
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A consequence of the sub-ellipticity property is the following Carleman estimate for Py in V,
that is, away from boundaries.

Proposition 2.6. Let k = 1 or 2. Let ¢ = exp(yy) with |dy| > C > 0in V. Fory > 0 chosen
sufficiently large, there exist C > 0 and 1 such that

3/2—
szr 101" D ull 2y < Clle™ Prull 2z,
a|<

fort>t9andu € €7(V).
We refer to [ , Theorem 28.2.3] for a proof. In fact, to incorporate the term associated

with |a| = 2 see [ ]. This estimate is characterized by the loss of a half derivative.
From this estimate for Py, k = 1,2, we deduce the following estimate for the operator P = P P5.

Proposition 2.7. Let ¢ = exp(yy) with |dy| > C > 0in V. Fory > 0 chosen sufficiently large,
there exist C > 0 and 7 such that

3_
| |z4r e D2 ull 2z, < Clle™ Pull 22,
a|<

fort>t9andu € €7°(V).
This estimate is characterized by the loss of a full derivative.

Proof. With the estimate of Proposition 2.6 for the operator P; applied to Pou € €*(V) we have

3/2-
> e DY Poull 24, < e Pull 2z,
la|<2

Observing that [D?, P;] is a differential operator of order 1 + || we obtain

32— 5/2—-
> 2N Py DY ull g < € Pullpzy + X TN D ull oz
022 lr|<3

Applying now to Dfu € € (V) the estimate of Proposition 2.6 for the operator P, we obtain

3- 3-181- +
S M DUl < Y Y e DY ﬁu||L2(Z)
lal<4 lal<2 |B1<2

2—
S e Pullpzy + 3 77 Ne™ DL ull 2 -
lal<3
We then conclude by choosing 7 sufficiently large. [ |

3. ESTIMATE AT THE BOUNDARY {s = 0}

3.1. Tangential semi-classical calculus and associated Sobolev norms. Considering boundary
problems, we shall locally use coordinates so that the geometry is that of the half space

RV ={ze RN, zv >0}, z=(Z,zy) withz e RV zy e R.
We shall use the notation ¢ = (z,{,7) and ¢” = (z,{’, 7) in this section. (This notation is not to

be confused with that introduced and used in Section 4 and Appendix B.)

Let a(o’) € %""(@ x RV with 7 as a parameter in [1, +o0) and m € R, be such that, for all
multi-indices a, 5, we have

0 a(@)] < Copti . zeRY, ¢ € RV, v e[l +00),

where /LZr,T = |§’|2 +72. We write a € S.’ET. We also define Si": = ﬂ,eRSq.,T. Fora € S1’5”T we call
principal symbol, o(a), the equivalence class of a in ST _/S .’F;l Note that we have A7 € ST .



A SPECTRAL INEQUALITY FOR THE BI-LAPLACE OPERATOR 15
If a(o’) € ST, we set

Opr(@u(z) := )NV [ & Dao"y au(¢,zy) dL,
RN—I

for u € .7 (RY), where i is the partial Fourier transform of u with respect to the tangential variables

7'. We denote by ‘I”" the set of these pseudo-differential operators. For A € Y7, 0(A) = o(a)

will be its principal symbol in S’" /S’” . We also set A’" = OpT(/l J>-meR.
Let m € N and m’ € R. If we con51der a of the form

a(o) = zoaj@’)(,fv, aje ST,
J:

we define Op(a) := X, Opr(a ,-)D;'N. We write a € "™ and Op(a) € ™" .
We define the following norm, for m € N and m’ € R,

. _
el = < Z AT, "=Ip] Nl lleelln, = lutllm0,r < Z AT, 'Dlully, ue SRY),
J_
where ||.||;+ = ||.||L2(Rz+v).
If m,m" e Nand m"”,m"”” e R,and ifa € S?;, then we have

| OpT(a)u”m’,m”',‘r < C||M||m’,m"+m”',‘r, ue y(RﬂY)

Ifac S?;" , then we have

| OpT(a)M”m’,m’”,T < Cl|u”m+m’,m”+m’”,7” ue y(R{Y)

The following argument will be used on many occasions in what follows, for m € N, m’, £ € R,
with € > 0,

(31) ”W”m,m’,‘T' < ||W||m,m’+€,‘7'-

At the boundary {zy = 0} we define the following norms, for m € N and m’ € R,

2 —_—
@), 7 = z AT, P DI tpey=or) ue SRY).

LZ(RN—I)’

3.2. Statement of the Carleman estimate. In this section, we consider z = (x,s) € RY with
xeR%and s € R. We also set Z = Q x (0, S (). We write x = z’ and s = zy, in connexion with the
notation introduced for the tangential calculus in Section 3.1.

Let zo = (x0,0) with xo € Q. We consider a function ¢ € €*°(R") such that d,y(z) < —C < 0
in a bounded open neighborhood V of zg in R x Q. We then set ¢(z) = e?¥@,

Using the notation introduced in Section 3.1 for semi-classical norms, we have the following
Carleman estimate at the boundary Q X {0} for functions defined in {s > 0} N V.

Theorem 3.1. Let P = D} + B =D} + A’ on Z = Q x (0,S¢). Let W be an open set of RY such
that W € V. For y > 0 chosen sufficiently large, there exist 1o > 1 and C > 0 such that

3 .
7/2-
3 TP N Dl z) < C(lle™ Pullpaqz + _20|tr<ewD§u>|o,7/2_j,T),
j:

lal<4
for v > 1o and for u = wiz, with w € ‘Kf’(Rd X R) and supp(w) Cc W.

This Carleman estimate is characterized by the loss of a half derivative.
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Corollary 3.2. Let P =D+ B=D*+ A’ on Z = Q x (0,S). Let W be an open set of RN such
that W € V. For y > 0 chosen sufficiently large, there exist Tg > 1 and C > 0 such that

772 122 j
¥ PN DY w2z < C(Ile™ Pullyazy + 7 3 (e DIl s ),
la|<3 j=0
for T > 1 and for u = wiz, withw € CK;"(Rd X R) and supp(w) Cc W.
Proofs are given below.
3.3. Sub-ellipticity property. As in Section 2.1, we write P = PP, with Py = (-=1)kiD? + A,

and P, = e™Pe™™ = Q10> with Oy = e™Pre” ™. The principal symbol of g, in the sense of
semi-classical operators, is given by

(2, £, 1) = (DNi(o + ite)? + a(x, & + ite),  1(z,7) = (B¢, t,) = Tdp € RV,

where a(x, €) denotes the principal symbol of the Laplace operator A.
Recalling the definition of the semi-classical characteristics set of a (pseudo-)differential oper-
ator A, with principal symbol a(p),

char(A) = {0 = (z,¢,7) € VX RY xRy; (£,7) # (0,0), and a(o) = 0},
we have the following results for the characteristics sets of Oy, k = 1, 2.
Lemma 3.3. In V, we have char(Q1) N char(Qy) = 0.

Proof. Leto =(z,{,7) € V xRN x R,, with (Z, 1) # (0,0), be such that g;(0) = g2(0) = 0, which
reads (- Dki(or + it5)* + a(x, & +itg) = 0, for both k£ = 1 and k = 2, meaning that we have

(0 +ite)* =0, a(x,&+ite) = 0.
In particular this implies o = 0 and 7, = 79,0 = 0. As here ds¢ # 0 we thus have o = 7 = 0. With
7 =0, we have 7 = 0, and we thus obtain a(x, &) = 0, implying & = 0 because of the ellipticity of
a(x, €). [ ]
Lemma 3.4. Let Ly and L, be differential operatorsinV. Let ¢ € €*(Z) and set L, = €™ Lie™™,

k = 1,2. Assume that char(L, ) N char(Ly,) = 0. Then the couple (LiL,, @) satisfies the sub-
ellipticity condition of Definition 2.4 in 'V if and only if both (L, @), k = 1,2, satisfy this property.

Proof. We denote by ¢, the principal symbols of Ly o, k = 1,2, and ¢ = £;{ the principal symbol
of e™ L Lre” ™. We observe that

(6,0} = |61 6o, Lo} + |62 {L1, L1} + flE1]1Ca],

for some function f. If (£, ) satisfies the sub-ellipticity condition and if £;(0) = 0, with o =
(z,,7) € VX RN x R,, then £2(0) # 0 and 0 < {£,£}0)/i = |6/X{¢€1, €1}/i, thus yielding the
sub-ellipticity condition at o for £1. The same argument applies for ;.

Let us now assume that ¢; and £, both satisfy the sub-ellipticity condition. If £(0) = 0 then
either €1(0) = 0 or £»(0) = 0. Let us assume that £1(0) = 0. Then ¢,(0) # 0 and {21,51 10)/i>0.
We then have {€, £}(0)/i = [62(0)*{€1, £1}(0)/i > 0. n

By Lemma 2.5, the couples (Py, ¢) satisfy the sub-ellipticity condition in V. From Lemmata 3.3
and 3.4 we deduce the following result.

Corollary 3.5. The couple (P, ) satisfies the sub-ellipticity condition of Definition 2.4 in V.
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3.4. Proof of the estimate at {s = 0}. The proof of Theorem 3.1 uses Lemma 4.3 in [ ].

Proof of Theorem 3.1. We denote by a() the principal symbol of (P, + P)/2 and by b(p) that of
(P, — P5)/(2i). We have a € S7° and b € S7'. We set A = Op(a) and B = Op(b) and

Qup(w) = 2Re(Aw, Bw)...
The sub-ellipticity of (P, ¢) given by Corollary 3.5 reads
a()=be) =0 = {a,b}>0, 0€ VxRN xR,.

With Lemma 4.3 in [ ], we obtain, for some C > 0 and C’ > 0, for 7 > 1 chosen sufficiently
large,

CIMI . < C"(IAVIE + IBVIE + [t ()3 5.1) + T(Qap(v) — Re B (1)),

where |Z,,(v)| < |tr(v)|§’1 o forv = wyz, withw € €>[R? x R) and supp(w) C W. We thus
obtain

=1j,12 . 2 2
T VIl S WA + BV + [teW)l3 /5 4
) /2,

As we have P, = A +iB mod 30 by taking 7 sufficiently large, with the usual semi-classical
argument (3.1) we obtain

(3.2) TP Mlae S 1PV + 10 O)]3, 10,1

The conclusion of the proof is then classical. |

Proof of Corollary 3.2. Let W’ be an open set of RY such that W € W’ € V and let y, { € €= (W)
be such that y = 1 in a neighborhood of W and ¥ = 1 in a neighborhood of supp(y).

We may apply estimate (3.2), equivalent form of the estimate of Theorem 3.1, to the function
7!/ 2)((z)/\ilf/ 2v, forv =wyz, withw € %C”(Rd X R) and supp(w) C W. Observe that we have

QAT = AP0+ Ry, Pox@ATY v = P ATY v + Ry v,

\T
because of the support of v, with Ry _ps € ‘I’g’_M ,and Ry _p € ‘I"T"_M , for any M € N.
Setting 7 = 7'/2A7!/%y € . (RY), we thus obtain, with (3.2),
(3.3) T2l S 0PI+ + 1tr(P)31 0.0 + VIl —prr-
We then observe that we have

—1/2)1~ -1/2
20l e = AT *llar = IWlla1 /2.

We also have [tr(D)l3 1,2, = Tl/zltr(v)|3,0’7, as [Ds, A7 ] = 0, r € R. Next, as WP¢,A.F]T/2] €

‘Pﬁ’_3/ 2, we have

~ ~ 1/2 -1/2 ~ 1/2 1/2
lePoll < T PIAT 2Pl + T2l /2.0 S PVl + T2 1Vlla 372
From (3.3), we thus obtain
1/2 ~ 1/2
Vla-1/2.0 S 1PVl + T 2 @300 + T2 1VIla-3/2-

With the usual semi-classical argument (3.1) we conclude the proof, as |[V|l4—1/2r 2 7!/ 2||v||3,T. [ ]
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4. ESTIMATE AT THE BOUNDARY (0, S ) X 0Q

4.1. A semi-classical calculus with three parameters. We set W = RY xRY, N = d + 1, often

referred to as phase-space. A typical element of W will be X = (s, x, 0, &), with s € R, x € RY,

o € R, and £ € RY. We also write x = (x’, x4), X € R*!, x; € R, and accordingly & = (&', &,).
With s and x playing very similar role in the definition of the calculus, we set z = (s, x) € RV,

7 =(s,x)eRN! and zy = x4. We also set £ = (0, &) € RN, ¢ = (0, &) e R¥"! and ¢y = &,
In this section, we shall consider a weight function of the form

.1 @y e(2) = O Y(2) = (e ),

with y and & as parameters, satisfying y > 1, & € [0,1], and ¢ € €<(R"). To define a proper
pseudo-differential calculus, we assume the following properties of i

4.2) w>C>0, WP < oo, keN.
In particular, there exists k > O such that
(4.3) supy < (k+ 1)infy.

RN RN

4.1.1. A class of semi-classical symbols. We introduce the following class of tangential symbols
depending on the variables z € RY, ¢’ € RV and 7 € RV. We set A2 = |¢/|* + |7

Definition 4.1. Let m € R. We say that a(z, ’, 1) € ‘5‘”(@ x RN=! x RV) belong to the class ST
if, for all multi-indices @ € NV, Be NN=1 5 e NV there exists Cap > 0 such that

0908, 00a(z. ' B < Capoly P70, (0.0 ) e RY xRV XRY, [ > 1.

If T is a conic open set of RY x R¥~! x RV, we say that a € §¥ in T is the above property holds
for (z,’,f) €T

Note that, as opposed to usual semi-classical symbols, we ask for some regularity with respect
to the semi-classical parameter that is a vector of RV here.

This class of symbols will not be used as such to define a class of pseudo-differential operators
but rather to generate other classes of symbols and associated operators in a more refined semi-
classical calculus that we present now.

4.1.2. Metrics. For 1, > 2, we set
M =RY xRN X [1,, +00) X [1, +00) X [0, 1],
Myr =RY x RV! x [1,, +00) x [1, +00) X [0, 1].

We denote by o = (2,4, 7,7, €) apoint in M and by ¢’ = (z,’, 7,7, €) a point in M.

We set T = 1yp, .(z) € R,. For simplicity, even though 7 is independent of {’, we shall write
7 = 7(0"), when we wish to keep in mind that 7 is not a simple parameter but rather a function. As
¥ > 0,7 > 1, and y > 1,we note that we have T > 7... We then set

=280 =P +#0),  A7:=27:0) =11 +H)
The explicit dependencies of A; and A1z upon o and o’ are now dropped to ease notation in this
section. Similarly, we shall write ¢(z), or simply ¢, in place of ¢, +(2).
We consider the following metric on phase-space W = RV x RV
(4.4) g = (1+ye)ld | + y?ldenl® + A221d¢P,

fort > 1,,v > 1, and € € [0, 1]. (Note that this metric is not to be confused with the Riemannian
metric g on Q.)
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On the phase-space ‘W’ = RV xRN~! adapted to a tangential calculus, we consider the following
metric:

g1 = (1 +ye)’ld' P + yldan|* + A3l P,
fort>7,,y>1,and g € [0, 1].

The first result of this section shows that the metric g on ‘W defines a Weyl-Hormander pseudo-
differential calculus, and that both ¢ and A; have the properties to be used as proper order functions.
For a presentation of the Weyl-Hormander calculus we refer to [ 1,0 , Sections 18.4-6]
and [ ].

Proposition 4.2. The metric g and the order functions ¢, s, Az are admissible, in the sense that,
the followings hold (uniformly with respect to the parameters 7, vy, and €):

(1) g satisfies the uncertainty principle, that is h;l =y 14> 1.

(2) ¢y Az and g are slowly varying;

(3) ¢y.6 Az and g are temperate.

We refer to Appendix A.2.1 for a proof. Similarly, we have the following proposition.

Proposition 4.3. The metric gt and the order functions ¢y ¢, A1z are admissible. For the tangential
calculus we have héjTl =+ s'y)_l/lT,; > 1.

Note that the proof of the uncertainty principle uses that 7, > 2. The condition 7. > 1 would
suffice if we chose ¢ > In(2). We preferred not to add this technical condition on the weight
function .

Consequently, 7(0") is also an admissible order function for both calculi.

4.1.3. Symbols. Let a(o) € CK‘X’(RN x RN ), with 7, y, and & acting as parameters, and m, r € R, be
such that for all multi-indices @, 8 € NV, with @ = (, ay), we have

4.5) 02 a(0)] < Cap y™(1 + ) # LV, geM.
With the notation of [ , Sections 18.4-18.6] we then have a(o) € S (7' 17, ).

Similarly, let a(o’) € €°[RY x RVN-1), with 7, v, and & acting as parameters, and m € R. If for
all multi-indices @ = (¢/, ay) € NV, 8/ € N¥~! we have
(4.6) 099%,a(0)] < Cap Y1 + ) # AT P o' e My,
we then write a(o’) € S (%’/l?’%, g7). Observe that S (%’xl?i, gT)csS (/l?;m g7).

The principal symbol associated with a(o”) € S (¥ A7 -, g7) is given by its equivalence class in
NG /l%, gn/S(1+ey)?” /l?}l , &T7). We denote this princ’ipal part by o(a). Often, an homogeneous
representative can be selected and the principal part is then identified with this particular repre-

sentative of the equivalence class. (Conic sets and homogeneous symbols are precisely defined in
Section 4.1.5 below.)

We define the following class of symbols, that are polynomial with respect to &y,
, m ;s ,
ST = 3 SR gnd
=0

For a(p) € ST , with a(o) = Toa ()4, with aj(0’) € ST
part by 0°(a)(0) = X" 0(a;)(0)L,-

For this calculus with parameters to make sense, it is important to check that Az € S (1%, g) and
ATz € STz, 871)and T € S(7,8) N S (%, g1). In fact, the latter property implies the first two.

,8T), we denote its principal
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Lemma 4.4. We have T = typ, . € S(T,2) N S(%, g7).
We refer to Section A.2.2 for a proof.
4.1.4. A semi-classical cotangent vector. We set T = 1d py (2) = TYpy (2)d Y :(2) = T(0")d Y :(2) €

RV, As for 7, we shall write # = 7(0”), when we wish to keep in mind that 7 is not a constant cotan-
gent vector. Note that T = (7, Ty) with

t(0") = 10 e(2) = 7 )dy(ed zn),  Tnlo) = T30, ¥(eZ, zw).

Asdyy. € S(e,g71) and 9;,¥ € S(1, g7), we have the following result.
Lemma 4.5. We have ©' € S(e%,2)V "' N S (7, g7)V ' and 2y € S(7,8) N S (7, g7).

For later use, we also introduce the following notation:
@47 tr=100) = 10spye(2) €R, T = 1:(0)) = Tdupy () € RV =R,

tg, = T6,(0)) = 10,0y.0(2) €R, Ty = Tp(0)) = Tdvpye(c) RV 2 =R

We then have
4.8) T = Te) = B0, T, Ty, v = o, Te), Tn=Tg

Even thought the following lemma is very elementary, we state it for futur reference.

Lemma 4.6. Let V be an open set of RN such that ,,4(z) > C > 0 for z € V. Then, we have

A A

(4.9) 7l =1, =7, zeV

Proof. As ||Y'|lo <C,if0, ¥ >C >0forzeV c RY, then we have |7| < 7 < ¢, and thus the
result. [ ]

4.1.5. Conic sets and homogeneity. We recall that a set T’ ¢ RY x R¥~! x RV is said to be conic
if (z,’,7) € T implies that (z, v¢’,vi) € T for all v > 0.
We introduce the map
K: My e@xRN‘l x RV,
o =@l ny.e) (2,0, 10).
Throughout Section 4 and Appendix B, we shall use the following terminology.

Definition 4.7. An open subset % of M is said to be conic if I = k(%) is conic in RY xRN =1 xRV
A function f : % — E, E avector space, is said to be homogeneous of degree m if f takes the

form f = g ok with g : RY x R¥N"! x RN — E such that g(z, v¢, vi) = v"g(z, £, ?), for v > 0.
In other words, conic sets and homogeneity are to be understood with respect to the variables
(z,{,7) instead of the variables (z, {, 7,7y, €), where, as above, T = 1d,¢, :(2) = TYQ, (Dd Y (2).
If 7/ is a conic open subset of Mt we shall say that a € S (%’/I’T’i%, gT) in 7 if property (4.6)
holds in %, with a similar terminology for symbols that satisfy the defining property of S Z”", in

U.

In what follows, the following lemma will be used for instance, to generate cutoff functions. It
will also be used to obtain symbols with the adapted homogeneity with respect to ¢’ and 7. We
refere to Section A.2.3 for a proof.
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Lemma 4.8. Let % be a conic open subset of My and set T = k(% ). Assume also that |T| < T
in%. Let m € R and a(z,{’,1) € ST, inT (as given in Definition 4.1). We then have a(¢’) =

aox(o') € S(AT ;. g1) in % . In fact, if a is polynomial in (¢, ?) the assumption |t| < ¥ in % is not
needed.

The following lemma is elementary.

Lemma4.9. Let % be a conic open subset of My and leta € S(¥' A7 ., g1) in % . Let x € S(1,g1)
in M, with supp(y) C % . Then, ya € S(¥' A7 ., g1) in M.

4.1.6. Operators and Sobolev bounds. Fora € S(7" A%, g) we define the following pseudo-differential
operator in RV:

(4.10) Op(au(z) = 2m)™ [ e““a(z,¢, 1y, 0)0(0) df,  ue S RY),
RN

where i is the Fourier transform of u. In the sense of oscillatory integrals, we have

Op(a)u(z) = Cm)™ [ e“™a(z,¢, 7.y, &)u(y) d{ dy.
RZN

The associated class of pseudo-differential operators is denoted by W(7' A7, g). If a is polynomial
in the variables { and #(0”) = Td ¢(z), we then write Op(a) € Z(7" A7, g).

Tangential operators are defined similarly. For a € S (747 ., g1) we set

(4.11) Opr(@u(z) = 2ay NV [f a1y, 8) uy, zy) dZ dy,

R2N-2

for u € #/(RY), where z € RY. We write A = Opr(a) € W(F A7, g7). We set A7 = Opr(A2,).

We also introduce the following class of operators that act as differential operators in the zy
variable and as tangential pseudo-differential operators in the z” variables:

m . .
(4.12) P =y PAT T gr)D] meN, reR,
i=0

T# N>
J:

that is, Op(a) € ¥2"" if a € S2"". Operators of this class can be applied to functions that are only
defined on the half-space {zy > 0}.

At places, it will be handy to use the Weyl quantization for tangential operators, namely with
aes (%r/l’T’i%, gT) we define

4.13)  Opr(@u(z) = @)y MV 1 & +y)/2,2n, O 1y, )u(y  zv) Ay

RZN—Z
This quantification is often advantageous as Op7"(a)* = Opt"(a), and thus, for the symbol a real,
the operator Opt"(a) is (formally) selfadjoint. Note that Opt(a)—Opt"*(a) € (1+ey)¥(F" /l??l ,8T)-

T

We now present some Sobolev-bound type result that we shall use in what follows. We use the
following notation

Ml = Mlagms G = Gy

for the L2-norm on the half space @ and the associated scalar product.

We have the following lemma whose proof is similar to that of Lemma 2.7 in [ ].
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Lemma 4.10. Let r,m € Randa € S(*" /l?j, g1). There exists C > 0 such that, for T sufficiently
large,

(Opr(a)u, v)] < CllOpr(® M ull Nl Opr(#” Al w.v e S RY).
forr=r +r", m=m+m”, withr',r"” e R, m’',m"” e R.
This contains the estimate
(4.14) 10pr (¥ 24,) Opr(@ully < Cl|Opr(™*" AL Yull.., ue S®Y),
for r,m’ € R. The proof of Lemma 4.10 relies in the fact that, for r,m € R,
Opr(¥' A7) Opr(¥ " A7%) = Id +Ry,

with Ry € (1 + &y)¥(A7L, g7) and ||Ry]| 2 ;2 < 1 for T large.
Note also that we have the following result (see Section A.2.4 for a proof).

Lemma 4.11. We have

(4.15) 10pr(T" A7 ull. = | Opr(AF )T ull.  ue S RY),
and
(4.16) | OPT(E" A% itz =07 o vty = | OPTAT T ey=07 | oy w € S RYTY,

for T chosen sufficiently large.

We define the following semi-classical Sobolev norms
e = AT sttzy=0| pgveryy MER, ue L RN,
il = z IAY/Dlulle, meN, ue s®Y).

j_
We also set, for m € N and m’ € R,

el m 7 = _Z IIAm 7 pl Julle,  we SRY).
At the boundary {zy = 0} we define the following norms, for m € N and m’ € R,

| ()l 7 = z AT jm’ D! T ue . ZRY).

LZ(RN—I)’

The following argument will be used on many occasions in what follows, for r,7’,m € R, and
>0,

) ~
(417) )/rll WHmT < |IF r W”m,f < ”Tr W”m+€,‘7’a

for T chosen sufficiently large, as y" < ¢, = exp(y¥,) since ¢, > C > 0. We have similar such
inequalities for the other norms introduced above.
With the above results we deduce the following two propositions.

Proposition 4.12. Let r,m € R, and a € S(‘T'rxlql%,g-r). Then, for r',m’ € R, there exists C > 0
such that

17" Opr(@upy=0+l,y < C|Tr+r u|ZN:0+|m+m’,‘7" ue y(RQ’)’

m.T =

for T sufficiently large.
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Proposition 4.13. Let r,m’ € R, m € N, and a € T'ST"™ . Then, for r',m""" € R and m"” € N, there
exists C > 0 such that

H%r OP(G)MHm",m"',% < C”%H—r u||m+m”,m’+m"’,‘7', ue y(RﬂY),
for T sufficiently large.

Similarly to Lemma 4.11, we have the following equivalences for norms.

Lemma 4.14. Let m € N and r,m’ € R. We have, for T chosen sufficiently large,

» m g B AT AT
Wl 2 = 3 DA Wlloms—sz < 3 IFIAT DL ETAT WL
J= J=

where r = r} + r;.’, andm+m' — j = m}’ + m}”, with r;.,r;.’ € R and m;.’,m}” eR, j=1,...,m
Similarly, we have

2

. n N IR
|tr(T W)lm,m’,‘?' = Z |DZN(T "V)|ZN:0+ |m+m’—j,‘? = Jg() |T '/ATy.;(DzN(T J AT;T' W))|ZN=0+|

=0 LZ(R”’I ) :

See Section A.2.5 for a proof.

Proposition 4.15 (local tangential Garding inequality). Let Wy, W; be two open sets of RN, with
Wo € Wy. Leta(o’) € S (%r/l’{%, gT1), with principal part a,.,. If there exist C > 0 and R > 0 such
that

Ream(0) 2 C'A%,, zeWi, (eRYV, 127, ar:2R,

then for any 0 < C’ < C there exists T1 > T, such that
Re(Opr(@u, u)s = C'IFPully nzr 7271
for u = wyz, withw € €2°((0,8 o) x R?) and supp(w) C Wo.
In many occurrences, we shall use the following microlocal version of the Garding inequality.

Proposition 4.16 (microlocal tangential Garding inequality). Let % C Mt be a conic open set.
Let also x(0') € S(1, g1) be homogeneous of degree zero and such that supp(y) C % . Let r,m € R
and a(0’) € S (¥ A7 ;, g1), with principal part a, . If there exist C > 0 and R > 0 such that
Rea, (@) > C¥AT;, o' €W, t271., A172R,
then for any 0 < C' < C, M € N, there exist Cpy and t¢ > T, such that
Re(Opr(a) Opr()u, Opr(x)u)s = C’IF" OprO0ullg 05 = Corllullg _py 2+
forue 5”(@) and T = T19.

4.2. Local setting and statement of the Carleman estimate. To explain the construction of the
phase function, it is useful to use a particular set of coordinates. We set Z = (0,S59) X Q and
0Z = (0,5 ) x 0Q.

Let 79 = (0, Xo) € 0Z. In a neighborhood V of zo in RV, using normal geodesic coordinates for
the x variable, we can express the principal part of the Laplace operator A in the following form

(4.18) A =D} +R(x,Dy),
where R(x, D) is a tangential differential operator of order 2 with principal symbol r(x, &),
(4.19) r(x,€) > CEE'P,

where C > 0. We denote by #(x, &, 1) the associated real symmetric bilinear form. The boundary
(0,S0) x 0Q is locally given by {zy = 0} = {x4 = 0}.
Without any loss of generality we shall assume that V is a bounded open set.
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We then let y/(z) be defined in RV and fulfilling the properties listed in (4.2) with moreover,
(4.20) By (D) = B () 2 C >0,  z€V,

and we set ¢y .(2) = exp(YWe(z)) with Y.(z) = yYl(es,ex’,xy), for y > 1 and £ € [0,1]. As
mentioned above, we shall often write ¢ in place if ¢, . for the sake of concision.

The main result of this section is the following Carleman estimate.

Theorem 4.17. Let P = D‘S1 + A2 Let 79 = (50, %0) € (0,50) X 0Q. Let ¢(z) = ©y.6(2) be defined as
above. There exists an open neighborhood W of zg in (0,8 o) x R, W C V, and there exist g > T.,
Y0 =1, & € (0,1], and C > 0 such that

~3—
(421) ’y |Q|Z<4 ||T |a‘eT‘ng’xu”L2(Z) + 0<§<3 |eT¢D;du|6Z|7/2_j’;i_

< C(lle™Pull, + Py (™Dl uazly )
J=Y,

fort =10,y > v, € €0, &), and for u = wyz, withw € €:°((0, S o) X RY) and supp(w) C W.
4.3. Root properties. Here, z will be assumed to be an element of V so that all the symbols are
well defined. We write, as in Sections 2 and 3,
P = P,P, with P, = (-1)5iD? + A.
Setting P, = e"Pe™" we have
(4.22) P, =001, with O = €¥Pre™™ = (=DNi(Dy + itds0(2))* + A,
with, in the selected normal geodesic coordinates,
Ag=eAe™™ = (Dy, + iT(?xd<p(z))2 +R(x,Dy + itdv¢(2)), z=(s,Xx).
In fact, we shall write Oy in the following form
(4.23) Qk = (Dy, + i‘raxdw(z))2 + My, My = (=1)%i(Dy + itd59(2))* + R(x, Dy + itd,(2)).

This form will allow us, when a smooth square root Hy of My is available in the tangential calculus
associated with g, to write, up to lower order terms,

Qk = (Dxd + iTaxd‘P + in)(Dxd + iTadeD - in)’

and, then, we shall base our derivation of a Carleman estimate for P on estimates for first-order
factors. This approach was introduced in the seminal work of A.-P. Calderén [ ]. It has
been used recently to address boundary and interface problems in the derivation of Carleman
estimates [ , ]. Of course, the two smooth square roots, H; and H,, may not always
be available. Still, on the occurrence of such a case, we shall find that the operators Q; and Q»
will be characterized by perfectly elliptic estimates at the boundary, that is, one can estimate the
semi-classical Sobolev norm of the solution in € as well as the counterpart norms for the traces
normal derivatives of the solution on 9 (with the natural 1/2 derivative shift for the traces) —
see Section B.1. As a preliminary to this analysis, we shall study the properties of the principal
symbols of O and O, and the properties of their roots.

We denote the principal parts of Oy and M}, by g and my, which gives, with o = (2,4, 7,7y, &)
and ¢ = (0, é),

(4.24) gi(0) = (&4 + iT0,,0(2))* + mp(0') = (€a + it£,(0))" + mi(0)),
with
(4.25) mi(@") = (=1)i(0 + it (0)) + r(x, & + ite(0"),
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recalling the definition of 7(¢’) introduced in Section 4.1.4 and using the notation (4.7)—(4.8).
For f = (fr, fr) € R X RY, with #¢ = (7, f,) € R X R, we set

(4.26)  Qu(z, 0,0 = (Ea + ife,)” + iz, O D), (2L, 0) i= (=DFi(o + ity )? + r(x, & + if).

We have gi(0) = gi(z, £, T) and my(0”) = ri(z, ", ).

We now study the roots of §i(z,’, &y, 1), with ¢’ = (0, &), when viewed as a polynomial in
the variable &;, with the other variables, z, ¢/, and 7 acting as parameters. To that purpose, we
introduce the following quantity

(4.27) iz, £, ) = AT Redin(z, ¢, F) — 48 + (Imin(z, £, D).
We introduce the 7 (z, ', t) € C such that
(4.28) Rel(z,¢',H) >0 and hy(z,¢',1)? = i(z, ¢, ).

This choice of /i (z,¢’, 1) is unique if Ay (z, 7, 1) ¢ R_. In what follows, fi(z, ¢, 7) will only play a
réle in this case.
We may then write

iz, 8.0 = Ea +ife,) + (2.0 D) = (Ea = prs @ & D) Ea = Pr-(@. ', D),
with
(4.29) Pz, D) = —ife, + ily(z, ¢, D).
We give some properties of the roots py +(z, ¢, ©).

Lemma 4.18. We assume that iz, > 0. Let k = 1 or 2. The roots py+(z,{’, 1) and px(z,{’, 1) are
both homogeneous of degree one in (¢, 1), and such that

(4.30) Impy— < ~fe, < Im pys.

We also have

(4.31) Pr-=Pr+ ©  Pr- =P+ =iy, © 1y =0.
Moreover, if g, > 0, we have

(4.32) Impr, S0 & S0

In particular, if 7, > 0, observe that the root P - remains in the complex lower half plane,
independently of the values of z,’, and 7, while the root py + may cross the real line.

Proof. The roots are continuous with respect to ¢ and 7 and homogeneity comes naturally. Observe
that Impg » = —fgd + Rehy. As Rely > 0 then (4.30) is clear. The form of Ok, + above yields the
equivalences in (4.31).

Finally, as Im gy + £ 0 is equivalent to Re /i = #,, Lemma 4.19 below implies (4.32), since
Re /y > 0 and 7z, > 0. n

Lemma 4.19. Let ¢t € C and m = 1. We then have, for x¢ € R such that xy # 0,
IRef| S lxo] & 4xgRem —4xg+ (Imm)* 0.
Proof. Let t = x + iy. We have Rem = x*> — y> and Im m = 2xy and we observe that
4x2Rem — 4x5 + (Imm)? = 4(x3 + y) (x> — x3),

which gives the result. u
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Corollary 4.20. We assume that iz, > 0. Let k = 1 or 2. If C > 0, there exists C' > 0 such that
D2 CAP +1EPY = Impra(z D= Car,  Ar =P+ P2,
for (z,0',1) € VH—RQ’ x RVN-I xRV,
Proof. We consider the compact set (recall that V is bounded)
¢ ={.DeVNRY xRV xRY; A7 = 1.

The inequality [ > C yields a compact set K of . By (4.32) in Lemma 4.18, we have Im o + >
C’ > 0 on K, and we conclude by homogeneity. |

Proposition 4.21. We assume that iz, > 0. Let k = 1 or 2, we have the following properties:
(1) There exist 6y € (0,1) and C > 0 such that if

z€V and |f| < 6 A7,
then the roots Py . are simple and non real, and moreover
(4.33) Impg, > CAr, Impy_ <-CAt (5,0, D) e VxRV xRV,

with At = (1 +1¢')">.
(2) There exists C > 0 such that

0<ie, <C(F1+1'l), and |¢'] < CId,

if P+ € R, where ' = (i, 1z). In such case, the value of the imaginary part of the second
root is prescribed and nonpositive: Impy _ = —2i¢,.
(3) There exists C > 0 such that |T'|/C < || < C|f'|, if gk has a double root.

Finally, if fz, > 0 and if ||/, is sufficiently small, and if the polynomial gy, k = 1 or 2, has
a double root, then both roots of the second symbol, gy with k' # k, are in the lower complex
half-plane. More precisely, there exist Co, Cy > 0 such that if |f'| < Colg, then

(4.34) Prw =Pr- = Impp . < -Cifg,.

Proof. Proof of point (1). Because of homogeneity it is sufficient to assume that (£’, 7) is on the
sphere S = {A7 = 1}. If f = 0, then we have 7y, = 13]% = r(x,&) + (-1)kio?. Observe that /iy, # 0
here. Otherwise o = 0 and ¢’ = 0, which cannot hold as |¢’| = 1. Moreover Re 771 > 0. Hence, we
have Re fzk > 0. Then we write

Qi = E+ I = (&q + i) (Eq — i),

yielding py_ = —ily and py, = ihy, which gives Imp;_ < 0 and Impy, > 0. As SN {7 = 0} is
compact we find that Impy- < —C < 0 and Imp,, > C > 0, for some C > 0, for [{’| = 1 and

f = 0. Then, using a compactness argument once more, using the continuity of the roots, there
exist 6y € (0, 1) such that

Impy _(z,¢',1) < =C" <0, Impy(z.{,H)=C" >0,

ifze Vand|f < 6, recalling that V is bounded. We then obtain (4.33) in V by homogeneity. In
particular this excludes having double roots and real roots.

Proof of point (2). Observe that the inequality || < C|f], in the case of a real root is simply another
formulation of part of point (1). Next, we observe that || < |f'|> +|¢’|> implies | Re el < 1?71+ IZ’].
Since having p; + € R is equivalent to Re /i = fz, by (4.29), we thus obtain 7z, < || +[{’|. As
Impy - = —fg, — Re Iy, we then have Impy - = —21g,.
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Proof of point (3) The equation /7y, = 0, which is equivalent to having a double root, reads
(4.35) rx, &) = r(xn i) — (=D 208, =0, 0% =2+ (=1 27(x, &, #) = 0.
From (4.35), using that r(x, .) is uniformly positive definite, we obtain
P s liel +loliel, 1o < 1ol + 1 lig .
The sum of the two estimates gives [’[* < |7'? + ||l | + ¢’ |l |, and with the Young inequality we
obtain || < |#'|. Similarly, from (4.35) we obtain
il S P +Ioliel, 1ol < 1o + 1€ g,
and the sum of the two estimates gives |7’ < [¢? + |o||fy| + |€ |||, and with the Young inequality
we obtain || < |7].

Note that we could deduce that |//| < || from point (1). Here, we have obtained a sharper
estimate.

Proof of (4.34). If g, has a double root, then || < |/’| by point (3). Let 6 € (0, 1), and set
Ci; =1-6. Tohave Impy » < —Cil, it suffices to have Im py . < —Cfz, by Lemma 4.18. With
the notation of the proof of that lemma, this reads —7;, + Re i < —C\f,, thatis 0 < Re fyr < 6.
Now as we have |Re fip| < || < [A|'/? < || +1|, we find that O < Re iy < |7| here. The result

thus follows if we assume that ||/ fg -, 1s chosen sufficiently small. [ ]

Lemma 4.22. Assume that |f'| < Cofgd for some Cy > 0. There exists 69 > 0 such that if 6 € (0, dg)
and py(z, ', 1) > =622, with /Al% = |f” + |’)?, then the roots of §i are simple.

Proof. Because of homogeneity it is sufficient to work on the sphere S = {Ar = 1}. Writing
g = fz,% with Re /i > 0 as in (4.28), we observe that fi; > —¢ reads

Al + Am )*)(Re he)* - 12,) = =6,

using the computation of the proof of Lemma 4.19 with xo = 7z,. Assume that we have a double
root. In such case 7iz; = 0 by Lemma 4.18 and |f'| < |£’| by point (3) of Proposition 4.21. We then
have h; = 0, yielding 4fgd <= 6;11 < 6f§d, using that |#'| < Cofg,. Thus, for § chosen sufficiently
small we reach a contradiction. ‘ [
Lemma 4.23. Let k = 1 or 2. If both § > 0 and |'|/1g, are sufficiently small, there exists C > 0
such that for (z,¢',7) € VN RY x RN-! x RV

iz, D = =62 = A<l

with A2 = | + |’
Proof. Because of homogeneity it is sufficient to work on the sphere S = {A7 = 1}.

Let us now assume that the implication does not hold. Then there exists (z, "™, ") e
vn Rﬂy xS, such that f (z, '™, 1) > —§ and || > n|¢’™)|. As (2™, '™, 7)) lays in a compact
set (recall that V is bounded), it converges, up to a subsequence, to (z("o), 14 "(00) f(‘x’)) evn Rﬂ:’ X S.
We find that £/*) = 0 and iy (), 0, 7)) = (=DF1i(E5”)? = r(x,5”) , yielding

A, 0,1) = —4GEPr(a (87) - 40 + (6) < -3,

for |7V /féo{o) sufficiently small, as we have |#°| = 1. For § sufficiently small, we hence reach a
contradiction. n
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4.4. Microlocal regions. With the functions fix, k = 1,2, introduced in (4.27) we shall define
several microlocal regions. Observe first that fi; is an homogeneous polynomial function of degree
four in (¢, 7). We thus have g € S#i in the sense given by Definition 4.1. From Lemma 4.8, we

find that we have fix(z, (', 7(0")) € S (Af‘r 2> &T7)- We thus define

(4.36) (@) = 50 fuz I 4@ € S(Lgn), k=12, 0" =77,

Observe that we have [7(0")| = T(@)ldzellL> < T(0")lld Y]l Thus, having T < 66041 2(0")/|ld ||
for 6 € (0, 1], implies |T(0”)| < GyAT:(0"). The value 6y is as introduced in Proposition 4.21. We
set 61 = 5560/l

Let 6 € (0,1] and let V be the bounded open neighborhood in RV of zy € 9Z, introduced in
Section 4.2. We set Mty = V x R¥N"! x [1,, +00) x [1, +00) x [0, 1]. We define the following
microlocal regions, for k = 1, 2,

F(V,0) = {0’ € Mtyv; z€V, (') < 661A1:(0")},
EPV,6) = {0’ € Mry: z€V, (o) < -0},
EX(V,8) = o' € Mry; z€V, (o) = —6).
Evidently, we have Mty = E(_k)(V, o)u E(()k)(V, 0). We now set
E-(V,0) = EX(V,H UED(V,0),  &(V,6) = E{(V.6) N Eg (V, ),

and we have Mty = E_(V,6) U Ep(V, §). Below, in the text, when no precision is needed, we shall
use the “vague” terminology F, &_, or &, to refer to microlocal regions that take the forms of
F(V,6), E-(V, ), Eo(V, ).

We let y_, xo € €°(R), with values in [0, 1], be such that

X-= 1 on (_OO’ _1]’ and Supp()(—) - (_009 _1/2]’
xo =1on[-2,+0c0), and supp(xo) C [-3,00).

Let Vy € V be an open neighborhood of zo in RY and let yy, € € (R") be such that supp(yy,) € V
and yy, = 1 in an open neighborhood of Vj,. With n € €,°(—0, 6,), with values in [0, 1] such that
n=1in[-61/2,6,/2], we set

xs,r(©@) = (7)) /(6A12(0")) € S(1, g7).
and
xr(©) = xv,(@ x1,r(0") € S(1, g7).
We set
X0 = xvo(@ (1 = x1/4.5(") x-((@)/8) € S (1, g7).

Observe that we have

(k) _— (k) (k) (k)

Xs_ =1 on EX(Vo,6)\ F(V,1/4), supp(xs_) € EZ(V,6/2) \ F(V,1/8),
and thus
6)) 2 )] @)
Xs_ +Xxs. 21 on & (Vo,0)\ F(V,1/4), supp(xs_ +xs") CE(V,6/2)\ F(V,1/8).

5

We finally set

Xx50©0") = xv, (@) (1 = x174,7(0") xo(u1(©)/6) xo(u2(0")/6) € S(1, 87).
Observe that we have

xs0 =1 on Ey(Vo,20) \ F(V,1/4)  supp(xs0) C Eo(V,36) \ F(V,1/8),
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H2

FiGure 2. Microlocal region &_. In dark color is the region where y'" =

5. =
1. In light color is the support of )(f;’ll. The boundaries of the associated

regions for )(((5,21 are marked dashed.

Ficure 3. Microlocal region &. In dark color is the region where x50 = 1.
In light color is the support of y.

and
4.37) XF +,\((12 +)((23 + xs0 = 1 on a conic neighborhood of My y,.
5, s, X g Vo

With the microlocal cutoff functions we have just introduced we associate tangential pseudo-
differential operators, all in W(1, g7),

(4.38) Er=O0pr(xr). 0 =0pr(xy). k=12 and Z50 = Opr (xs0).
4.5. Microlocal estimate in the region &_. We prove the following estimate.

Proposition 4.24. Let M € N. Letk = 1 or 2. For § € (0, 1), there exist 19 > T, yo = 1, and
C > 0 such that

iz-1/22® . = (k) =& =% -
4.39) 2T E Dllaos + IwE VoL < C(||P¢~5,_V||+ HwE 00t ||v||4,—M,r),

5

or T =10,y = vo, € € [0,1], and forv € 5’(@).
+
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The term ||[v||4—ps7 in the r.h.s. stands as a remainder that will be *absorbed’ once the estimation
in the different microlocal regions are patched together. In fact, observe that this term is much
weaker than that in the Lh.s. in the Carleman estimate (4.21) of Theorem 4.17. The meaningful
observation term in the r.h.s. of (4.39) is | tr(v)|y 7,2z, which is of the strength as the terms in the
Lh.s. of (4.21), and can be found in the r.h.s. of that latter estimate.

Proof. We have P, = Q10,. We consider the case k = 1. The same proof can be written in the
case k = 2. To ease notation we write y in place of y;5— and Z in place of = _.

In a conic neighborhood of supp(y) € Mr.y, with V introduced in Section 4.2, we have u; <
—Co6. As (4.20) holds in V we have T, > C7 and thus |7¢| < 7. By Lemma 4.18, both roots of the
symbol g of the operator Q; are in the lower half complex plane. Thus,

(4.40) the operator Q; fulfills the requirements of Lemma B.1.

Also, for the operator 0, without any assumption on the position of the roots in the complex
plane, we have the following estimate, characterized by the loss of a half derivative and a boundary
observation term, by Proposition B.10, for £ € R,

1/211~=1/2— —_ —_ —
(4.41) yE 2Bl ez + 0@V 4107 S 102EV007 + [EEVo £43/2.55

forv € & (Rﬂf), for 7 > 7. and y > 1 chosen sufficiently large, and ¢ € [0, 1] (recall that
supp(y) € Mry which gives supp(Ev) ¢ V' € V, for some open set V’, thus permitting the
application of Proposition B.10).

With (4.40), (4.41), and Proposition B.8, applied with O~ = Q; and Q" = Q5 here, and with
a; =0and a; = 1 and 6; = 1 and 6, = 0, we obtain the result of the proposition, by choosing
T > 7. and y > 1 sufficiently large. |

4.6. Microlocal estimate in the region &). We prove the following estimate.

Proposition 4.25. Let M € N. For ¢¢y € (0, 1) chosen sufficiently small and 6 € (0, 6¢), there exist
To = Tw Y0 2 1, €0 € (0, 1], and C > 0 such that

JU —_ —_ —_
YT Esovllaos + |t1’(:46,0V)|3,1/2,; < C(||P¢-56,OV||+ + |tr(56,0V)|1,5/2,; + ||V||4,—M,%)’
fort =710,y =2 v0, € €[0,&0), and forv € Y(Rﬂ:’).

Before giving the proof of this microlocal estimate we need to provide some additional proper-
ties of the symbols my, introduced in Section 4.3 and its square root, /;. Note that the region F is
introduced to isolate the case where ¥ < C|’| and this permits to exploit the relation |’| < CT in
the region &g \ F. This is used to obtain some symbol properties of /.

We recall the form of the tangential differential operator M, as introduced in (4.23),

My = (=1)"i(Ds + itd¢(2))” + R(x, Dy + itd v p(2)),

whose principal symbol is given by m(0’) = (—=Dri(c + it050(2))* + r(x,& + itdeo(z)) €
S (/l% 2> &1). Observe that we have the following symbol estimation.
Lemma 4.26. We have d,,my € S((1 + £y)A3 ., g7).
Proof. We write my(0") = (=1)i(o + i‘?(T(Q’))2 +r(x,& + it#(0")), with the notation of (4.7). We
then have

Oy, My = —2(—1)"(8“%0)((7 +iTe) + 2iF(x, & + iTp, 0y, Te) + O, r(x, & + iTe),
with #(x,¢&’,n’) defined below (4.19). By Lemma 4.5, we have ¥ = (f,,T¢) € S(ef, g)V!
yielding 0., € S (ey%, gT)V -1 and as 9, T E +itg) €S (/l%%, £71), the result follows. [ |
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Let k = 1,2. If ux(0’) = —Cé, and for 6 > 0 sufficiently small then m; # O and, equivalently,
the roots of gx(o) are simple, by Lemma 4.22 since || < T¢, for z € V; recall the definition of the
operator Q, Ok = (Dy, + iraxdgo(x))z + M}, and its principal symbol g in (4.22)—(4.24).

Lemma 4.27. Let C,C’ > 0 and let ;s be a conic open set of Mxy such that y(0") = —C6 and
Atz < C'|t(x)| in Us. For 6p € (0,1) and gy > O chosen sufficiently small, if 0 < § < 6y and
0 < & < &, the symbol my, is elliptic and there exists hy € S(A1z, 8T) in %s that is elliptic and that
satifies

h,% =myg and Reh; > 0.
Moreover, we have 0., h € S((1 + €y)A1 7, 87) in Us.

The second part of the lemma improves, for /4, upon the natural behavior of an arbitrary element
of f € §(At, gT) for which we have d,,f € S (yA1z, g7)-

Proof. In V, we have 0,4 > C > 0 yielding |7| < Tz, < T by Lemma 4.6. Next, |#'[/7¢, can
be made as small as needed by choosing € > 0 small. Thus, if we choose ¢ € (0,80] and € > 0
sufficiently small, by Lemma 4.23 we have |7(x)| < |£’| and with the additional assumption made
here we obtain

(4.42) || <% =T  inU.
If my(o’) remains away from a neighborhood of the negative real axis in the complex plane for
o’ € %s, we can then define h(0”) as the principal square root of my(o’). Then, it is straightforward

to obtain A € S(A1z,87) in %s. In fact, if we assume | Im my(0”)| < a//l%%, as we have, recalling
the definition of yy in (4.36),

(@)% 2(0)) = 422 Remy(0)) — 43¢ + (Immy(0))’
it yields, using (4.42), Re my(o’) > %S%d(l + 0(6 + @)). By choosing @ and ¢ sufficiently small, we
obtain Re my(0’) = %éd in %s.

As my(0") is homogeneous of degree two, we find that /; is homogeneous of degree one in Us.
Recalling that z = (x, s) remains in a compact domain here, we thus find

(4.43) (@) 2 Atz in%.
Next, as h% =my #0in % we may write, with Lemma 4.26,
2hids,hic = O my € S((1 + £Y)A7 5, 7).
which yields the result using the ellipticity estimate (4.43). [ |

We let XypXo1 € S (1, g7) be supported in Mr y, homogeneous of degree zero, and be such that
Hx = —Co for both k = 1,2 on their supports and ys; = 1 in a conic neighborhood of supp(xs.0)
and X, = 1 in a conic neighborhood of supp(ys1). Recalling the notation of Section 4.4 and
the microlocalization symbols constructed there, this can be done as follows, for instance for the
construction of ys. Let ¥ € € (R) be such that

supp(x1) C [-4,+c0), x1 = 1 on a neighborhood of [-3, +0).
We also introduce Vi C V an open neighborhood of supp(yy,) in @, in particular Vy € V| (the
local geometry is illustrated in Figure 4) and we choose yy, € €°(RY) such that

Xv, = 1 on a neighborhood of V7, supp(yv,) C V.
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7 =(s,xX) e RxRFT = RN

90

FiGure 4. Open neighborhoods of zy € dZ introduced in the course of the
proof of Theorem 4.17.

We set
X510") = xv,(2) (1 = x1/16.F(2")) X1 (1(0")/0)%1(2(0") /6) € S (1, g7).
we have y;1 = 1 in a conic neighborhood of supp(ys,)-

We choose ¢ > 0 sufficiently small so that the results of Lemmata 4.22 and 4.23 apply, that is,
on supp({é ) the roots of g are simple and |7(0”)| < |£’|, and also the result of Lemma 4.27 holds
for %5 a conic neighborhood of supp(&s ), for ¢ € (0, 9) and for € > 0 chosen sufficiently small.
With the value of § fixed now, to ease notation we now write X>X0,X1 in place of X5 X60, X611 and

Eo, E1 in place of Opt(xs0), OpT(x5,1)-
Lemma 4.28. Let y = xo or x1 and, accordingly, 2 = Ey or E1. We have
OkE = Ok +Or-E+ (1 +ye)RIE+ Ry
= OQk-Ok+E+ (1 +y)RIE+R.
where Qi = (Dy, + itz — iaOpTW(hk)ﬁ)), a € {+,-}, and R\,R| € ¥(A1z,81) and Ry, R, €
‘P(/I}M , 8T), for arbitrary large M € N,

T

Proof. In the proof we shall denote by R; a generic operator in ‘P(ﬂ%, g7), j € R, whose expres-
sion may change from one line to the other.
Observe that we have, for any M € N,

M(E = My Opr(x)*E + R_p = Opr(miy*)E + (1 + y&)R\E + R_p.
With Lemma 4.27 applied with %, a conic neighborhood of supp(x), we have
Opr(mx*) = Opr(hey)>  mod W((1 +y&) Atz g7),
using the properties of the tangential calculus (see Proposition 4.3). This yields
ME = Opr(h)*E + (1 + ye)RIE + R_y
= Opr"(hy)’E + (1 + yO)RIE + R
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We then find
OLE = (Dy, + itg))*E + MyE
= (Dy, + itg, + i0Opr" (lix))(Dx, + it¢, — iOpT" (hey))=E
+i[D,, + itg,, OpTW(hk)ﬁ)]E + (1 +ye)RIE+R_y,
In fact, the order of the operators can be changed and we find
OUE = (Dx, + itg, — i Opr” ())(Dx, + ite, + i Opr” (hiy))E
—i[Dy, +it¢,, OpTW(hk)ﬁ)]E + (1 +y&)R|E + R_y.
The following lemma then yields the result. [ ]
Lemma 4.29. Let ¥ = yo or x1 and, accordingly, E = Eg or E;. We have, for a € {+,-},
[Dy, +it¢;, QkalE = —ia[Dy, +it¢,, OpTW(hk)ﬁ)]E =(1+ye)RIE+R_y withR; € ¥(A7,87) and
Roy € Y(7Y, g7).
Proof. We have [7,, OpTW(hk/K)] € W((1+vye)A7#, g7) as a consequence of the tangential calculus
we have introduced. We have [D,,, Opt" (/i X1 = Opt" (Dy, (hy /K))‘ We then write
Dy, (i) = D, (i + 1Dy ).
Because of the definition of X we have D, d)ﬁ(g') = 0 in supp(x(¢”)). Thus Opt" ((Dy d)ﬁ)hk)E €

‘P(/I}I;’I ,8T), for any M € N. Next, by Lemma 4.27 we have )ﬁDx Jhi € S((1 + &y)Atz, 87), which
concludes the proof. |

Lemma 4.30. Let y = yo or x| and, accordingly, E = Ey or 1. Let k, £ € {1,2} and a,b € {+, —}.
We have, for any M € N,

[Oka» QeplE = (1 +ye)RIE+ Ry, [Dy, +ifey OkaQepl= = (1 +ye)R11E + Ry~
with Ry € Y(A7z,g7), Rii € WL, Roy € W™ and Ry _py € W17,
Proof. Since [Op—rw(hk)ﬁ), OpTW(hl)_()] € Y((1 + ye)A1 2, g7), using the properties of the tangential
calculus (see Proposition 4.3), the result follows from Lemma 4.29. [ ]

We may now provide a proof of the microlocal estimate for the region &y.

Proof of Proposition 4.25. In the proof, we shall denote by R a generic operator in ‘I’;’k, jeN,
k € R, whose expression may change from one line to the other. We denote by M an arbitrarily
large integer whose value may change from one line to the other.

With the previous lemmata we write, using that y; = 1 on supp(xo),

(4.44) PyEo = 0107250 = Q1510250 + Ry —m
= 01-01+5102-02+E0 + (1 + y&)R2 150 + Ra—-m
= 01-01+02-02+E0 + (1 + y&)R21E0 + R4 —m
= 01-01+02-E102+E0 + (1 + y&)R2 150 + Ra—-m
=01-02-01+5102+F0+ (1 + y&)R21E0 + R4 -y
= Q" 0"Eo + (1 +y&)R2,1Z0 + R4,

with Q™ = Q10> and Q" = Q1,02 +.

The principal symbol of Q" isq™ = qi—_q2- € S g,o in a conic neighborhood of supp(yo), where
all the roots of ¢~ have negative imaginary parts. Thus,

(4.45) the operator Q™ fulfills the requirements of Lemma B.1.
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For both Q)+ and Q> we have the following estimate, characterized by the loss of a half
derivative and a trace observation, as given by Lemma B.6, for £,m € R,

12 am—1/2m - - e
Yy P2IF 2 Eovl ez S 17" Qs Bovlloez + e E"EoWlo g41 /2.5 + Vllo.~a7 k=12,

forve . (@), and for 7 > 7. and y > 1 chosen sufficiently large, and € € [0, 1]. Then, according
to Proposition B.7, applied with @; = @, = 1, we have the following estimates for the operator
QO*,forM >0and ¢ €R,

. - - -
(4.46) YIET Bovllaez + 1t Eov)li 4127 < 1O Eovlloez + [trEoWy r41/2.2 + IVIl2-przs

forve . (@), and for T and y chosen sufficiently large.
With (4.45) and (4.46), applying now Proposition B.8, and using that, for any M € N, [Dy, +
ite,, 0*1E) = (1 + y&)R1 1E1 + R _p by Lemma 4.30, we obtain

JO - _ R —_
YIE Bovllaoz + [trEoV 12 S 107 O Eovlls + [tr(ZEov)l1 572, + Vlla—przs

forv e . (@), and for T > 7, and y > 1 chosen sufficiently large, for ¢ € [0,&] with &1 > 0
chosen sufficiently small. Finally, with (4.44), we conclude the proof of Proposition 4.25 by
choosing y large and ¢ € [0, &;] with &, > 0 chosen sufficiently small. ]

Remark 4.31. Note that the end of the proof of Proposition 4.25 is a point where the introduction
of the second large parameter v is crucial. Even in the case € = 0, that is for a weight function that
only depend on the variable zp, taking y large is needed to conclude.

4.7. Microlocal estimate in the region F. In the region F we have ¥ < A1z and the symbols
of the operators Qy are characterized by two simple roots that are separated (see the first item of
Proposition 4.21). We prove the following estimate.

Proposition 4.32. Let M € N. There exist 19 > T+, yo = 1, and C > 0 such that
IErvllaoz + 10 G120 < CIPLERVIL + 1)y sz + IVlla-arz),

fort =710,y 2 7v0, € €[0,1], and forv € y(@).

Proof. We write yo = yr and Ey = Ep, to ease the reading of the proof.

We also let x1,x € S(1,87) be supported in M7y, homogeneous of degree zero, and be such

that |7(0")| < %HO/IT,;(Q’) in their support (using the notation of Section 4.4) and such that y;| = 1
on a conic neighborhood of supp(xo) and x = 1 on a conic neighborhood of supp(y1). This can be

done as follows, for instance for the con_struction of y1. We introduce V| C V an open set of RN
that is a neighborhood of supp(yv,) inR;ﬁY, in particular Vy € V| (the local geometry is illustrated
in Figure 4) and we choose yy, € € (RY) such that

Xxv, = 1 on aneighborhood of Vi, supp(xv,) c V.
We set

x10") = xv,@xar € S(,g7),

with the function y; r as introduced in Section 4.4. We have [T(0")| < %90/11;(@’), which leaves
“enough room” for a similar construction for y. We set £; = Opt(x1).

With Proposition 4.21, in a conic neighborhood of supp(y) the roots of gy, k = 1,2, are simple,
and we may write B

q1(©) = qi.+(0)qk.~(0), Gk+(0) = €a — pr2(0),
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where pi + € S (117 g7) in a conic neighborhood of supp(y) and there we have
Impy+ 2 CAtz, Impr- < -CAtz.

We set Ok« = Dy, — OPTW()_(Pk,J_r)-

In the proof we shall denote by R ;4 as a generic operator in ‘Pék j €N, k € R, whose expression
may change from one line to the other.

Lemma 4.33. Let E = £y or E1. We have, for arbitrary large M € N,

OkE = O+ Ok-E+YRI 02+ Ry

= Ok-Ok+E+YR10E+ Ry .
Proof. We have
O+ Ok = D3, — (Opr” (xpr+) + OpT” (xpr,-)) Dy + OpT" (s +) OPT” (xpr,-) + YR0,1-
We thus find, for any M € N,
Qi+ Ok -E = (Opr" (D%, = (Op1” (xpx.+) + OpT" (xpr.-))Dx, + OPT" (xPr.+) OPTW(/KPk,—))E
+ ’le,()E + RZ,—M

= Op"(xg)E + YR10E + Ro-m
= QkE + )/R],OE + Rg’_M.

This result yields, for any M € N,

(4.47) PyEg = Q10250 = Q1510280 + Ra-m
=01-01+2102-02+E0 + YR3050 + Ry
=01-01+02-02+F0 +YR30Z0 + Ra—u
= Q070" + YR30 + R4y,

where Q7 = 01-0>- and O = 01+ 02 +.

Both roots of the symbol g~ of the operator Q™ are in the lower half complex plane in a conic
neighborhood of supp(yp). Then, with Lemma B.1 we have the following perfect elliptic estimate,
for any M > 0,

(4.48) IZovll2,07 + [tr(ZEoV)li 1727 S 1O Eovil+ + [IVIl2.-p1.7

forve . (Rﬂy ), for T > 7, and y > 1 chosen sufficiently large, and € € [0, 1].

The roots of the first-order factor Oy +, kK = 1 or 2, are in upper half complex plane. Then, with
Lemma B.4, we have the following elliptic estimate, yet with a trace observation term in the r.h.s.,
for M >0and ¢ € R,

NIZovll1,ezr < C(lle,+50V||0,e,% + [ tr(Eovlo,e+1/2, + ”V”O,—M,i),

forve . (@), for 7 > 7, and y > 1 chosen sufficiently large, and € € [0, 1]. Then, according to
Proposition B.7, applied with a; = @y = 0 and 6; = 6, = 0, we have the following estimates for
the operator Q*, for M > O and £ € R,

(4.49) IZovll2,ez + [t (Eov)li 4127 < 1O Eovlloez + [trEoWy 41722 + IVl ar25

forve. . (@), and for 7 > 7, and y > 1 chosen sufficiently large.
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Applying now Proposition B.8, with (4.48) and (4.49), we obtain
IZ0vlla07 + [trEoW3.1 /2. S 107 O Evlls + [te(Eov)l1 5725 + IVIla—przs

forv e . (@), and for 7 > 7, and ¥ > 1 chosen sufficiently large, for € € [0, 1]. Finally, with
(4.47), we conclude the proof of Proposition 4.32 by choosing 7 and y large. |

4.8. Proof of the Carleman estimate of Theorem 4.17. We choose W an open neighborhood
of zo in RY such that W € V; (see Figure 4). Let u = wiz, with w € €:°((0,S¢) x RY) and
supp(w) C W. We set v = e™u.

We collect the different estimations that we have obtained in Propositions 4.24, 4.25, and 4.32.
For some 6 = dg € (0, 1) to be kept fixed, for 79 > 7., yo = 1, and &g € (0, 1] we have

~—1/2~(/<) =(k) '—(k) = (k) B
(4.50) el Moz +10EZ0 o 2 SIPEES VI + 1 Eg T 5 ) -+ IVl a7
fork=1,2, and

JU _ —_ —_
(4.51) YIF Esovllaoz + [t Esovlz 107 S IPeEsovil+ + [t Esov)ly 5727 + IVlla—m7,
and
(4.52) IEvlla0z + 1rERV31727 S IPoERVIE + 10(EFRV 5727 + IVIla-m75

for v > 19,y = 0, € € [0, &)].

We then pick @ > 0 meant to be chosen small in what follows, and we shall consider a((4.50) +
(4.52)) + (4.51). We will choose 7 sufficiently large so that at'’? > 1.

We first note that we have the following lemma whose proof is provided below.

Lemma 4.34. There exists C > 0 such that

1 o 1/2=(k 1= _ z—1
ay? ¥ IFY E0 a0z + YIF Esovllaos + allErvilaos = CHIF Wlagz,

for T chosen sufficiently large.
With a similar, yet simpler, proof, we have the following lemma.

Lemma 4.35. We have
@ 3 |wE )

k - sip: T |tr(Es0V)3 122 + A W(EFV)31 /25 2 @l t(OW)l3 127,

for T chosen sufficiently large.

With these two lemmata we obtain

1 /2~(k)

~—1 —_ 1 ~
(453) ylIF v||4,o,f+a(||aFv||4,o,f+yzkzlznr Vllao)

+ oty 12,7 S (rh.s.(4.50) + rhs.(4.52)) + this.(4.51),

The next lemma is crucial in the computation of the commutator [Py, Zs50]. A proof is given
below.

Lemma 4.36. We have [P, Zsp] = Op(g)+0p(h)+72R3,_1, where g, h € y‘P;’O andR3_; € ‘Pi’_l,
with
e g(0)=0 for zina nelghborhooa' of Vo
e (o) = ZJ _ohj@’ )& " hj € y‘I’(/lT J, 1), homogeneous of degree 3 — j, and X(l) + /\(532)
xF = 1 in a conic nezghborhood of supp(h;) in the variables ({,,v, &), for z € Vy,
j=0,...,3
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We have [Py, Z] € yRs, for & = 2, 5

[10p(gVIl+ < IIVIl3.-a.7, and we obtain

2)

g_ or Zr. Lemma 4.36 gives, for any M € N,

=k
@ Z 1P, )V||+ + IPeEsovils + AP Ervlly < 1Pyl + | Op(vIls + aylivils oz + ¥ IIvils -1 2.

From (4.53) and (4.50)—(4.52) we thus obtain, for @ chosen sufficiently small (and kept fixed for
the remainder of the proof) and 7 chosen sufficiently large

Z ||~ 1/2 (k)

~—1 —_ 1
4.54) YT Vllaoz + IEFVIa0z +¥2 “Vllao0z

+tMlz 127 S 1PVl + [ty 527 + [1Op(R)v]l+.

()]

We set y = )((1) + X5

+ yr. We have the following lemma whose proof is given below.

Lemma 4.37. Let W be an open set of RN with W € V,. There exist C > 0and T, > 7, such that

1 Opr(hpwlly < Cy(I10pTOWllos-jz + ¥(1 + ep)lwlloa-jz), for w € L RY), supp(w) C W and
T2>T].

Thus, we obtain
3 ‘ 3 ‘
Il Op(hvll+ < _ZO | Op(h)Dy v+ < ZO YIIOpT(x¥)Dy Vllo3-j7 + ¥(1 + ep)vil3—1 7
j= j=

As [Op1(x), D},1 € y#L " we obtain
| Op(h)vll+ < Yl OpT(VI3.0.% + Y2 IVI~1.7

—~(k — 2
< y(kz12 IEL V30 + IErvliz0z) + Y2 IVlls.-1.5-

Using this estimate in (4.54), for T chosen sufficiently large, we thus obtain

1/2'—( )

~—1 _ 1 ~
YIT" Vllaoz + IEFVIa0z + 72 k22 17 laoz + 1Mz 127 S 1PVl + ()] 527
=1,

The end of the proof of Theorem 4.17 is then classical. [ |

Proof of Lemma 4.34. With Lemma 4.14 we may write

1 -1/2—= _
X=ay: 3 I PEO Vs + ME Esovllags + llErvllaoz

4
~ 4— =(k — — 4— —_
2 X (ay? 2 I IDLEO VI +yIFT AT DL Esovll + @l AT DLl )
Jj= =1,
yielding
4
~ 4— - k — - — 4— —
X2 ngo(k_zlznr 'ATIDLED VI + 17 AT DL Esovl + 177 AT DL ERL),

>yl using, on the one hand, that (te)™1/? = yif'_l/z <lsincet>71,2>1
and ¢ > 1, and on the other hand, that a7!/? > 1 implies a7'/? = a(ryp)'/? > yl/ 2 since ¢ > 1.
We then find, with & = x + ¥\ + ys0 + xr € S(1.g). X 2 y X4 IF7'AT/D], Opr(hvll,.. As
[D],, Opr(h)] € y¥. ', we obtain

X+ Whor 2y z 177 AT Opr()DJ vl
]_
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By the (local) Garding inequality of Proposition 4.15, as h(0’) > 1 in a neighborhood of Vi N @
that contains supp(v), we obtain

4 .
2121 -1 -1
X+yF vz 2y 'Zo 17 Dy vlloa-jz < YIF Vllao 2,

J:

We conclude by talking 7 sufficiently large with the usual semi-classical inequality (4.17). [ |

Proof of Lemma 4.36. Up to yzS g’_] , the principal symbol of [Py, Es0] is given by —i{py, x50},
and thus involves derivatives of ys0. We recall the form of x5, as introduced in Section 4.4,

X60(0") = xvo (@) (1 = x1/4.0(0") x0(1(0")/6) x0(u2(0")/6)-
Computing —i{py,, x50}, we obtain the following list of terms.

Terms involving derivatives of yvy,(z): Those terms contribute to the symbol g that van-
ishes in a neighborhood of Vj.

Terms involving derivatives of x1/4,r(0"): Those terms are supported in {#1177/8 < T <
0147 7/4}, using the notation of Section 4.4. As y1r = 1 for T < 8;472/2, we see that
xr(©") = xv,(@x1.r(©") = 1 in a neighborhood of the support of those terms for z € V.
Those terms contribute to the symbol /.

Terms involving derivatives of yo(ux(0’)/6), k = 1,2: From the definition of yy we see
that those terms are supported in {-3 < u(0’)/6 < —2}. We have y_(ux(0’)/0) = 1
in a conic neighborhood of this set. As y1r(0’) + (1 — x1/4r(0")) = 1 we find that
xr)+ )(gi (0’) = 1 in the support of those terms if z € Vj. Those terms contribute to the
symbol 4. [ |

Proof of Lemma 4.37. Let yw(z) € €,°(Vp) be such that yw = 1 in a neighborhood of W. The
microlocal version of the Garding inequality of Proposition 4.16 gives, by Lemma 4.36,

Re(Opr(x) Opr(xwh)w, Opriewhjw)s + IWll§ _y + 2 I10pTOwh)wll?.
Then, with the Young inequality, we obtain
I1OpT(x) Opr(xwh )wll+ + lIwllo,~ar,z 2 1| OpTCrwhjwll,.
Since Opt(ywh;)w = Opt(hj)w + Ro_pw, with Ry s € ‘I’g’_M, for any M € N, we obtain
Il Opt(x) Opt(h Wi+ + [IWllo,-p 2, 2 Il OpT(hj)Wlls.

As [Opt(x), Opt(h))] € y(1 + sy)‘I’(/l%;j , 8T), we obtain the sought estimate. [ ]

5. SPECTRAL INEQUALITIES AND APPLICATIONS

We start this section by stating and proving an interpolation type inequality. Next, we prove the
spectral inequality of Theorem 1.2. Finally, as an application, we state a null-controllability result
that follows from it.

5.1. An interpolation inequality. Let Sy > 0 and @ € (0,S¢/2). We recall the notation Z =
(0,S0) x Q and we introduce Y = (@, S — @) X Q for some a > 0. As is done in other sections,
we denote by z = (s,x) € Z, with s € (0,5¢) and x € Q. We recall that P denote the augmented
elliptic operator P := D* + B, where B = A2.
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Theorem 5.1 (Interpolation inequality). Let & be an subset of Q. There exist C > 0 and 6 € (0, 1)
such that for u € H*(Z) that satisfies

u(s, X)lxeaq = 0, 0yu(s, x)lyeaq = 0, s €(0,50),
we have
: )
(5.1 leell g3y < C IIulle(Z)(IIPulle(a + 0<Z<3 ||6£u|s=ollys—f(m) .
<j<

First, we provide a local interpolation estimate in a neighborhood of a point of {0} X &.

Lemma 5.2 (local interpolation near s = 0). Let xo € O, there exist V a neighborhood of (0, xg)
inRxRY C>0, and s € (0,1) such that for u € H*(Z) we have

; s
(5.2) ||”||Hx vnz) < C||M||H3(Z)(||PM||L2(Z) + 2 ||a{v”|s:0||H3—j(ﬁ)) .
0<j<3
Second, we provide an interpolation estimate with an interior observation, that is, we have an
estimate away from the boundary 0 X Q.

Proposition 5.3 (Interpolation with an interior observation). Let % be an open set in Z. There
exist C > 0 and § € (0, 1) such that for u € H*(Z) that satisfies

u(s, )lyeaq = 0, Oyu(s, x)|xepq = 0, s €(0,50),

we have

5
(5.3) llutl |3 vy < C||M||H3(Z)(||PM||L2(Z) + ||M||L2(Ff)) .

With these two local interpolation results, whose proofs are given below, we can then write a
proof of Theorem 5.1.

Proof of Theorem 5.1. Introducing V as given in Lemma 5.2, we let Z be an open subset of VNZ.
With Lemma 5.2 we then have

o
(5.4 1Pulli2zy + llullgs 2y < CIIMIIHs(Z) (IIPMIIL2<Z> , 2 X |I5§u|s:ollH3—.f(g)) )
<Jj<

as we can assume that ||Pul|;2z, < llullg3z) otherwise estimate (5.1) is trivial. Applying Proposi-
tion 5.3 we have, for some 8" € (0, 1),

’

5
Wl vy < Cllalllr, (1Pulagz) + lllz2 )
This, with (5.4), gives (5.1) with ¢’§ in place of 6. [ |

For the proofs of Lemma 5.2 and Proposition 5.3. We shall need the following lemma whose
proof can be found in [ ].

Lemma 5.4. Let A > 0, B> 0, and C > 0. We assume that A < B and that there exist T¢g > 0,
u > 0andv > 0 such that

(5.5) A<e"B+e'C, fort =Ty
Then A < KB'9C?, where K = max(2, e"™) and 6 = v/(v + u) € (0, 1).

Proof of Lemma 5.2. Let r > 0 and zg = (—r, x9), where r is chosen sufficiently small to have
BN {s=0}C O with B = B(z0,4r). Let = —|z — zo|*, with z = (s, x). We have d,y/(z) < -C < 0
in B. We set ¢(z) = €. Let y € €5°(R*") be such that x(z) = 1if |z—zo| < 7r/2 and x(z) = 0 if
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|z — zo| = 15r/4. We apply the local Carleman estimate of Corollary 3.2 to v = yu, and we obtain,
for y > 1 chosen sufficiently large (to be kept fixed in what follows),

3 ‘

(5.6) | |z3 27 Dyl 2 gy S 1€ PYII2 gy + T 'Zo | tr(e™ Dvis=00)lo 5 j7-
a|< J=

In {0} X &, we have ¢ < e~ then

3 ,
CRONEE s 2 | Do)l

3 .
C A2
S €OT Y D=0ty Ci=(+a)e™",
J: =l

z
j=0
for any a > 0. We have Pv = yPu + [P, y]u. The term [P, y] is a differential operator of order 3

and it is supported in {z € R9*!; 7r/2 < |z — 70| < 15r/4}. On this set, we have ¢ < e77"/2’ We
thus find

_ 2
(5.8) le™ [P xull 22y < € lullgs ) Cy =772,

In Z, we have p < 7" ? = Cj3; this implies

(5.9) le™xPull 2z) < €“TIIPull 2z)-

In{z € R |z — 70l < 37}, y = 1 thus u = v, and on this set ¢ > e~?3"” then we have

(5.10) Ml aeosnnz S 2 TN DEVI5rz), Cy =70,
|er|<3
Remark that C; < C2 < C3, for a > 0 chosen sufficiently small. Following (5.6)—(5.10) we obtain

3 .
C3—C; —(Cr-C
lell 38 30y S €SP (IPullaz) + ZO|D§M|S:O+|H37/'((;)) + eyl .
]:

Applying Lemma 5.4, we obtain the result with V = B(z, 3r). [ ]
We prove Proposition 5.3 by means of two lemmata. For o’ € (0, @) and a € (0, 1), we set

(5.11) Yoaoa=(@,So—a)xQ,,

where Q, = {x € Q, dist(x, 0Q) > a > 0}.

Lemma 5.5. Let o« € (0,a) and a € (0,1). There exist C > 0 and § € (0,1) such that for
u € HZ),

_ 5
(5.12) gy, < Cllully,, (1Pull2z) + lull 2 )

Lemma 5.6. Let (s, x9) € (0,S¢) X 0Q. There exist 6 € (0,1), C > 0, Vy a neighborhood of
(50, x0), @ € (0, ), and a € (0, 1) such that we have

_ 0
(5.13) Wl vy < Cllllls, (1Pl 2 + el r,,,0)
for u € HY(Z) satisfying
u(s, X)lxean = 0, dyu(s, Xlxesn = 0, s €(0,50).

Proof of Proposition 5.3. We can assume that ||Pull;2z, < |lully3z), otherwise inequality (5.3) is
obvious. In particular, if (5.3) holds for a value 6 = 6y > 0 the estimate also holds for all ¢ € [0, 6g]

possibly with a larger constant C = Cs. The same observation can be made for the estimations
(5.12) and (5.13).

With a compactness argument we can find a finite number of open sets V;, j € J, where esti-
mate (5.13) holds for some values 6 = 6; € (0, 1), a;. € (0,), and a; € (0, 1), and such that

(a,S¢g—a)xX0Q C UjeJVj.
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Fora € (0,1)and o’ € (0, ), and set ¥, = (&', S — @’) X Q,, where Q, = {x € Q, dist(x, Q) <
a}. There exists a; € (0,1) and a1 € (0, @) such that f’m,ul C ZN (UjesV;). Applying the local
interpolation estimate (5.13) for each V;, using now

01 =mind; € (0,1), ay= minca’; € (0,@), and a; = mina; € (0, 1)
jel jel jed

(note that the set Y, , increases as o’ and a decrease) we obtain

1-6 o1
(5.14) lllgrs 7, ) S IIMlle('Z) (IIPM||L2(Z) + ||u||H3(ya2,a2)) .

By Lemma 5.5 we obtain, for some 6, € (0, 1),

1-6 02
(5.15) 1Pull 22y + Nellgsey, ) < Nullags, (1Pullz2zy + ez )

as the estimate of ||Pul| 2z is clear here. Then estimates (5.14) and (5.15) give

1-6102

0102
(5.16) s, S lellags? (I1Pullz2cz) + lull 2 )

Taking a € (0,a;) and @’ € (0,a), we have Y C Yy, U Yal,ul, and, by (5.12) in Lemma 5.5 and
(5.16), we obtain (5.3). [ ]

Proof of Lemma 5.5. By a compactness argument, it suffices to prove (5.12) with B(z, R) in place
of Yy 4 wWhere z € Yy, and 0 < R < min(a’,a)/2, implying B(z,R) C Z. Let 70 be in &
and ro > 0 such that B(z?, ry) € Z. As Yo 4 18 connected, there exists a path I' C Y,/ , from
70 =T(0) to z = T'(1). Set r; = dist(T, Z). We have r; > 0 by compactness.

Setting now r = inf(R, ro, r1/4), we define a sequence (z(j))j, for j > 0, by ¥ = I'(z;) where
to = 0 and

Aj={o e (tj1,1]; T(o) ¢ B, n).

g = ianj ifAj;t(D,
7 ifA; =0,

The sequence (7)) ; 1s finite by a compactness argument. The construction of the sequence is
illustrated in Figure 5.

Let zZ®,---,z™)be sucha sequence with z™ = z. Note that we have B(z'/*D, r) c B(z",3r) c
Z,for j=0,---,N—1, because of the choice we made for r above. Now we claim that there exists
C > 0and ¢ € (0,1) such that

_ 5
(5.17) el aeon vy < Mol en 3y < Cllully, (1Pull 2z + Nl o )
for j =0,...,N — 1. This claim is proven below.

We assume that [|Pul|;2z) < |lullg3(z), since otherwise the estimate we wish to prove is obvious.
We then have

‘l_ 6
1Pullz2zy + el g3 pinn ) S ||M||H3(EZ) (||PM||L2(Z) + ||u||H3(B(Z<f>,r))) .
By induction on j, we find
1- iz
(5.18) 1Pull 2z + Willgoqcey < Nl (1Pl 2z + el )
where u = 6V.

As P is elliptic, and Bz, r) € 2 we have [lull 3 g0y < 1Pull2(z) + lull 2 7). This estimate
and (5.18) give (5.12).
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ZM Z(NAD
=y 7V

7 = dist(T, 6Z) > 4r \

j+1
\\\ Z(J+ )
[=-~X 70\ 2N
r Y
\
3r 'T

0z

Ficure 5. Construction of the sequence (z);, j € J, along the path .

To prove estimation (5.17) we apply the local Carleman estimate of Proposition 2.7. We set
W(2) = —z -z and ¢(z) = @ and y € €°(B(z\, 4r)) to be such that

1 if3r/4 <|z-29 < 7r/2,
XD =10, 0) 0)
0 ifjz—27zY|<5r/8o0r 15r/4 < |z -7
The function v = yu is supported in the open set B(ZY,4r) \ Bz, r/2) ¢ Z where di does not
vanish. For v > 1 chosen sufficiently large, by Proposition 2.7, we have

(5.19) > TN DMV 2z < e PVl

lo|<4
We have Pv = yPu + [P, y]u and [P, x] is a differential operator of order 3 supported in A; U A;
with
Al =1{z; 5r/8 <z — 2P| <3r/4), Ay ={z Tr/2 <|z—2P| < 15r/4).
‘We write
||€T"DPV||L2(Z) < ||€T¢PM||L2(B(Z</'>,4r)) + ||€T¢[Pa)(]u||L2(A1uA2)-
Since ¢ decreases as |z — z/)| increases, we find
(5.20) e PVll2z) S €™ IPullazy + €™ Nl + € gz

where C; = 772" and C3 = Y5187,
As we have y = 1 on B(zY, 3r) \ Bz, r) we have

(5.21) €TC2||M||1-13(B(z(j),3r)\3(z(j),r)) < | |Z4 T3_|al||ewD?V||L2(z),
a|<

where C, = ¢¥3"’ Remark that C; < C; < Cs.
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3 Z/ — (S,)Cl) c RN_I

(0,S0) X 0Q

FiGure 6. Geometry near the boundary for the application of the local Car-
leman estimate of Theorem 4.17.

Inequalities (5.19), (5.20), and (5.21) give

—T(Cz —

C3-C C
lull g3 B 3m) S €D UNPUll 2z + Nullgs e ) + e llull g z)-

as the estimate on B(z\”, r) is clear with such a rh.s. if 7 > 7. > 1. We can optimize this last
estimate applying Lemma 5.4, which yields (5.17), and concludes the proof of Lemma 5.5. |

Proof of Lemma 5.6. The proof follows the same ideas as that of estimate (5.17) applying the
boundary-type local Carleman estimate of Theorem 4.17. We use local coordinates in a bounded
neighborhood V in RN of the point zo = (sg, xo) of (0, S¢) X dQ as introduced in Section 4.2, such
that this part of the boundary is locally given by {zxy = x; = 0} and Z is locally given by {zy > 0};
coordinates can be chosen to have moreover zg = (z;, 0), with z; = 0. We set zD = (0,2r) where
r>0.

We let ¢ € €°(RN) be such that

1272 =z =2V if |z -2V < 3r,
r ifd4r < |z —2z'"|.

We have (z) > >0, ||;_//(k)||Loo < 00,k €N, and
() = =0, ¥(2) = 2y(zy — 2r) < -C <0,

for |z — V| < 3r and zy = 0. Upon reducing the open neighborhood V, the weight function v
fulfills the requirements listed in (4.2) and (4.20).

We set ¢(z) = "= where .(2) = (&7, zn). According to Theorem 4.17, there exit a neigh-
borhood W € V in RN of z9, 79 > 7., yo > 1, and &y € (0, 1] so that the Carleman estimate (4.21)
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Ficure 7. Geometry near the boundary for the derivation of the local in-
terpolation inequality. The light color region shows where y = 1; the dark
color region shows where y varies. Note that the relative scale of the two
axes has been modified, if compared to Figure 6, for a better display of the

regions A; and A, near z.

holds for 7 > 79, ¥ > 0, € € (0, &] and smooth functions supported in W. We set y = yo and
€ = g). The geometry of the level sets of the weight function is illustrated in Figure 6.
In connection with the weight function ¥, we introduce the following anisotropic norm in RV,

that depends on the (now fixed) parameter &,

12
2=y, = (€1 =y + v —yn))

We denote by B.(z, r) the ball of radius r centered at z associated with this norm. We have

2 .
V(o) = 1272 = |z - 2V if |z - 2D, < 3,
° r if 4r < |z -2V,

Let xo € €,°(R) be such that

1 if |ZN| < ro,

Xxo(zn) = {0

if 2rp < |zl
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where ro < r/4. Let also x| € €>°(Bs(z?, 3r)) be such that

@ 1 2=z <,
7) = _
X1 0 if ri <|z —z(])|g,

where 7, r| are such that 2r < r; < r} < 3r. Observe that if we choose the values of r| —2r > 0
and ro > 0 sufficiently small, then the open set {z € Z; zy € (0,2rp)} N{z € Z; |z — z(l)ls <ri}is
contained in W. We now set x(z) = x1(z)xo(zn). Figure 7 shows, near zg, the region where y = 1
and where it varies, that is supp(y’) N Z C A; U A, with

Ay ={z€Z;zy € (r0,2r0) and |z — 21|, < 1/},

Ay =1{z€Z;zy €(0,2r) and ry < |z — 2P|, < 7))

The Carleman estimate (4.17) applies to v = yu, by a density argument. As uj,—o+ = 0 and
Oyupy=o+ = 0 we obtain (the values of y and & were fixed above)

3_
(5.22) ||z4r e DY Mipwoz) < 1€PYllgwnzy, T = To.
a|<

We have Pv = yPu + [P, x]u, where [P, x] is a differential operator of order 3 that is supported
in A; UAy. On Ay, we have ¢ < ¢712°-2=210") On A, we have ¢ < ¢”12”~"1), We thus obtain
(5.23) lle™ PVllr2wizy < € (I1Pull 2z, + sy, ) + "Ml 2

where C; = 67(12’2_’%), C; = e?(127°-Cr=210") and 0 < a < ro and some o’ € (0, @) (recalling the
definition of the set Y,/ 4 in (5.11)).

We restrict the Lh.s. of (5.22)to Vo = {z € Z; zwv € (0,r0)} N {z € Z; |z — 2| < rp}, with
ry = r + r1/2, whose closure is a neighborhood of zg in Z. Note that 2r < r, < r|. As on this set
we have ¢ > 127 and y = v, we obtain

(5.24) " ull g vy < | |2<4 PN DY Wl 2wz
a|<

where C; = ¢7127°=(+11/2%) Then (5.22), (5.23) and (5.24) give
(5.25) vy < €SP UPullzzy + lullipqy,, ) + €Vl 2,

Observe that we have C; < C; < C3. By Lemma 5.4, we obtain the sought local interpolation
inequality at the boundary. u

5.2. Spectral inequality. Let ¢; and y; be eigenfunctions and associated eigenvalues of the bi-
Laplace operator B with the clamped boundary conditions, that form a Hilbert basis for L?(Q),
Viz.,

Boj=pjdj, Pioa = 8V¢j|aQ =0, (¢, P12 @) = O jk>

with O < pop < py <-+- < pj <---. We now prove the spectral inequality of Theorem 1.1, namely,
for some C > 0,

1/4
(5.26) lull 2y < Ce“ lull 2, u>0, ueSpanfg;; pj < pj.

Proof. We let u > 0 and we pick ay, ..., @, € C with n € N such that u,, <y < 1. We set
u) = 3 g0, wis,0) = 3 o e ee,),
HjSH Hj<H

where f(s) = ysin(ys) cosh(ys) — y cos(ys) sinh(ys) where here y = v2/2. As Df = —f, we
have Pu = 0. We also have

f0) =)= f20)=0, 20 =1,
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and
1
f(s) = glys), g(s)= E(efs cos(s — m/4) — e* cos(s + n/4)).
Since w(s, x)|xeaq = W(s, X)|ecan = 0, the interpolation inequality of Theorem 5.1 yields

IWllgcyy < Cliwlls2 1103ws=oll

H32Z) L[2(0)

Observe that we have (’)iwh:o = uand |Wllg3y) 2 Wllr2ey) With

(So a)w”4
3/2 1/4
Wiy, = ZM/mefm/ﬁM—kayu [ g(s)%ds
Hj<u ww}m

>u”42|%ﬁ—u7”wn

L2(Q)’
Hj<p ©@

using the following lemma, whose proof is given below.

Lemma 5.7. Let 0 < a < b and ty > 0. There exists Cy such that falit g(s)zds > Co fort > ty.
We thus obtain

(5.27) lull 2y < 17 B IWllg i3 -

Next, we estimate [[w||;3(z), with the following lemma, which, from (5.27), allows one to conclude
the proof of Theorem 1.2. |

Lemma 5.8. There exists C > 0 such that ||wl| g3z, < CeC”1/4||u||Lz(Q).

Proof. We have

W73z = ZIMWUNWWWB<ZIMW@NWMM

where H*(€) denotes the classical Sobolev spaces in Q. Recalling from (1.13) that, if vjgo =
aka’)Q = 0 we have ”v”H4(Q) < ||A2V||L2(Q), we find

k-3)/4 1/4 k+1)/4 1/4
wwummqu2a< ”ﬂ@/mmmvnz R PO 96117200,

k+1)/2 1/4 /4
= 3 1o Puf PO 7 < 2 S ol
HisH HiSH

Integrating this estimate over (0, S¢) and summing over k yields the result. |

Proof of Lemma 5.7. For s € [-n/2 + 2kn,2kn], k € N*, we have cos(s + n/4) > V2/2. For 1,
chosen sufficiently large, if ¢ > ¢, there exists k € N such that [-7/2 + 2kn, 2kn] C [at, bt] and
lg(s)] = %le“‘ cos(s — m/4) — eScos(s + m/4)| > 1. Then, a}f g(s)*ds > n/2. Finally, there exists
C > 0 such that fal;’ g(s)zds > C for t € [tg,11], since the function g(s)2 is almost everywhere
positive. |

5.3. A null-controllability result for a higher-order parabolic equation. Let 7 > 0. We con-
sider here the controlled evolution equation on (0, 7)) x Q with the clamped boundary conditions
(v denotes the outer unit normal to 9Q):

(5.28) Oy + A%y = xof, yioxee =0, dyyo,mxee =0, Yi=0 = Yo € LA(Q),

where ¢ is an open subset of Q and ys € L®(Q) is such that y5 > 0 on &. The function
f € L*(0,T) x Q) is the control function here. Well-posedness for this parabolic system is
recalled in Corollary 1.8. One may wonder if one can choose f to drive the solution from its initial
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condition yg to zero at final time 7. Thanks to the spectral inequality of Theorem 1.2 one can
answer positively to this null-controllability question.

Theorem 5.9 (Null-controllability). There exists C > O such that for any yy € L*(Q), there exists
f € L*((0, T) x Q) such that the solution to (5.28) vanishes at T = 0 and moreover ||f]| L2(0.T)xQ) <

Cliyollz2()-
The proof can be adapted in a straight forward manner from the proof scheme of [ ] de-
veloped for the heat equation and that is presented in a fairly synthetic way in the survey article

[ I

APPENDICES
A. PROOFS OF SOME TECHNICAL RESULTS

A.1. Proof of the estimate optimality in the case of symbol flateness. Here, we provide a proof
of Proposition 1.4.

We have O(z, D;) = q(z, D;) + rm—1(z, D;) + r—2(z, D;) with r,,—1(z, D;) homogeneous of degree
m — 1 and r,,—»(z, D) of order m — 2 (non necessarily homogeneous).

If there exists (zg, {o, To) as in the statement of the proposition, then by homogeneity, as 7o # 0,
there exists £; € RV, such that

(A.1) q(20,01) =0, d.rq(z0,61) =0, 6 #0, with6; = {; + ide(z0).

Without any loss of generality we may assume that zp = 0. Because of the form of (1.12), observe
also that there is no loss of generality if we assume that ¢(0) = 0.
We then introduce w(z) = {(z, 6;). We note that

¢(2) - Imw(z) = G) + 2P O(1),  G(z) = %dfso(o)(z, 2).

We then pick f € €°(RYN), f # 0, and set u,(z) = ¢™@ f(r!/27). We have

3 _ —1/21,,13
(A2) el = [ OO f(g1 )Ry = N2 [ 200 DPOW) £y 2y
RN RN
~ TN [0 f)Pdy,
T—>00 RN

with the change of variables y = 7!/?z and the dominated convergence theorem.
As we note that

e ™ODY, = (D, + 101" f('%2) = 707 f (' 22) + 2o (1),
similarly, we find
(A3) lle™ D u||? ~ qHalNI2jgep2 £e20@>|f@>|2dy,
R

L®Y) 5o
as we have 67 # 0.
We have
e ™D 0™ = (7, D, + T01) + rp-1(z, D; + T01) + rm_2(z, D, + 16)).

With the Taylor formula and homogeneity we observe that

_ 1
9(z Dz + 701) = 7"q(z,01) + 7" dgq(z, 00)(D2) + 57" dzq(z,01)(D:, D:)

11
+5J0- 12d}q(z, tD; + 101)(D;, D;, D) dt.
0
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Next, we write

1 11
q(z,61) = q(0,01) + d.q(0,0,)(2) +§d§q<o, 0,2 + 5 Of(l — 02 d3q(tz,01)(z, 2, 2)dt,
=0 =0

1
dq(z,01)(D;) = drq(0,6,)(D,) +d;d.q(0,01)(D;, 2) + [(1 — t)dyd>q(tz, 6, )(D, 7, 2)dt,
NG 0
=0
and

1
d2q(z,61)(D;, D;) = d;q(0,6,)(D;, D,) + c{dédzq(rz, 01)(D, D, z)dt,

which gives

, , 1 1 1
¢ Q™) = rm—l(zdgq(o, O 22,72+ ST (1 - 1z, 00 P2 7 P2 7 Py
0

1
+172d;dq(0,0)(D., 7?2 + 77! Ja- NdgdZq(tz,0,) (D, 7'z, 7' 22)dt
1 _ 1 3
+ 37 g, 00Dz D) + 777 [ d}d:q(1z,61)(Dz, Doy 72

+ T]_m(rm,l(z, D, +101) + rpo(z, D, + 791))).
‘We then find
_— /1
™ Que = NS d2q(0. 00 22, T2 £ 2) + dydeq(0.01)(D:f (7' 2). 7!/

+ %(d}q(o, 0Dz, D)f )T %2) + 11 (2,00 (7 P2) + 772 0(1)).

Arguing as for (A.2), we obtain, as 7 — oo,

- "
(A4) €™ Quellp gy = 7"V [ 290|3d29(0,600, 0 f0) + drd:g(0,0)(D=f (), )
R

1
+ S(d29(0.6)(D=. DY) + 10,00 f ) dy
+ ﬁ(TZ(m—l)—N/Z—l/Z)'

The assumed estimate (1.12) along with (A.2)—(A.4) thus implies that 6 = 0 and moreover that the
integral above does not vanish. [ ]

Remark A.1. Observe that if in addition we assume that m > 3 then the partial Carleman estimate
(1.12) with the loss of a full derivative implies that d¢(z) does not vanish in Q. In fact, if dp(zg) = 0
and if we pick ¢y = O then 6; = 0 and since m > 3 we have the properties listed in (A.1). The
remainder of the proof then yields a contradiction as the intergral term in (A.4) vanishes.

In the case m = 1, it is known that a Carleman estimate with the loss of a half derivative can hold

even if the gradient of the weight function vanishes (see Lemma 8.1.1 in [ 1). For instance,
for ¢(z) = z%/ 2 and for the operator D_,, we have
1/2
2™ ull 2@y < le™ Dy ull 2@y

fort>0andu € € (RM). Then, for the operator Dgl , we have

2
tlle™ull 2wy < lle™ Dz, ull 2@y,
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fort>0andu € CKC‘X’(RN ). We then have the case of an operator of order m = 1 or 2 in R" such
that an estimate with a loss a full derivative holds and yet d¢ may vanish.

Remark A.2. The reader should observe that the statement of Proposition 1.4 assumes that the
symbol g(z, ¢ + itde(z)) vanishes at second order at a complex root, that is, for 7 > 0. Flatness at a
real root may not yield 6 = 0. In fact, in RV, N > 2, consider the operator Q = (D,, + D,,)" with
m > 2 and ¢(z) = z1. Then g({ + itdy) = ({1 + {» + iT)™ which vanishes (at order m) for T = 0 and
{1 + & = 0. Yet, we have the following estimate

(A.5) lle™ullp2@wyy < lle™ Pull 2@y,

for v € €°(R?). This means 6§ = 1 here.
The proof of (A.5) is as follows. We write e"*(D;, + D, )u = (D, + it + D_,)v with v = e™%u.
We then have

(D2, + Dullyany = D2y + Doyl agy + 1TV 2y = 207 Re [ WDy, + Doy)v dz
= 1Dz + DeyVIiany + 1TVl 2g, = 7 [0y + 02z

=0 as supp(v) compact

2
L2RN)

2

2
=T ||eﬂpu||L2(RN)'

> ||
Multiple applications of this estimate yield (A.5).

Note however that we do not claim to have ||e™Vul| 2wy < €™ (D, + Dyy)ull 2y, as Dy, + Dy,
is not elliptic.

A.2. Proofs associated with the semi-classical calculus.

A.2.1. Proof of Proposition 4.2. The dual quadratic form of g on ‘W is given by
dg? |l
(I+ye? 2

g7 = Aldz* +
We then have, for X = (zx,{x),asy > 1,

(he)™'(0) = inf (g5(T)/gx(T))~ = min (™. (1 +78) "))

> (2y) ' (X)) = Te(zx)/2 = 1,

as T > 7, > 2. The uncertainty principle is thus fulfilled.

For X = (zx,{x) € W, we write zx = (Z}, (zx)n), with z}, € RN-1. Similarly, we also write
Ix = G (G0N, with £ e RN

We now prove the slow variations of g and ¢, 1z, namely, there exist K > 0, r > 0, such that
gr(T) < Kgx(T),

-1 o ¢zx) -1 o &X)
K < o) <K, K < 2:(7) <K,
where X = (zx,{x) and Y = (zy, {y). We thus assume that gx(¥ — X) < r?, with0 < r < 1 to be
chosen below. This gives
(A.6) (1 +y8)(i2y — 25D + Y@x)w = @rInl + =X) 7 (¢x - &yl) < Cr

We observe that we have

VX, Y, TeW, gx(¥Y-X)<r* = {

o(zx) = V0 = go(zy)ey(%(”)‘%(”)),
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where ¥.(zx) = ¥(ezy, (zx)n). Note that

We(zx) — Yelzy)l < (elzy — 2] + 1@x)n = @r)nDIY [z
With (A.6), we thus obtain

(A7) ¢(zx) < e(an)e I < p(zy).
Similarly, we have
(A.8) @(zy) < ¢(zx).
We also have
(A.9) ISyl < 10y — {xl + 1¢x] < Craz(X) + [{x] < 2z(X).

Next, we write
x| < Iy = &xl + 1yl < Crax(X) + I¢y] < Cr(typ(zx) + 1x) + Igyl.
Hence, for r sufficiently small, with (A.7), we have
(A.10) x| < Tye(zx) + 15yl < A=(Y).
With (A.7) and (A.10), resp. (A.8) and (A.9), we find
(X)) < (YY), resp. Ax(Y) < Ax(X).
Then, if T = (z7, {r) € ‘W we find

72 - I<is < I<is
(Y2 T X2 T AT
and this gives gy(T) < gx(T') < gy(T), concluding the proof of the slow variations of A; and g.

We now prove the temperance of g, ¢ and Az, namely, there exist K > 0, N > 0, such that

2x(T) o N
VX YT eW, Fos<Cl+gfx-m)Y,

(zx) - A:(X) .
vx,yew, ¥ Z) <c(l+g5x -1, T, < GO+ 0= ),

where X = (zx,{x) and Y = (zy, {y). We have

! |2 _ 2
§3X — ¥) = (X lx — oy + % — &yl L G = Ernl

(1 +vye)? y?
‘We note that
(A.11) x| < &yl + 18x — &yl < |yl + € ; éVY|‘1'7",D(ZY)
<lol+ (2 |{1X — &yl N I(x)N — (§Y)N|)T7¢(Zy)
+ye Y

< (1+ 85X = N2 ax(Y).
First, if (1 + y)|zy — 23| + YI(zx)v — (zy)n| < 1, then, arguing as in (A.7), we find
w(zx) < ¢(zy), Typ(zx) S Ax(Y).

Second, if (1 + &y)|zy — 23| + Yl(zx)n — (zy)n| = 1, we then have 2|zx — zy| > 1/y. We write, as
T>T. 21,

_ Tzx) _ A(X)
Y

S lex — vl (X) < (1 + 85X = N2 < (1 + g%(X = ) 20(zy),
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using that ¢ > 1. We also write
4(Y)

y9(zx) < 4(X) < x(X) S lzx = 2vlz(X)(Y) < (1 + g5(X = )H)ax().

In any case, we have

@(zx) < (1 + 85X = V' )p(zy) < (1 + 85X = V))e(zy),

that is, the temperance of ¢ and we have Typ(zx) < (1 + gxX -Y )/ 2)/1;(Y), which, along with
(A.11), yields the temperance of Az:

2:X) < (145X = 1)) :(Y) 5 (1 + gG(X = V) A(Y).
For the temperance of g we need to prove

““WW”WQW+£%SU+§@—quﬂmmHﬂmmuﬁ%ﬂ

for T = (z7,{r) € W. To conclude it suffices to prove

A:(Y) 5 (1 + 85X = V)V 2:(0.

‘We have
(A.12) IXyl < 10x| + 1&x — &yl < |dx| + € ; {YlTWP(ZX)
<1+ (2|§1X+_f;/| N I(x)n ; (§Y)N|)TV‘P(ZX)

< (1+ %X - D2):(X).
It thus remains to prove
(A.13) Typ(zy) < (1 + 85X = V)V :(X).

First, if (1 + y&)lzy — 23| + ¥l(zx)n — (zy)nl < 1, then ¢(zy) < ¢(zx), arguing as in (A.8). Es-
timate (A.13) is then clear. Second, if (1 + y&)|zy — Z}| + ¥I(zx)y — (zy)nl = 1, which implies
2|zx — zyl = 1/7y, with (4.3) we write
M@TS(MDY
(Ty) Ty
< (1+ 89X - 1)) 2:(%),

Ax(X)

k+1 k
Tye(zy) < Typ(zx) " S X)) < (|ZX -z ) :(X)

since T > 7, > 1. In any case, we thus have
Tye(zr) < (1+ 85X = A (X0,

which concludes the proof. [ |

A.2.2. Proof of Lemma 4.4. We have T < Az (resp. T < Arz) and d,7 = 0. Only differentiations
of 7 with respect to z thus need to be considered. Recalling that 7 = 7y¢p, . we find that, for
@ = (o, ay) € NV, we can write 077(0’) as a linear combination of terms of the form

1+k kot 1+k Ja’| kol ’
Y " py.e(2) l_[1 97 Ye(2) =7y 7€ 9y (2) Hl@Z (e, zn),
J= J=

with ! + -+ a® = o, 1@V > 1, j = 1,...,k and k < |al, implying, as y > 1, |097(0")] <
0 )Y < 70" )y™ ()], as |40 < C for any £ € N, which yields the results. [ |
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A.2.3. Proof of Lemma 4.8. For a = (o, ay) € N¥ and 8/ € NV, we may write 07 (??,a(g’) asa
linear combination of terms of the form,

k . o A ,
b = (11027 ,0) 3 9,00 a(k(@),
L :

for some o® € NV, with k = |o®)], with @ = @@ + a® + - + a®, [0 > 1, and where
pj€fl,...,N}, j=1,...,k Using Lemma 4.5 and Definition 4.1, and we obtain

k W ,
b@)l s T (A1 + ey)"lyeN) (e + 1y e
J:
(D7 | K7 (O (5] o, , o
< (1 + 8'y)|(Y |4+ |,y(1N ety /ﬁ{r’;(lT(Q )| + |{ |)m 18-
< (U +en)ly™ 4k (3 + )P

2®)]

asy > 1. If & is polynomial then the term b(o’) vanishes if m — |8'| — [«®’| < 0. Thus if m — |8’| -
la®| > 0 and, as |#| < 7 in %, we obtain

Ib@)] < (1 + &)@y 2n P,
which yields the result. If @ is not polynomial and if we have T < |7|, we obtain the same estimation,
even if m — |8'] — [a®| < 0. [
A.2.4. Proof of Lemma 4.11. By applying (4.14), we have

IAT 7 ull+ < 110pT(F A7 Pull.
Next, we write OpT(T’/l’" ) = Op(/l’” )@ + yR, with R € ‘I’(”/l”kl, g7) by the tangential calculus
we have introduced. This yields, as 7" € § (/lT 2 8T);

1 Opr (& A2 Julls < 1| Op(X2 ¥ ulls + Il Opr(F 227 ulls,

which yields (4.15) by choosing 7 sufficiently large. Estimation (4.16) follows the same. [ ]

A.2.5. Proof of Lemma 4.14. By definition of the Sobolev norms introduced in Section 4.1.6 we
have

~ m m m+m
1E Wl 7 < ZOIID EWllomem -z Z D, E W
J: :

Let m;.’ € R. We have [A?’%, D] € Z’ Y ‘I’(/l ,gT)D)C , » from the tangential calculus we have
-1
introduced. With Lemma 4.4 we have [7" ,AT %] e(l+ 8'y)‘I’(7”"AT’% , 7). With the same lemma,

III

for r; € R we also have [#7, D) e Zj_l VP, gT)Dj_i Forr = ri+r7, and m+m'~j = m’/ +m
with r r € R and m m”’ € R, we thus obtain, by Proposition 4. 13

o m’ m . L
17 Wl 7 = Z ||TrfA ) D] LETALL WL = C 21 Z YIE DY Wllomsm - jz
: j=li=1
-c” 'Zo E DY Wlomsm—j-1.7
J:

m ; m” m'"
> 3, [F9AT DY, @ AWl - € z z YIF D Wllo iz
J= Jj=0i=1

m .
-C” 'Zo YIF" DL Wl msm— j—1.7-
J:



A SPECTRAL INEQUALITY FOR THE BI-LAPLACE OPERATOR 53

With the argument given in (4.17), we have

m—1 m . m .
Z ’yl”%rDichHO,mem'fjfi,‘? + Z 'YH%erch“O,mem’fjfl,‘? < “%rwllm,m',‘?v
1 5 —

j=0 i= Jj=0

for T chosen sufficiently large, and we thus find

17 Wl 2 2 1A ;D 7 A Wl
]:
for T chosen sufficiently large. Similarly, we find that
~F m 7 m;.’ ] "’ m}”
17 Wl < 2, 1A, D 37 A Wl
j:

for T chosen sufficiently large. The result for the trace norms is obtained arguing the same. [ |

B. ELLIPTIC AND SUB-ELLIPTIC ESTIMATES AT THE BOUNDARY (0, S ¢) X 0Q

B.1. Roots with negative imaginary part: a perfect elliptic estimate. For zo € 0Z, V denotes
the neighborhood introduced in Section 4.2. We recall that Mty = VxRN x[1,, +00)X[1, +00) X
[0, 1].

Let {(o) € S '%"’0, with o = (2,{,7,7,€) and m > 1, be polynomial in {y with homogeneous
coefficients in (', 7) and L = {(z, D,, 7,7, &).

Lemma B.1. Let % be a conic open subset of Mt y. We assume that, for £(0’, {n) viewed as a
polynomial in {y, for o' € %,

o the leading coefficient is 1;
e all roots of €(0’, ) = 0 have negative imaginary part.

Let x(0') € S(1, g1), be homogeneous of degree zero and such that supp(y) C % . Then, for any
M €N, there exist C > 0, 19 > 7., Yo = 1 such that

10DTOWllno7 + 1HOPTOW_1 1727 < C(ILOPTOOWI + Wlln-pa7).

forw e Y(@) and Tt > 10,y 2 v0, € €[0,1].

This lemma can be proven by adapting the proof of [ , Lemma 6.5] to the semi-classical
calculus we use here. For the notion of homogeneity for symbols and conic sets in the present
calculus, we refer to Section 4.1.5.

B.2. Sub-ellipticity quantification. For zyp € 0Z, V denotes the neighborhood introduced in Sec-
tion 4.2. We let the function i be as introduced in Section 4, satisfying (4.2) and (4.20), and we
recall that ¥.(z) = ¥(eZ,zn) and ¢(z) = exp(y¥.(z)). We also recall that /l% =72 4 | > with
7(0') = Typ(2).

Proposition B.2. Let {(z,{) be polynomial of degree m in {, with smooth coefficient in z. We
assume that for any M € RN \ {0}, the symbol € satisfies the simple-characteristic property in
direction M in a neighborhood of V (see Definition 2.1). There exist C > 0 and yg > 1 such that,

0(z, £ + 7@ + Te@W LI Re (z, { +it(0")), Im £(z,  + it(0'))} = CAZ",

forzeV,leRN, 1>1,y>yyande€[0,1].
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Proof. We have 0 < Cy < [y.(z)| < C; forz e Vandweset K = {M eRN;Cy < |M| < Cy}. AsV
is assumed bounded (see section 4.2), we consider the compact set
€ ={z00.M); #+|P=1, zeV,,eR", 0ecR,, M cK).
We define
(B.1) [0, M) = 16z, £ + i0M)F + [0MPP[(L)(z, £ + iOM), M>|2.
As the simple-characteristic property holds in direction M for all M € K and z € V, we have
f(z,(,6,M) > C >0, (z,4,0,M) e %.
By homogeneity, we obtain
(B.2) f@ 60, M)>CE +1P)", zeV,.eRN 9eR,, MeK.
We compute the following Poisson bracket, with 7(0") = tdy(z),

|
{Re l(z,{ + it(0"), Im £(z, { + it(0"))} = Z{f(z,é“ +i1(0)), Uz, £ + iT(0")} = Or (2,4, 7),
with
Orp(z,4,1) =1t Zaszk¢(1) 070z, § +itd(2)) 0y L(z, { + itdg(2))
ik

+1Im 0,,0(z,{ + itd$(2)) O, L(z,  + itdp(2)).
J

Note that O 4(z, £, 1) is homogeneous of degree 2m—1 in (£, ). With ¢(z) = exp(yy<(z)) we obtain

Ory(z,4,7) = Ory, (2, £, F(0") + YT WUz, { + i#(0)), o).
We thus find, with f defined in (B.1),
(B.3)
|6z, £ + 2@ + @@ Re £z, £ + it(0"), Im €(z, £ + it(0))}
= 16 ¢ + it + e @W L) Or (2. £, 7)
= 16 ¢ + it NP + [F WKz & + i), @) + 1e@W (2 Oy, (2.4, 7))
= f(2.4. 70 We(2) + Te@W LR Oy, (2. £, 7).
Now, as ¥,(z) remains in the compact set K, we find, by (B.2),
(B4) f@ G W) 2 (G +1EP)" 2 43",
since [T(0")| = W, |T(0") = CoT(0"). The homogeneity of @y, (z,{, T(0")) gives
T @Oy, (. &, H @D S ¥ 7" <y 43"
With (B.3) and (B.4), we obtain the result for y chosen sufficiently large. [ ]

We recall the definition of g (o) given in (4.24), we have qi(y) = pr(z, { +iT(0")) with pr(z,{) =
(=Dtio? + & + r(x,&). From Proposition 2.3 and Proposition B.2, we have the following result,
in any dimension N > 2, thatis, d > 1.

Corollary B.3. Let k = 1 or 2. There exist C > 0 and yy > 1 such that
k@) + eI (Req@), Imqu(@)} = CAZ. 0= (24,77, 8),
forzeV, . eRN, > 1,y >y, and € € [0, 1], and where t(0) = Typ(2)dw+(2).
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B.3. Estimates for first-order factors. In this section, we shall assume that % C Mt is a conic
open set where the symbol g;(0) = pi(z, ¢ + iT(0”)) can be factorized into two smooth first-order
terms,

4k(0) = qk,~(0)qk+(0),  qi,+(0) = £a — pr(0)).
By Lemma 4.18 we see that g _ is elliptic, and g+ may vanish.
B.3.1. A root with a positive imaginary part: an elliptic estimate with a trace term. Here, we

further assume that there exists a second conic open set % C % such that Im py +(0") = A1z, for
o' € 2. Welet y,x € S(1, g1) be homogeneous of degree zero and such that

X = 1 on a conic neighborhood of supp(y), supp(x) C L.

With Qi 4 = D, — Opt"'(x*px.+) we have the following estimation.

Lemma B.4. Let { € R and M € N. There exist Ty > T, y1 = 1, and C > 0, such that
(B.5) 10pTOOWl ez < C(IQk+ OpT(IWlocz + 1 tHOPTOOWg £41/,7 + Wl -a1.2),

fort =71,y =y, €€l0,1], and forw € Y(@).
Proof. We write Q = A — iB with
A =D, -Opr"(y’Reprs), B=O0pr"(x*Impy ),

both formally selfadjoint.
We use a pseudo-differential multiplier technique, following for instance [ ] and compute,
with s =20+ 1,

2Re(Q Opr(x)w, —iAT ; OpPT(X)W)+
= —2Re(A Opt(x)w, iA7 ; OpT(x)w)+ + 2 Re(B Opt(x)W, ATz OPT(Y)W)+
= —(i[A, A7 ;1 Op1(x)w, OpT(x)W)+ + 2 Re(B Opt(x)w, AT ; OpT(X)W)+
- (A;S‘rj'- OPT(X)Wlxd:O+’ OPT(X)Wpc,;:O+ )L2(RN—1)
> 2Re(BOpr(x)w, A} Opt(x)w)s — C¥l OprCIwllg 4.y 12

— 10PTOO W=+ 15,041 2.5+
which by the (microlocal) Garding inequality of Proposition 4.16 yields, for any M € N,
Re(A% 0 Opr(x)w, —iAT Opr()w)s + [OPTOOWI=0+ 1§ 11 /2.5 + WG _prz 2 1 OPTOOWIG 141 5+
for 7 and y chosen sufficiently large. Then, with the Young inequality, we obtain
1Q OpTOIWllo.c.x + 1OPTOIW =0+l £41 /2.7 + IWllo,~azz 2 1 OPTOOWIl0,6+1.2-
Finally, observing that we have
IDx, OptrOIwllo.c.z < 11Q OprOrwllo.ez + Il OprOxIwllo,e+1,2

allows one to conclude the proof. [ |
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B.3.2. Transmitted sub-ellipticity. In % where gi(o) is smoothly factorized, gk(0) = gk.—(0)qk +(0),
we now describe how the sub-ellipticity property of Corollary B.3 is “transmitted” to the nonel-
liptic factor gy +.

Proposition B.5. Let k = 1 or 2. There exist yo > 1, ag > 0, and C > 0 such that
(B.6) ayt | Impy  [* + {4y —Reprs—Impy i} 2 CyF 147 o € %,
fory = vyoand a > ay.
Proof. We write

2i{Re g, Im qi} = {Gr, qi) = lgr-P(@ers g + e P, qe-) + 20 Im (G2, g e dn-)s
yielding

{Re qi, Im qi} = Iqi - (Re g+, Tm g+ } + i+ {Re qr—, Im gi -} + Im ({Gk =, G+ }Ter Gk )-
We write, for M > 0,

gk |(Re gi—. Im g )| + | Im (@i~ e s e )| < C(vAslqe s + v ARl ge.1)
< C'(1+ Myydslge > + C' M~y 3.
For M > 0 and yp > 1 chosen sufficiently large we obtain, with Corollary B.3,
- ©@P(1g6+ @) + 7@ ()P Re gt . Im gr 1 J0)) = CAE = C'(1 + M)FAzlgi s,
In %4 we have |gx—(0)| < Az, as gi is elliptic which gives
g+ @ + Te@W LD Re gv, Imge}©) = CAF, o € U éa€R,

for @ > 0 chosen sufficiently large. If we now choose &; = Re py +(0”) we then obtain the result.
]

B.3.3. A root with a vanishing imaginary part: a sub-elliptic estimate with a trace term. Here,
we consider as above a conic open set % C M, such that the symbol gi(0) = pr(z, ¢ + it(0"))
can be factorized into two smooth first-order terms, gi(0) = gi.-(0)qr.+(0). We let x, x € S(1, gT1)

be as above and we recall that Oy 1 := Dy, — Opt"'(x*px.+). We have the following lemma.

Lemma B.6. Let £,m € R and M € N. There exist 11 > T, v1 =2 1, and C > 0, such that
(B.7)

Y212 Opraowlli.ee < C(IF" Qrs OprOWlo.cx + 1 te(E" OpTOOWlg pa1/0.7 + IWllo-32)-
fort =1,y =7y, €€[0,1], and forw € y(@).

Proof. For concision, we write Q in place of Ok . We decompose Q according to Q = A + iB
with

(B.8) A=D,, —Opr"(Repr) eV, B=-0pr(PImpyy) € V' = W(drz gn).

Observe that both A and B are formally selfadjoint.
We set we,, = %’"A? : Opt(x)w and compute

B.9)  11Qwemll: = (A + iBywenlls = Awemll> + [1Bwemll: + 2 Re(Awg m, iBwem)+
From the form of A and B given in (B.8) we find

2 Re(AW[,m’ iBwem)y = i([A, B]Wl’,ma Wt’,m)+ - (OPTW(/KZ Impk,+)W[,m|xd:0+ s Wem|x, =0+ )LZ(RN*I)-



A SPECTRAL INEQUALITY FOR THE BI-LAPLACE OPERATOR 57
yielding, with (B.9),
IOWemll: + 1™ OpTOOW)G 4127
2 lAWwemll: + 1Bwemls + i([A, BIWem, Wemn)+
2 lAwemlls + @y B* + ilA, B)Wem, wem)+
2 Awemlly + (AL 7" (ay?™ B> + i[A, B)¥"A% . Opr(x)w, Opr(r)w),.,

symbol of AL #"(ay?™' B> + i[A, B))¥"A{ . is given, in a conic neighborhood of supp(y), where
x=1by

for @ = @ with @ given by Proposition B.5, and for 7 such that @y7~! < 1. As the principal

2m—1 32+2¢
/lT F 0 gT)’

then Proposition B.5 and the (microlocal) Garding inequality of Proposition 4.16 yield, for any
M € N, by choosing 7 and vy sufficiently large,

AT (ayt (Impry)? + {€g — Reprs, — Impp}) € S (7

1OWemlls + 1@ OpTOOWlg 14125 + IWllo—ar 2 AW emlls + ¥ 21E™ 2 OprOWllo, i 4¢-
From the form of A in (B.8) we have
Y2EED o wemlle < 1AWl + ¥ 21E P wemllo 2
< NAwells + ¥ 2112 OprOowlio, vz
We thus obtain
NOWemlls + 1t OpTOOIW)lg 41 /2.2 + [Wllo,-m
> ¥ 2 2 Opr(owlloiees + 1IF7 2Dy wemlls)
2 ¥ 2#" 2 Opr(owlines,

by choosing 7 sufficiently large and using Lemma 4.14. This concludes the proof. |

B.4. Estimate concatenations. Let %4 be on conic open set of Mr. Let )ﬁ(g’) e S(1,g7) be
homogeneous of degree zero such that supp(y) C %. Let p(k)(g’) € SArz.87), k = 1,2, be

homogeneous of degree one in %4 and define 0w = D, .t OpTW(/\(Zp(")). The operators Oy .+,
k = 1,2, defined in what precedes and in Section 4 are of this form. Above, for such operators, we
proved some microlocal estimates of the form

(B.10) ™2z =12 Opr(y)wlly 7 + 0kl @™ OprOOWlo £41/2.2
< (Il Q™ Opr(wllo.ce + (1 = SN OprOOWlg 41 /2.7 + IWlo-ar2).

with 0 = (1 — ax)(1 — Bx) and ag, Br € {0, 1}, £,m € R, and where y € S(1, gT), homogeneous of
degree zero and such that y = 1 on a conic neighborhood of supp(y).
If @ = 0 and B; = O the estimate reads

10pTOOWII1 ez + [ HOPTOOWlg 41727 < C(IQ® OpTOWll0.2z + [IWllo.-a1.)-

This is a perfect elliptic estimate that holds if o is in the lower half complex plane —see Lemma B.1.
If @ = 0 and B = 1 the estimate reads

10pTOWll ez < C(IQY Opr(IWlo.cz + [t (OPTOOWg 4127 + IWllo-ar).

This is an elliptic estimate, yet with a trace observation term in the r.h.s., that holds if p® is in the
upper half complex plane —see Lemma B.4.
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Finally, if @ = 1, independently of the value of 5, we have

Y212 Opraowlli.es < C(IF" Q% OprOywllocs + 1t OprOOWlo e /2.2 + IWllo,-r7)-
This estimate is characterized by the loss of a half derivative and a boundary observation term in
the r.h.s.; such an estimate is proven in Lemma B.6 when the root p® may cross the real axis.

We shall now describe how such estimates can be concatenated, as this is often done in the
course of the proof of Theorem 4.17.

Proposition B.7. Let £ € R and M € N. Let Q" be defined as above, for k = 1,2. Let g > T,,
vo = 1 and C > 0 such that estimate (B.10) holds, with ¢, miR, with ay, B € {0, 1}, for both

k=1and?2, fort > 71y, v =7y €€ [0,1)], and for w € V(Rﬂ:’). We assume that a; < ap and
1-01 <1-06s.

Let y € S(1,81), be homogeneous of degree zero and such that y = 1 on supp(x). There exist

71 > 7y, v1 = 1 and C > 0 such that the following estimates for the second-order operator Q'V' Q®
holds,

YO @ Opr(wlla. ez + 1 OPTOOW 11127
< (10" @ Opr(x)wlo.cz + (1 = 6 (OPTCOW f11/2.2
+ (1= 62)y" 2 tr(F 2 OprOOWlo 4322 + Wl na.7):
fort =1,y >y, e€[0,1], and forw € y(@).

Note that the assumptions made on ay and 1 — &y, k = 1,2, imply that Q) yields an estimate of
better quality than that associated with Q®.

Proof. We introduce y| € S(1, g7) that is such that y; = 1 on supp(y) and X = 1 on supp(x1). For

concision, we write E = Op1(y) and E; = Opt(y1). Here, M will denote an arbitrary large integer
whose value may change from one line to the other.

Using Q®Zw as the unknown function in the estimate (B.10) for QV, with m = 0 gives,
B.11) Y22 QPEwll1 g7 + 611 tr(QPEW)g 4125
Sy PE N 2E QP EWI ez + 01 r(EIQPEWo 44122
+ Wl —pmz + e W) —pz
S IIOVEIQPEWllo ez + (1 = SDIwEIQPEWNo 41727 + Wil -paz + W1 1z
S0P QPEwlo rz + (1 = SOICEWy o127 + W2 w7
Observe now that we can write, using that D, — Q(z) € Y111, 87),
(1= 62)y" Pl u G PEW)]) g1 /2.0
< Sy PLaE 2 QPEW g i1 0z + (L= )Y G PEW 4410z
+ (1= 62)y" Pl e 2Ew)y e43/0.2
< 611 (QPEW)g f1/27 + (1 = SDITEW 1 11707 + (1 = )y LG PEW)lg 4372,
With this estimate and (B.11), we thus obtain
(B.12) ¥ (I 2 QP& gz + (1 = ) tr(F " PEW 41/27)
<10V QPEwllo. ez + (1 = SN EWy 11727 + (1 = 82y P e E 2 EW)g 4322
+ w2,z
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Up to creating error terms, we shall now modify this inequality to be able to apply the estimate
(B.10) associated with Q®. We write

~—a1/2 A2)— — == /2
72 QP E Dy, Ewllo ez + (1 — 6| tr(F 21D, EWlg 141 25
~— 2 A2 — ~—a1/2
< IF20PD, Ewllo ez + (1 = o) tr(E 2D Ewly r1 o7 + Wl -paz + [EW)]; _pgz
~—a1/2 H(2)= ~—
S IE2QPEWI ez + (1 = oI eGE A PEW 10 + Wl —aaz + [ W] _pr7

ay/2=

+yIIF N Ewll ez,

using that [Dy,, 0?] € 'L and using Lemma 4.14. Hence with (B.12) we have
(B.13) ¥ 2(IF " 2QPE Dy, Ewllo.cz + (1 = )| te(E 2 E Dy, By 4,1 102

~— 2 2) = ~— —_
+ 17 20D Ewllo g1 + (1 = Sl 2EWg 44327

<y P (IF 2 QPEwl o + (1 = 6 r(E2EW)) g0

+YIE 2Bl 0z) + Wl —pre + TEON] _pz
S0P OPEwllo ez + (1 = SDIEEW p41 /27 + (1 = )Y 21 rGE M 2EW)g £43/2.2
+ oy 2E 22y s Wil

We write, with Lemma 4.14, for 7 chosen sufficiently large,

(B.14)  |[F @28y, 2 < ||F@F2D, Bwlly o7 + 172wl g4 2

< lF @25, D, Bwll ez + IF O OPEW g + IWl—mzs
and
(B.15)

~— ~—ay /2 ~—
|G PEW 107 = TEGE 2D EWNg 4y 0z + 1 0EPEW)g 043702

~—a1 /20 _—
S @ MPEID G EW 410z + TE T PEW 4307 + [T _prz-

Applying now estimate (B.10) associated with Q® to D,,Ew and w, with m = —a /2, using that
a1 = a1z, we obtain

(B.16)
7(01+a2)/2”~_(a1+a2)/2H1Dxd~—'W”1 7+ (52,)/@1/2' tr(~_al/2’—11))@1'—""’)'0 A+1)2.%

<y (IlF " 2QPE Dy, Ewllo.cz + (1 = )| te(E 2 E D, EWly 4y p.2) + Il -are
and
(B.17) y@re 2@ Rg i, 2+ 6y e PEWg 30
<y P (IE 2 QPEwlloperz + (1= )| E " 2EW)g p430.7) + IWllo, 7.
With (B.14)—(B.17), we achieve
ylarred 2z @r a2z, o 4 Sy 2 r(F N PEW ) 10z
<y 2(IF 2 QPR Dy, Ewllo s + (1= 6 tr(F 2B Dy BW)lg 11 0.0

~—a1/2 A2)— ~— —_
+1F 2 QP Ewllg pe1z + (1 = 6N tr(E2EW) 143/0.7) + IWllo-arz-
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Combining this latter estimate with (B.13) we obtain

(a1 +112)/2||~—((ll +@2)/2

Y Ewllez + 62y 2 tr(F 2 Ew)) L4127

S IOV OPEWllo ez + (1 = SOIEEW1 £41/07 + (1 = 82y 2 rG 2 EWlg 43/2.5
+ ,yl+a|/2”;1~_ a1/2—

which, with the usual semi-classical inequality (4.17)

Ewlliez + w2, -pmz,

,y(aq+(1'2)/2||~—(a/1+(12)/2'—~w”2gT+62,ya/1/2|tr(~ a1 /2 "‘W)|1[+1/2.T.

1 2)—= 2 ——
s 10V 0P Ewllocz + (1 = SDITEW 41707 + (1 = 62y Pl e E " 2EW)lg 43727
+ wll2,-m7-
Let us now consider two cases:

Case a1 = 1: Then 6; = 0 and a; = 1. We thus have the term | tr(Ew)|, ¢,/ 7 in the r.h.s.
of the estimation and the sought result then holds.
Case @1 = 0: Then we write

— 2)— _
L EW 1 er1/22 S TEQPEW g p41/27 + [TEWor43/27

<1 (QPEW)g p11/2.5 + 02l TEWy p41/27 + (1 = S EWg 44372
which leads to
SITEW rr1/22 S SIHTQPEWo 41727 + 2N TEWy 11727 + (1 = DI TEWlo 13727
Recalling that the term 6| tr(Q(Z)Ew)IO,,;+ 1/2.z ¢an be found in the Lh.s. of (B.11), We thus

obtain

az/2 @ [2m

1T Ewl,ez + (01 + 0 tr(EW)|y p41/2.7

S 10V 0PEWlo.cz + (1 = SDIEEW) 11727 + (1 = DI TEWlg 123127
+ Wl - a1,
If 6; + 62 > 0 we then have the sought estimate in the case @; = 0. If 6; + 6, = 0

then the term | tr(Ew)|; 4127 can be found in the r.h.s. of the estimation and can thus be
“artificially” added in the Lh.s..

This concludes the proof of Proposition B.7. [ ]

We now show how to obtain microlocal estimates for some products of two factors of order
two.

Proposition B.8. Ler assume that Q= (z,D,, 7,7, €) € ‘I’g’o fulfils the requirement of Lemma B.1 in

some conic open subset % . Let Q*(z, D,,1,y,¢€) € ‘I‘%O be such that, there exist Ty > T., Yo = 1
and C > 0 such that, for € € {0,1,2} and all y € S(1, gT), homogeneous of degree zero, with

supp(x) C %, for E = Opt(y),
(B.18) y(“l+02)/2||~—((11+az)/2

Ewllaez + [ t(EW)) r11/27
< C(||Q+EW||0,5,% + (1 = 6DItEW 1122
+ (1= 62y Ple@E " PEWlg ea3nz + IWlh.-are),
fort =z 19, v = vo, € € [0,1], and for w € Y(@), where ay,ay € {0,1} and 61,6, € {0, 1}

With a) £ ap, 1 =061 £ 1 -0, and moreover 6, = 0ifay = 1, k = 1,2. We also assume that
=D2E+ T Ewith Ty € Pl
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Let M € N and let y € S(1, g7) be as above. In the case a) + ay = 2, we furthermore assume
that, for any M € N, [Dy, + it¢,, 0*10pt(x1) = (1 + £¥)Ro0 Op1(x1) + Ro_ps, with Ro € P2

and Ry _y € ‘Pg’_M, if x1 € S(1, g7) is homogeneous of degree 0 and such that 1 = 1 in a conic
neighborhood of supp(x) and supp(y1) C % .
There exist Ty > T+, y1 = 1, &1 € (0, 1], and C > 0 such that

(B.19) Yt 2|z @ REy N, 2+ [ (EW 0

< C(IQ"Q*Ewlls + (1 = )| trEw)ly 52,2

+ (1= 62)y" P tr(E 2 Ew)g 70,7 + [Wlla.—na),

fort>11, Yy >7v1, €€[0,¢e1], and forw e Y(@). In the case a1 + ap < 1, we can take €1 = 1.

In Section 4, for example, this proposition will be applied to Q" = Q; Q> for which an
estimation of the form of (B.18) will hold by Proposition B.7. Note that this proposition, in the
case @y + ap = 2, is one instance where it is important to take £ > 0 sufficiently small.

Proof. We introduce x| € S(1, g7) that is such that y; = 1 on supp(y) and supp(y;) € % . For
concision, we write E = Opt(y) and E; = Opt(y1). Here, M will denote an arbitrary large integer
whose value may change from one line to the other.

Using Q*Ew as the unknown function in the estimate of Lemma B.1 for the operator Q~:

(B.20) 10" EWlla0z + [tr(Q EW)|1 1/22
S IE1Q EWlhoz + [tr(E1QTEWy 107 + IWlla—m7
SO E1QTEWIly + [IWlla-m7

S 10" Q Ewlls + lIwlla -z

Combining (B.18), for £ = 2, with (B.20) we find

(B.21) 10" Ewlh0z + [tr(Q EWy 127 + |t EW)]; 5/2.2
<1107 QY Ewlly + (1 = SDIE@EW)ly 505 + (1 = Sy Pl e(E " PEW) 72,5
+ Wila—prz-

We now make the following claim whose proof is given below.

Lemma B.9. There exists C > 0 such that
[tr(EV)l3.1/2.2 < C(tr(QTEW)y 107 + | 1EV]1 5/2.7)-

This gives

(B.22) [IQ"Ewlboz + tr(EV)31/27 S 107 Q" EWlls + (1 = SDIrEWl 5727

2 ~— 2=
+ (1 = &)y P laeGE " 2Ew) 725 + IWlla—prz-
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First, we treat the case @] + @ < 1. As a1 < @ then a; = 0. We write

™M

(1072105 Ewllo-jz + 1 E1DLE, 51 0)

J

Jz (10" DY, Ewlloa-jz + 1 te(DLEV, 55 2) + IWllaarz

< Zo (lIDidQJwaIIo,z—j,f + (D EN s/ ]T) + YIEWIs0 + Wl —prr
J:

<IIQTE

07 HIEV)31/2z

With (B.22) we then find

™Mo

0(||Q 21Dy, Ewlloa-jz + [ r(E1DLE 5 )

J
S1Q™ Q0 Ewlls + (1 = St (EWl 507 + (1 =

Now, applying (B.18) with £ = 2 — j, we obtain

2 . ,

2m—2 /2= —_ —_ —_

(B.23) ) (vl 2 D] Ewlh o jz + | (21 DL EW] 5, 7)
J:

SQ™ Q0 Ewlls + (1 = St (EWl 527 + (1 =

With Lemma 4.14, we write, for T chosen sufficiently large,

2)3-2/2g _
Y| ¢+ | TEW)1 2.7
2 ,
2 12—a2/2 1y = =
=3 (7“2/ F722 D] Ewlao-jiz + (DL EW), 55 s7)

J

<

Mo

2z—a2/2= =
(y= 2122 D], Bl ajz + | (E DLEW, 5 2

4-M7-
0

j

Finally, using (B.23) we obtain
YRR PEwlla oz + [rEW)l3 107

SO~ 0 Ewlly + (1 = SDIrEWly 5707 + (1 = 6t (EW)lg7/2.2

and taking 7 sufficiently large, as 0 < @, < 1, we achieve the sought estimate.

Second, we treat the case a; + ap = 2, thatis, a; = ap = 1. We set ﬁxd =D,, +iT¢ € ‘I’;’O.
We use the further assumption made in this case, namely, for any M € N, [D, L0 18 =1+
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S’y)Rz’()El +Ry_m with Royp € ‘Pg’o and Ry_m € Tg’_M. ‘We write

5 (021D,

- R o=
2 e+ 1T EIDLE] 50 )

5 (107 DY, Z1Ewloa-j +16DLEN, 55 7)
P

-M7

[39)

< 2 (1D, 0 E1Emloa-jz + 1 0DEN 55 jz) + (1 + ENIEWIa0 + Wl -z
]:

<0 Ew
With (B.22) we then find

7+ t(EV)s 0z

2 . o
z (lQ* 21D, Ewlloa-jz + |01 DLEV 55 2)

<o ot w||++(1—61)|tr<~w>|15m+<1—62>y”2|%‘”2tr< Wlo.7/2.2

Now, applying (B.18) with £ = 2 — j, we obtain

2 .
B24) 3 (2D Ew ke + WEDLE, )

S 100 Ewlls + (1 = SDIEW)l; 507 + (1 = &)y 2 1F 2 tr(Ew)lg.7/0

Now, as [Dxd, 7 1le y‘Pg’_l, we have

2
> (VllDfQ,”lqulzz e+ 10 DLEW 5 s2)
2

[\

<3 (viF'DLE

Aj = 21a—1=
e+ 1EDLEW 5 2) + VIE Ewlls

~
NS
o

] _ R o=
5 Zo (VIF B4 DY, Ewllao-j + |tf(dlchd:W)|1,5/2_ﬁ)
J_

21—l
+yIF Ewllzo + Iwlls,—az,

yielding with (B.24), as y*#~! < 1,

2 .
B25) 3 (IDLT Ewlbany+ |tr<D!Q,Ew>|L5 i)

<llo 0" WII+ +(1- + (1= &)y 212

4,-M7F-
AsD,,-D,, =T ¢ ‘I’g’l, observe that we have

1D+, 7 Bl < 1D, 7 Ewllz + 1T Ewlho2z,
meaning that we have

el Xl -
1T Ewllz,17 S 1Dy, T Ewll217 + 177 Ewlla27.
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Next, we write

o, - 71z il
Dy, 7 Ewloz < 1Dy, Dy, T Ewll07 + [1Dx, TT Ewlloz
A2 ~—lo s )

S0, T Ewloz + 103 T Ewllze + 177 Ewlls 1z,
and thus

~—1 2 iy z—1

1T Ewllaoz < ZOHDxdT Ewla-jz.

]:

Similarly, we find

2 .
- o=
| tr(':'W)IS),l/Z,? < J;O | tr(Dxd':‘W)|1,5/2_j’f‘

With (B.25) we thus obtain
YIF Ewllaoz + [ tEW)31 02
SNQ™Q Bl + (1 = 6Dl EWli 5122 + (1 = 82y P2 e@E)lo 70,2
+ 1+ epliEwlizo + IWlla-pmz-
Then, taking y sufficiently large and £ > O sufficiently small we obtain the sought estimate. [ ]

Proof of Lemma B.9. Recalling that Q"= = DidE + 71,5, where Ty € ‘I’il we have

ltrEV)h 372, < |tr(D)25dEV)|0’3 iz HIE@EVN 527 = 10(Q7 = TLDEVlg 307 + [TEV1 527
< (@ EWo 30z + [rEV) 527
We then write
| EV)ls1 2.0 = [EDLEN |1 + [ HEV D325 = 11D, (QF = T DENy 107 + [ HEV) 3721
S It(Q BV 10z + [tEV)p 305
Combining the two estimates yields the result. |
B.5. An Estimate for Q;. We recall that
Ok = (Dy, + i, (@) + (= 1)i(Ds + it (0)) + r(x, Dy + it (@),
with k = 1, 2. For this operator we have the following estimation.
Proposition B.10. Let V' € V. Let £ € R. There exist 19 > 7., vo = 1 and C > 0 such that

172

1/2)12—
YPE Y 20z + 10010z < C(”QkVIIO,é’,‘? + |tf(V)|o,{f+3/2,%)’ k=12,

with w € €=(RV) and supp(w) C V'.

forT =10,y =70, € €[0,1], and forv = W|RN,

The open neighborhood V is that introduced in Section 4.2.

Proof. Let k be equal to 1 or 2. We write Q in place of Qy for concision. We also write u in place
of M-

We need to define microlocalization symbols and operators as in Section 4.4 and use some of
the symbols introduced therein. Let yy» € €~ (RY) be such that supp(yy/) € V and yy» = 1 on an
open neighborhood of V’.

For 6 € (0, 1], we set

X5-(@") = xv(2) x-(u(@)/6) € S(1,g1)  Xso(@) = xv(2) (1 = x-(u(@")/5)) € S(1,81),
for y_ defined in Section 4.4, and observe that y5_- + x50 = 1 on M. We set E5_- = Opt(xs.-)
and Es0 = Opr(¥s0)-
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In a conic neighborhood of supp(ys-) € Mty we have u < —C6. As (4.20) holds in V we have
T¢, 2 C7 and thus |T¢| < 7. Thus, by Lemma 4.18, both roots of the symbol g of the operator Q
are in the lower half complex plane. Then, with Lemma B.1 we have the following perfect elliptic
estimate, for any M > 0,

(B.26) 1B5-vIl07 + 1tr(Es -V 127 S 1QEs-Vil+ + Vll2,-m7,

forve.” (Rﬂy ), for T > 7., ¥ > 1 chosen sufficiently large, and € € [0, 1].

We now let XypXo1 € S (1, g1) supported in My y, homogeneous of degree zero, be such that
{ = —C6 on their supports and ys; = 1 in a conic neighborhood of supp(¥s0) and X, = lina
conic neighborhood of supp(ys,1).

We choose 6 > 0 sufficiently small so that the result of Lemma 4.22 applies, that is, on supp(,xé )
the roots of g are simple. We have

q(0) = 9-(0)q+(0),  q=(0) = &4 — p=(0).
We set Q. := Dy, — OpTW(XZpJ_,).

We shall denote by R, as a generic operator in ‘P;’k, Jj € N, k € R, whose expression may
change from one line to the other. We denote by M an arbitrarly large integer whose value may
change from one line to the other. We have with a proof similar to that of Lemma 4.33,

(B.27) OZs50 = Q-0Q4+Es50 + YR10Es50 + Ro -

In a conic neighborhood of supp(js0), the root of the symbol of Q_ is in the lower half complex
plane. Then, with Lemma B.1, we have the following perfect elliptic estimate, for any M > 0,

(B.28) 1Zs0vll1.07 + [tr(EsoVlg 127 S 1Q-Esovll+ + [IVII1,-m.7,

forve. (@), for T > 1., y > 1 chosen sufficiently large, and € € [0, 1].

For Q. we have the following estimate, characterized by the loss of a half derivative and a trace
observation, as given by Lemma B.6,

YR P Es vl es < 1F" Qe Bsovllocs + (" Es 0y g1 /27 + IVllo-az
forv e . (@) and £ € R, and for 7 and y chosen sufficiently large, and &€ € [0,1]. Then,
according to Proposition B.7, applied with @1 = 0, ap = 1, 6; = 1, and 6> = 0, we have the
following estimates for the operator Q_Q., for M > 0 and £ € R,
Y PIEV s 0vhoz + 1t Esov)l g jor S 10-0+Esovlle + [1Es50Wlg3 /0.7 + Ml2-p17,

forve . (@), and for 7 and y chosen sufficiently large. With (B.27) we thus obtain

1/2)15-1/2= _ _ _
(B.29) Yy P2IE 2B vl 0z + [tr(Es0v)ly 1 /27 S NIQEsoVIl+ + [t(Es0V)lg 327 + IVIl2,-m.7,

for T chosen sufficiently large with the usual semi-classical inequality (4.17).
Using that y5- + ys0 = 1 on Mty we obtain, with (B.26) and (B.29)

1/21~—1/2
Y2E Y 20 + 100110z

<YVPIETVPEs vibos + ¥ PIET P EsoVlnos + 10 Es Wy s + [ Es0W 0z

S 1Q5s-Vll+ + 110550Vl + [tr(Es0V) 3707 + [VIl2,-m75
for v = W|@, with w € €= (RY) and supp(w) C V’. Observing that [Q, Zs_] and [Q, Zs0] are
both in y‘I‘;’O we conclude the proof with the usual semi-classical inequality (4.17) for T chosen
sufficiently large. |
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