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SPECTRAL INEQUALITY AND RESOLVENT ESTIMATE FOR THE
BI-LAPLACE OPERATOR

JEROME LE ROUSSEAU AND LUC ROBBIANO

ABSTRACT. On a compact Riemannian manifold with boundary, we prove a spectral in-
equality for the bi-Laplace operator in the case of so-called “clamped” boundary condi-
tions, that is, homogeneous Dirichlet and Neumann conditions simultaneously. We also
prove a resolvent estimate for the generator of the damped plate semigroup associated
with these boundary conditions. The spectral inequality allows one to observe finite sums
of eigenfunctions for this fourth-order elliptic operator, from an arbitrary open subset of
the manifold. Moreover, the constant that appears in the inequality grows as exp(Cu'/%)
where u is the largest eigenvalue associated with the eigenfunctions appearing in the sum.
This type of inequality is known for the Laplace operator. As an application, we obtain
a null-controllability result for a higher-order parabolic equation. The resolvent estimate
provides the spectral behavior of the plate semigroup generator on the imaginary axis.
This type of estimate is known in the case of the damped wave semigroup. As an ap-
plication, we deduce a stabilization result for the damped plate equation, with a log-type
decay.

The proofs of both the spectral inequality and the resolvent estimate are based on
the derivation of different types of Carleman estimates for an elliptic operator related to
the bi-Laplace operator: in the interior and at some boundaries. One of these estimates
exhibits a loss of one full derivative. Its proof requires the introduction of an appropriate
semi-classical calculus and a delicate microlocal argument.

Keyworbs: high-order operators; boundary value problem; spectral inequality; resolvent
estimate; interpolation inequality; controllability; stabilization; Carleman estimate; semi-
classical calculus.
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1. INTRODUCTION

Let A be the positive Laplace operator on a compact Riemannian manifold (€2, g), of dimension

d > 1, with nonempty boundary 9Q. In local coordinates, it reads
A=-A=1o"" 3 Dilel'"*e" D)),
1<i,j<d

where D = —id. For boundary conditions, say of homogeneous Dirichlet type', we denote by
0 <wy £+ < wj<---, the eigenvalues of the operator A, associated with a family (¢;) jen
of eigenfunctions that form a Hilbert basis for L>(€2). We refer to this selfadjoint operator as the
Dirichlet Laplace operator. The following spectral inequality originates from [ , , 1.

Theorem 1.1. Let & be an open subset of Q. There exists C > 0 such that

1/2
(1.1) lull 2y < Ce““ Null 2y, @ >0, ueSpan{e; w; < w).

It provides an observation estimate of finite sums of eigenfunctions. The constant C e in
the inequality is in fact optimal if & € Q [ , ], and can be seen as a measure of the
loss of orthogonality of the eigenfunctions ¢; when restricted to &. This inequality has various
applications. It can be used to prove the null-controllability of the heat equation [ ] (see
also the review article [ 1), the null-controllability of the thermoelasticity system [ 1, the
null-controllability of the thermoelastic plate system [ , ], and the null-controllability
of some systems of parabolic PDEs [ ]. It can also be used to estimate the (d — 1)-Hausdorff
measure of the nodal set of finite sums of eigenfunctions of A, in the case of an analytic Rie-
mannian manifold [ ], recovering the result of [ ], that generalizes a result of [ ] for
eigenfunctions.

Consider now the unbounded operator acting on H}(€) x L*(Q)

0 -1
-3 )
with domain D(A) = (H*(Q) N H)(Q)) X H}(Q), where a(x) is a nonnegative function. One can
prove the following resolvent estimate | ].

Theorem 1.2. Let O be an open subset of Q and « be such that a(x) > § > 0 on 0. Then, the
unbounded operator io 1d —A is invertible on 7€ = Hé (Q) x L*(Q) for all o € R and there exist
K > 0 and oy > 0 such that

(1.2) (i Id ~A) M zw ey < KXV, 0 eR, |o] 2 0.
This resolvent estimate allows one to deduce a logarithmic type stabilization result for the
damped wave equation
a7y + Ay +ad,y =0, V=0 = Y0, OrY=0 = Y1, Y0+ = 0,
for yg and y; chosen sufficiently regular, e.g. (yo,y1) € D(A) [ , , 1.

It is quite natural to wish to obtain similar inequalities for higher-order elliptic operators on £,
along with appropriate boundary conditions. The bi-Laplace operator, that can be encountered in
models originating from elasticity for example, appears as a natural candidate for such a study. To
understand some of the issues associated with the boundary conditions one may wish to impose
let us consider the case of a spectral inequality of the form of (1.1). If the boundary conditions

'What we describe is yet valid for more general boundary conditions of Lopatinskii type for the Laplace
operator.



4 JEROME LE ROUSSEAU AND LUC ROBBIANO

used for the bi-Laplace operator precisely make it the square of the Laplace operator A (with its
boundary conditions) then the spectral inequality is obvious as the eigenfunctions are the same for
the two operators and A; > 0 is an eigenvalue of the bi-Laplace operator if and only if \//l—j is one
for the Laplace operator. To be clearer, let us consider the positive Dirichlet Laplace operator A.
If A? is the bi-Laplace operator on Q along with the boundary conditions upo = 0 and Aupq = 0,
then the family (¢,) jen introduced above, is in fact composed of eigenfunctions for A? associated
with the eigenvalues 4; = w?. This set of boundary conditions is known as the “hinged” boundary
conditions. We refer to this operator as the “hinged” bi-Laplace operator, and, for this operator,
with Theorem 1.1, we directly have the following spectral inequality, for & c Q,

1/4
(1.3) lullz2) < Ce“llull 2y, A >0, ue Span{g;; A; < A).

One is naturally inclined to consider another set of boundary conditions, the so-called “clamped”
boundary conditions, uj3q = 0 and dyupq = 0, where v is the outward normal to 9Q. We refer to
this operator as the “clamped” bi-Laplace operator. It is sometimes referred to as the Dirichlet-
Neumann bi-Laplace operator. Eigenfunctions of the “clamped” bi-Laplace operator are not re-
lated to eigenfunctions of the Dirichlet Laplace operator. In fact, observe that an eigenfunction
of the “clamped” bi-Laplace operator cannot be an eigenfunction for the Laplace operator A, in-
dependently of the boundary conditions used for A. Indeed, from unique continuation arguments,
if a H2-function ¢ is such that Ap = A¢ on Q and ¢9q = d,da0 = 0, then ¢ vanishes identi-
cally. Thus, a spectral inequality for the “clamped” bi-Laplace cannot be deduced from a similar
inequality for the Laplace operator A with some well chosen boundary conditions. Yet, such an
inequality is valuable to have at hand, in particular as the “clamped” bi-Laplace operator appears
naturally in models. It is however often disregarded in the mathematical literature and replaced
by the “hinged” bi-Laplace operator for which analysis can be more direct, in particular for the
reasons we put forward above. A resolvent estimate of the form of (1.2) is also of interest towards
stabilization results.

The main purpose of the present article is to show that a spectral inequality of the form of (1.1)
and a resolvent estimate of the form (1.2) hold for the “clamped” bi-Laplace operator and, more
generally, to provide some analysis tools to carefully study fourth-order operators that have a prod-
uct structure. Carleman estimates will be central in the analysis here and we shall show how their
derivation is feasible when the so-called sub-ellipticity condition does not hold, which is typical
for product operators. If B is the “clamped” bi-Laplace operator, that is, the unbounded operator
B = A? on L*(Q), with domain D(B) = H*(Q) N H}(Q), which turn B into a selfadjoint operator,
let (¢;) jen be a family of eigenfunctions of B that form a Hilbert basis for L*(Q), associated with
the eigenvalues 0 < py < -+ < u; < --- (the selfadjointness of B and the existence of such a
family are recalled in Section 1.7 below). We shall prove the following spectral inequality.

Theorem 1.3 (Spectral inequality for the “clamped” bi-Laplace operator). Let & be an open subset
of Q. There exists C > 0 such that

1/4
lull 2y < Ce“ llull 2oy, >0, ue€Span{pj; p; < p.
Note that the spectral inequality of Theorem 1.3 was recently proven in [ Jand [ 1.
In[ ] the coeflicients and the domain are assumed to be analytic (the techniques used for the
proof are then very different and exploit the analytic properties of the eigenfunctions). In [ 1,

the result is obtained in one space dimension; yet , therein, the factor e g replaced by ecﬂl/z,
yielding a weaker form of the spectral inequality.

We shall present a null controllability result for the parabolic equation associated with B which
is a consequence of this spectral inequality. Such a result can be found in [ , ] in
the case of analytic coefficients and domain. Here, coefficients are only assumed smooth. We
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conjecture that regularity could be lowered as low as W' for the coefficients in the principal part
of the operator. This would require further developments in the line of what is done in [ ]
for instance. This would however significantly increase the size of the present article. Note that
the analytic setting allows the authors of [ , , ] to obtain control properties by
only requiring the control domain to be of positive measure.

We shall also prove a resolvent estimate for the unbounded operator acting on Hg(Q) x L*(Q),

0 -1
(1.4) B:(B a),

with domain D(8B) = (H*(Q) N H}(Q)) X Hj(Q), where a(x) is a nonnegative function.

Theorem 1.4. Let & be an open subset of Q and « be such that a(x) > 6§ > 0 on O. Then, the
unbounded operator io1d =8B is invertible on 7€ = Hé(Q) x L2(Q) for all o € R and there exist
K > 0 and oy > 0 such that

G 1d -B) . zrey < KK g eR, |o] 2 0.

We shall present a log type stabilization result that is a consequence of Theorem 1.4 for the
following damped plate equation

0%y + A%y + ad,y = 0, Vii=0 = Y0, OrYi=0 = Y1, VI[0,400)x8Q = OvY|[0,+00)xaQ = 0.

Both the proofs of the spectral inequality and the resolvent estimate are based on Carleman
estimates for the fourth-order operator P = D* + B.

The subject of the present article is connected to that of unique continuation, in particular
through the use of Carleman estimates. Moreover, the spectral inequality of Theorem 1.3 is a
quantified version of the unique continuation property for finite sums of eigenfunctions. There
is an extensive literature on unique continuation for differential operators; yet, positive results
require assumptions on the operator or on the hypersurface across which unique continuation is
pursued. For instance, a simple-root assumption is often made following the work of A. Calderén
[ ] or the celebrated strong pseudo-convexity condition is assumed following the work of
L. Hormander [ , ]. For second-order elliptic operators (with smooth complex co-
efficients) these assumptions are fulfilled. However, for higher-order operators they may not be
satisfied. Counterexamples for the non uniqueness of fourth-order and higher-order operators with
smooth coefficients can be found in [ Jand [ ]. See also the monograph [ ] for man-
ifold positive and negative results. The question of strong unique continuation is also of interest for
higher-order operators; see for instance [ ] for a positive result and [ ] for a large class of
negative results. Note that the above literature concerns unique continuation properties away from
boundaries. For the results of Theorems 1.3 and 1.4 the analysis we use mainly focuses on the
neighborhood of the boundary of the open set Q2. There are few results on unique continuation near
a boundary. Under the strong pseudo-convexity condition the unique continuation property can be

obtained, even for higher-order operators; see [ ]and [ ]. For the operator P = Dg‘ + B
that we consider here, the strong pseudo-convexity property fails to hold near the boundary and
also away from it. General approaches as developed in [ , ] cannot be used. This is one

of the interests of the present article.

1.1. On Carleman estimates. Carleman estimates are weighted a priori inequalities for the solu-
tions of a partial differential equation (PDE), where the weight is of exponential type. For a partial
differential operator Q away from boundaries, it takes the form:

lle™wll;2 < lle™ Owll;2, we 6 Q) T= 1.



6 JEROME LE ROUSSEAU AND LUC ROBBIANO

The exponential weight involves a parameter 7 that can be taken as large as desired. Additional
terms in the Lh.s., involving derivatives of u, can be obtained depending on the order of Q and on
the joint properties of Q and ¢. For instance for a second-order operator Q, such an estimate can
take the form

(1.5) B2 ull2 + TV2eDyull2 < lle™ Qull;2, T 210, U €O (Q).

One says that this estimate is characterized by the loss of a half derivative. This terminology
originates from the underlying semi-classical calculus where one gives the same strengths to the
parameter 7 and to D. Whereas Q is a second-order operator, the 1.h.s. only exhibits derivatives or
powers of T of order 3/2. For most operators, this cannot be improved [ , ]. In the
proof of a Carleman estimate one introduces the so-called conjugated operator Q, = e Qe™ ",
and estimate (1.5) reads

PP + T 2D S 10V, T2 70, v =eu, ueEI(Q).

This type of estimate was used for the first time by T. Carleman [ ] to achieve uniqueness
properties for the Cauchy problem of an elliptic operator. Later, A.-P. Calderén and L. Hormander
further developed Carleman’s method [ , ]. To this day, the method based on Carleman
estimates remains essential to prove unique continuation properties; see for instance [ ] for
an overview. On such questions, more recent advances have been concerned with differential
operators with singular potentials, starting with the contribution of D. Jerison and C. Kenig [ 1.
There, Carleman estimates rely on LP-norms rather than L?-norms as in the estimates above. The
proof of such LP Carleman estimates is very delicate. The reader is also referred to [ , ,

, , ]. In more recent years, the field of applications of Carleman estimates has
gone beyond the original domain; they are also used in the study of:

e Inverse problems, where Carleman estimates are used to obtain stability estimates for the
unknown sought quantity (e.g. coefficient, source term) with respect to norms on mea-
surements performed on the solution of the PDE, see e.g. [ , s , 1;
Carleman estimates are also fundamental in the construction of complex geometrical op-
tic solutions that lead to the resolution of inverse problems such as the Calderén problem
with partial data [ s ].

e Control theory for PDEs; Carleman estimates yield the null controllability of linear par-
abolic equations [ ] and the null controllability of classes of semi-linear parabolic
equations [ , , ]. They can also be used to prove unique continuation
properties, that in turn are crucial for the treatment of low frequencies for exact control-
lability results for hyperbolic equations as in [ 1.

To indicate how the spectral inequality of Theorem 1.3 for the bi-Laplace operator B can be
proven by means of Carleman estimates, we first review a method, that yields the spectral inequal-
ity of Theorem 1.1 for the Laplace operator A. In this introductory section, we have chosen to
mainly focus on the method of proof of the spectral inequality; a comprehensive presentation in-
cluding a presentation of the proof of the resolvent estimates of Theorems 1.2 and 1.4 would not
bring any further insight to the reader as the line of arguments is quite similar.

1.2. A method to prove the spectral inequality for the Laplace operator. The method we
describe here originates from [ 1. We consider the elliptic operator P4 = D> + A on Z =
(0,89) x Q, for some Sy > 0 meant to remain fixed. We also pick 0 < @ < S¢/2. Three different
types of Carleman estimates are proven for the operator P4: (i) in the interior of (0,Sg) X Q; (ii)
at the boundary {s = 0} x Q; (iii) at the boundary (a, S ¢ — @) X 9Q. The three regions where these
Carleman estimates are derived are illustrated in Figure 1. It is simpler to first describe Case (i),
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So
S()—a’—

Ficure 1. Location and geometry of the three types of estimates. Dashed
are level sets for the weight functions ¢ used in the Carleman estimates.
Arrows represent the directions of the (non vanishing) gradient of ¢.

that is, the estimate in the interior. In Figure 1, this corresponds to the neighborhood V| of some
point z!) € Z. There, the Carleman estimate for this operator Py is of the form described above,
that is,

3
(1.6) e W2z + T e Dl 22y S €™ Pawll2z)s

where the weight function ¢ = ¢(z) is real-valued with a non-vanishing gradient, 7 is a large
positive parameter, and w is any smooth function compactly supported in V. In fact, this estimate
holds if the so-called sub-ellipticity condition is fulfilled by P4 and ¢. If pa(z, {) is the principal
symbol of Py, the sub-ellipticity condition in V; reads

1
(1.7 Pa@ g +itdp(2)) =0 = —{paz. £ +itdp(2), paz. £ + irdp(z)} > 0,

forze V), (e R4! and T > 0. It is in fact equivalent to a Carleman estimate of the form (1.6) for
Py (see [ Jor| ). Observe that ps(z, { + itdp(z)) is the semi-classical principal symbol
of the conjugated operator Py, = e"¥Ppe™"%.

The function ¢ is chosen of the form ¢(z) = exp(—ylz — z"|?) and V; is an annulus around z(",
thus avoiding where the gradient of ¢ vanishes (see Figure 1). For y > 0 chosen sufficiently large,
one can prove that the sub-ellipticity condition (1.7) holds and thus estimate (1.6) is achieved (see
eg. [ Jor|[ D.

From estimate (1.6), one can deduce the following local interpolation inequality, for all r > 0

chosen sufficiently small, for some § € (0, 1) (see e.g. [ D,
(1.8) [ < M2, (IPavll2cz) + vl Y. veH)
: H'(BED 3r) S Mgz IFaVIi2z) HI(BED.)) > :

We now consider Case (ii). In a neighborhood V), of a point 7® € {0} x O, one can derive an
estimate of the same form as (1.6), yet, with two trace terms in the r.h.s., that is,

(1.9) le 2B DP w2z < e Pawlliazy + T2 (1€Wis=0+ L ) + 1€ 0:Wis=0¢ 120 )
<1
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for 7 > 79 > 1 and w smooth up to the boundary {s = 0}, with supp(w) N Z C V,, with V, as
represented in Figure 1. This can be obtained by locally choosing a weight function of the form
©(2) = exp(y¥(z)) with ¥(z) such that d(z) < —C < 0in V; and choosing the parameter y > 0
sufficiently large (see e.g. [ 1. We use the notation ||.|| for functions in the interior of the
domain and |.| for functions on the boundaries.

From estimate (1.9) one deduces the following local interpolation inequality: there exist V C V,
and 6 € (0, 1) such that

_ 0
(110) Wl vz < W0, (IPavilg) + M=o i) + 0svis=0tl20) » - v € HAD).

We finally consider Case (iii). In a neighborhood of a point ¥ € (@, Sy — @) X 4Q, one can
derive an estimate of the same form as (1.6), yet, with a single trace term in the r.h.s., that is,

(1.11) vsél 2B DP w2 ) + Tl/2|ewavw|az|y((msO_W -

< e Pawlliazy + w%il T3/2_|ﬁ,l|ewDLT? W|()Z|L2((Q,S0—a)><69)’
for 7 > 79 > 1 and w smooth up to the boundary (a, Sy — @) X 9Q, with supp(w) N Z C V3, with
V3 as represented in Figure 1. This can be obtained by locally choosing a weight function of the
form ¢(z) = exp(yy¥(z)) with y(z) such that d,¥(z) < —C < 0 in V3, where v is the outward normal
to 0Q2, and choosing the parameter y > 0O sufficiently large (see e.g. [ ). Here, for |5'| > 1,
Df.' stand as differentiations in the tangential directions only, along vector fields that form a local
frame.

From estimate (1.11) one deduces the following local interpolation inequality: there exist V C
V3, with V neighborhood of z® in Z, some open subset 2 C V3 with positive distance to the
boundary, and ¢ € (0, 1) such that

— o
(112)  Wlwnz) < W0, (1Pl + Mlme) s ve HA2), vosoxoa = 0.

The three interpolation inequalities (1.8), (1.10), and (1.12) can be used to form a global inter-
polation inequality, by means of compactness arguments. In particular, the interior inequality (1.8)
permits the “propagation” of the estimate. Then, there exists ¢ € (0, 1), such that

- 0
(1.13) ”VHHl(((x,So—w)xQ) < “V”}ﬂ((sz) (”PAVHLZ(Z) + |V|s:0+|H1(ﬁ) + |asV|s:O+|L2(ﬁ)) )

for v € H*(Z) satisfying v|o.s,)xaa = 0. This inequality then implies the spectral property for the
Laplace operator for u = 3, <, u;j¢; € Span{¢;; w; < w}, if applied to a well chosen function
v(s, x), namely, '

Vs, x) = Y ujw;? sinh(w!Zs)¢(x).
Wj<w J J

Details can for instance be found in [ ]. In the present paper, we shall apply this approach for
the bi-Laplace operator, the argument is provided in details in Section 5.2.

1.3. Qutline of the proof of the spectral inequality for the bi-Laplace operator. Above we
described how Carleman estimates can be used to prove a spectral inequality of the form given
in Theorem 1.1 for the Laplace operator. To prove the spectral inequality of Theorem 1.3 for
the “clamped” bi-Laplace operator, we shall prove several Carleman estimates for the following
fourth-order elliptic operator

P=D*+A> onZ=0,50))xQ.



SPECTRAL INEQUALITY AND RESOLVENT ESTIMATE FOR THE BI-LAPLACE OPERATOR 9

As for P4 above, we shall prove such estimates at three different locations: (i) in the interior
of (0,S50) X Q, in Section 2; (ii) at the boundary {s = 0} X Q, in Section 3; (iii) at the boundary
(a, So—a)x0Q, in Section 4. In Section 5, these three types of estimations are then used to achieve
local interpolation inequalities that can be used to prove, first, a global interpolation inequality and,
second, the spectral inequality of Theorem 1.3. Note that for the proof of the resolvent estimate of
Theorem 1.4 only steps (ii) and (iii) are needed.

Cases (i) and (ii). The weight functions that we shall use will be the same as that used for the
operator P4 for Cases (i) and (ii). In Case (ii), the estimate we obtain for P takes the form

-1/2 4-
V23 1D ull2 ) < e Pull iz
<4

+

M

7/2—j1 70 1 o1y
(T / /e ¢Ds”|s:0*|L2(Q) +le ¢DS”|S:0+|H7/2—j(Q))7

j=0

for functions localized near a point 7@ € {0} x 0, with & c Q. We have observation terms at the
boundary {s = 0}. We use the notation ||.|| for functions in the interior of the domain and |.| for
functions on the boundaries.

Note that this estimate is characterized by the loss of half-derivative, similarly to the estimate
one can derive for P4. In fact, the sub-ellipticity condition holds in V> despite the fact that P, =
e Pe”™ can be written as a product of two operators, P, = 010>, as, here, char(Q;)Nchar(Q;) =
0.

In Case (i), however, the estimate we obtain is characterized by the loss of one full derivative,
taking the form

2 T3_|Q‘||€T¢Dau||L2(Z) < le™ Pullp2(z),
lal<4
for functions compactly supported away from boundaries. In fact, this loss cannot be improved as
explained in Section 1.4. Here also, the operator P, can be written as a product of two operators,
P, = 010>, and here, as opposed to Case (ii), we have char(Q1) N char(Q») # 0.

We provide fairly short proofs of the Carleman estimates in Cases (i) and (ii) in Sections 2 and
3. Note, however, that the loss of a full derivative in Case (i) does not create any obstruction to the
derivation of a local interpolation inequality in Section 5.

Remark 1.5. Sub-ellipticity does not hold in V. The reader should note that the failure of the
sub-ellipticity property does not automatically imply a loss of one full derivative. The phenomena
that can occur require a fine analysis to be understood. This is carried out in [ ]. Roughly
speaking, if sub-ellipticity does not hold, and if some iterated Poisson brackets vanish up to order
k and an iterated Poisson bracket of order k£ + 1 is positive, then an estimate can be obtained
with a loss of k/(k + 1) derivative. In the present case, as we can prove that the loss of one full
derivative cannot be improved, we then know that all the iterated Poisson brackets used in [ ]
vanish. The essential problem is that the conjugated operator P, can be written as a product of
two operators Q1(Q», and in the case char(Q;) N char(Q;) # 0, not only does sub-ellipticity not
hold, but we see that the iterated Poisson brackets also vanish.

Case (iii). This case is delicate and the derivation of the Carleman estimate at the boundary («, S g—
a) X 0Q is one of the main results of the present article. This case is also precisely where we have
to take into account the boundary conditions for the bi-Laplace operator B. The estimate we obtain
in Case (iii) in Section 4 is characterized by the loss of one full derivative and, as for case (i), this
cannot be improved as explained in Section 1.4. This is a source of major complications for the
proof of the Carleman estimate itself. As in Case (i) this, however, does not create any obstruction
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in the derivation of the local interpolation inequality in Section 5. In fact, the proof of the local
Carleman estimate in V3, a neighborhood of a point of the boundary (@, So — @) X dQ, requires
microlocal arguments. This implies the introduction of microlocalization operators that realize
some partition of unity in phase space over V3. For each induced microlocal region, a Carleman
estimate is derived. One region is less favorable: there, the fourth-order conjugated operator P,
can we written as a product of four first-order factors, and two of them fail to be elliptic. Moreover,
their characteristic sets intersect; sub-ellipticity does not hold there and, in fact, this generates a
loss of a full derivative in the estimation. There, the a priori estimate one derives permits to only
estimate the semi-classical H>-norm, viz., [Wll3,+ = 3wl 12 + |Wl|g3. In other microlocal regions
over V3, the conjugated operator P, exhibits at most a non elliptic first-order factor only yielding
a half derivative loss as sub-ellipticity holds. If one does not proceed carefully, the derivation in
the least favorable region yields error terms that can be of the same strength as the norm ||w||3 -,
preventing to conclude positively to the Carleman estimate.

We define the weight function in the form ¢(z) = ¢”¥® and keep track of the parameter 7 that is
meant to be large. The function y is chosen such that d,¢ < —C < 0 in a neighborhood of a point of
the boundary where we try to derive the Carleman estimate. The use of an exponential form for the
weight function can already be found in the seminal work of L. Hérmander ([ , Section 8.6]
and [ , Section 28.3]), in connexion with the celebrated notions of pseudo-convexity and
strong pseudo-convexity. This introduces a second large parameter. Several authors have derived
Carleman estimates for some operators in which the dependence upon the second large parameters

is explicit. See for instance [ ]. Such result can be very useful to address applications such
as inverse problems. On such questions see for instance [ , , s . In[ 1,
an analysis framework is introduced, based on the Weyl-Hérmander calculus ([ 1, [ ,

Sections 18.4-18.6]), that allows one to describe the explicit dependence of Carleman upon the
second large parameter y for general classes of operators. That analysis is carried out away from
boundaries. Here, we use that approach by means of a tangential Weyl-Hormander calculus. The
introduction of the second large parameter y allows us to handle some error terms in the derivation
of the Carleman estimate in V3. This is however not sufficient to have control over all the error
terms that appear in the microlocal region within V3 where sub-ellipticity does not hold, since the
operator under study is a product of two second-order operators (see above).

Yet, when one attempts to derive the estimate, one realizes that the derivation is possible in the
case ¢, and thus ¢, only depend on the normal variable to the boundary. Yet, for the interpolation
inequality we wish to derive at the boundary (@, S¢ — @) X 9, some convexity of the level sets
of the weight function ¢ is needed: ¢ cannot be constant along the boundary. This is illustrated
in Figure 1 (in the neighborhood V3). We thus introduce the function ¥ .(z) = ¥(eZ’, zy), where 7’
denotes the tangential variables and z denotes the normal variable (in local coordinates where the
boundary is given by {zy = 0}), and we set ¢(z) = e Here, ¢ is a small parameter, € € (0, 1).
Keeping track of the dependence of the microlocal estimates in this third parameter too then allows
one to obtain a Carleman estimate, at the boundary, with a weight function with some convexity of
its level sets with respect to the boundary. This is precisely done by extending some of the work
of [ ] and introducing a Weyl-Hormander calculus, with three parameters: the large semi-
classical parameter 7, the second large parameter 7y, and this new parameter € € (0, 1) that controls
the convexity of the level sets of the weight function. Note that even in the case ¥ = ¥(z,), the
proof of the Carleman estimate relies on taking the second parameter y sufficiently large (see the
end of Proposition 4.25 below). The introduction of the parameter € alone would not be sufficient.
Only the joint introduction of the two parameters allows us to conclude positively to the Carleman
estimate in the microlocal region where a full derivative is lost.
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All the different microlocal estimates need to be derived within the refined semi-classical calcu-
lus with three parameters. Arguments are based on the ellipticity or sub-ellipticity of the different
factors building the fourth-order operator P, and the position of theirs roots in the complex plane.
This analysis follows in part from the different works [ s s , s ].

Eventually, the various microlocal estimates we obtain need to be patched together. This proce-
dure generates commutators of the fourth operator P, and the microlocal cut-offs, leading to some
third-order error terms that can be handled thanks to the better microlocal estimates obtained away
from the least favorable region.

Near a point of the boundary 0Z = (0,S¢) X 0Q locally written in the form {x; = 0} with
Z =1(0,50) X Q = {x4 > 0}, the estimate we obtain, for 7 and y large and & small, is of the form

~3—la| ;7o na Ty TP To 1y
y X TN DYl zy + X €Dy wozl, , - S e Pulliazy + X2 1€ Dywozly s

laj<4 - @ 0<,<3 a2l 07 @ j=0,1 a2 27
On the Lh.s. we find norms of all traces; on the r.h.s. we only have observation with the traces u5z
and Dy, uj5z associated with the clamped boundary conditions. Here 7 = ty¢.

1.4. On Carleman estimates for higher-order elliptic operators. If Q is an elliptic operator of
even order m, and ¢ is a weight function such that the couple (P, ¢) satisfies the sub-ellipticity
condition (as stated above), then a Carleman estimate can be obtained, even at a boundary, for
instance with the results of [ ]. We use those results in Section 3 for the proof of the Carleman
estimate at the boundary {s = 0}.

If m > 4, it is however quite natural to not have the sub-ellipticity condition, in particular if the
operator Q is in the form of a product of two operators, say Q = Q1 0». Denote by ¢, g1, and ¢ the
principal symbols of O, Q1, and Q; respectively. The conjugated operator Q, = e™¥Qe™ ¥ reads
Oy = 01,0024, with O, = e Qre™™, k = 1, 2. If we have char(Q ,) N char(Q;,) # 0 then the
sub-ellipticity condition fails to hold. In fact, if g, g1, and g2, are the semi-classical principal
symbols of Qy, Q14, and Qy 4, thatis, g, = ¢(z, { + itde(z)) and qip, = qi(z, { + itde(2)), k = 1,2,
we can write

{Ggr 4o} = 19161 (@2 0> G20} + 10267 (G1 o q1.0} + Flg1.6l 12,
for some function f. Thus {q,, g,} vanishes if g1, = g2, = 0. Then, the sub-ellipticity property
of (1.7) cannot hold for Q.

Observe that in the above example we have d,;q(z,{ + itdp(z)) = 0 if q2(z,{ + itdp(2)) =
q1(z, ¢ + itdp(z)) = 0. The following proposition (that applies to operators that need not be
elliptic) shows that in such case of symbol “flatness”, the Carleman estimate we can derive for Q
exhibits at least a loss of one full derivative.

Proposition 1.6. Let O = O(z, D,) be a smooth operator of order m > 1 in Z, an open subset of
RN. Assume further that there exist a smooth weight function ¢(z), C > 0, 1 > 0, a multi-index a
with 0 < |a| £ m, and 6 > 0 such that

(1.14) 711 DYy < Clle™ Qull 2,

for T > 11 and for u € € RN) with supp(u) C Z. Let q(z, ) be the principal symbol of Q. If there
exist 20 € Z, Lo € RN and t¢ > 0 such that 96’ # 0, with 6y = {y + itode(zp), and

q(20,60) = q4(20,40,70) =0,  d;q(z0,60) = 0,
then 6 = 0.
In other words, if there is a point (xo, £y, 7o) where the symbol g, vanishes at second order, then

if a Carleman estimate holds it exhibits at least the loss of a full derivative.
We refer to Section A.1 for a proof.



12 JEROME LE ROUSSEAU AND LUC ROBBIANO

Remark 1.7.  This loss of at least one full derivative shows that the analysis of [ ] cannot be
applied here, as it concerns Carleman estimate with losses of less that one derivative. In particular,
one can check that iterated Poisson brackets used in [ ] all vanish at points where g, vanishes
at second order.

In dimension greater than 1, this proposition applies to the bi-Laplace operator B introduced
above on the manifold Q. If a(x, £) is the principal symbol of the Laplace operator in a local chart
V, for all xo € V, there exists & and 7o > 0 such that a(xg, & + itod¢(x0)) = 0. Then, the symbol
b = a? vanishes at second order at (x0, &0 + iTodyp(xp). Hence, we cannot hope for a Carleman
estimate for B with a loss of less than one full derivative. In fact, such an estimate can be obtained
by using twice in cascade the Carleman estimate for the Laplace operator. This is consistent, as
the estimate for the Laplace operator exhibits a loss a half derivative in dimension greater than 1
(if ¢ is chosen such that sub-ellipticity holds — see [ D.

In dimension one, however, B = Di and the conjugated operator (D, + dego(x))4 is elliptic (in
the sense of semi-classical operators) if dp(x) # 0 in Q. Then, the resulting Carleman estimate is
characterized by no derivative loss.

Concerning the operator P = D¥ + Bin Z = (0, S ) X Q, that is central in the present article, we
write P = PP, with Py = (=1)%iD? + A. Setting Py, = ™ Pre™™, with semi-classical principal
symbols given by

Pro(z.4,7) = (=DNi(0 + itdsp(2))* + a(x, € + itdyp(2)), k= 1,2,

where z = (s,x) € Zand ¢ = (0,¢) € R1* = RN, Letd > 2. If, for some zyp € Z, we have
ds¢(z0) = 0, if we choose &y € R and 7 > 0 such that a(xg, & + iTodx@(z0)) = 0, then for o7¢ = 0,
we have £y = (0,&) € RN and 6y = (0,&) + it0(0, dxp(20)) and pi (20, Lo, T0) = pi(z0,60) = 0
and d, ;p(zo,60) = 0, where p and py are the principal symbols of P and Py, k = 1,2. Hence, in a
neighborhood of zg, Proposition 1.6 applies.

This situation occurs in Cases (i) and (iii) described in Section 1.3 and Figure 1. In the neigh-
borhoods V| and V3 introduced there, we have points where d;¢ vanishes (as can observed by the
shapes of the level sets of ¢ in Figure 1). This explains why we can only obtain estimates with a
loss of one full derivative for those cases. In case (ii), however, this does not occur, and there we
obtain an estimation with only a loss of a half derivative.

1.5. Some perspectives. The present article deals with the natural “clamped” boundary condi-
tions, that is, homogeneous Dirichlet and Neumann conditions simultaneously. In the light of
the results obtained here and those that can be obtained for very general boundary conditions of
Lopatinskii type in [ , ], for instance for unique continuation through the derivation
of Carleman estimates at the boundary for general elliptic operators with complex coefficient in
cases where the sub-ellipticity property hold, one is inclined to attempt to prove estimates similar
to those proven in the present article, in the case of an operator, such as the operator P = D} + B
studied here, for which the sub-ellipticity condition cannot hold everywhere and for general bound-
ary conditions of Lopatinskii type.

Here, we considerer the bi-Laplace operator B = A2, It would be of interest to consider more
general polyharmonic operators such as A, k € N, on Q along with natural boundary conditions,

e.g.,
k—1
Upn = 0,...,(9V Upo = 0,

or more general Lopatinskii type conditions.
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1.6. Notation. We shall use some spaces of smooth functions in the closed half space. We set
S®Y) = (uzy; ue S @),

The reader needs to be warned that in some sections z € RV will denote (x, s), with x € R? =
RN-1 and s € R, and thus, there, zy = s. This is the case in Section 3. In other sections, z will
denote (s, x), and thus there zy = x,4. This is the case of Section 4 and Appendices A.2 and B.

Some specific notation for semi-classical tangential operators will be introduced in Section 3.1,
and they allow us to derive the Carleman estimate for D‘S‘ + B at the boundary {0} x Q (Cases
(i) above). Semi-classical calculus is characterized by the presence of a large parameter denoted
by 7 here, that is precisely the large parameter that appears in the Carleman estimates (for readers
familiar with semi-classical analysis this is done by taking 7 = 1/h where & is the Planck constant.)

A special class of semi-classical calculus is also introduced in Section 4.1 and is characterized
by three parameters. This calculus is essential in the proof of the Carleman estimate for D? + B at
the boundary (0, S o) x dQ (Case (iii) above).

In this article, when the constant C is used, it refers to a constant that is independent of the
semi-classical parameters, e.g. 7, ¥, €. Its value may however change from one line to another. If
we want to keep track of the value of a constant we shall use another letter.

For concision, we use the notation < for < C, with a constant C > 0. We also write a < b to
denote a < b < a. As done above, we shall use the notation ||.|| for functions in the interior of the
domain and |.| for functions on the boundaries.

We finish this introductory section by stating some basic properties of the “clamped” bi-Laplace
operator that will be used at places in this article (some were implicitly used above).

1.7. Some basic properties of the bi-Laplace operator. We recall here some facts on the “clamped”
bi-Laplace operator. We define the operator B = A? on L*(Q) with domain D(B) = H*(Q)NH3(Q).

Proposition 1.8. The operator (B, D(B)) is selfadjoint on L*(Q) and maximal monotone.

In particular, if u > 0, there exists C > 0 such that, for any f € L*(Q), there exists a unique
u € D(B) such that

(1.15) ANu+pu = f, and |lullgq) < Clifll2w)-

This can be proven by first finding a unique solution in Hg(Q) with the Lax-Milgram theorem
and then applying Theorem 20.1.2 in [ , Section 20.1]. Note in particular that ||A%u|| 21sa
equivalent norm on H*(Q)N HS(Q) by (1.15).

As a consequence of Proposition 1.8 we have the existence of a Hilbert basis for L?(Q2) made
of eigenfunctions.

Corollary 1.9. There exist (i1j) jen C R, and (¢}) jen C D(B) such that

O<mp Spp<---<Spj<---, lim pj = +oo, Byj = pjpjs

j—oo
and the family (¢;); forms a Hilbert basis for LX(Q).

Corollary 1.10. The operator (B, D(B)) generates an analytic Cy-semigroup S (t) on L2(Q).
ForT >0, yy € LX(Q), and fe L%(0,T; H2(Q)), there exists a unique

y € L*([0, T]; Hy(Q)) N €([0, T1; L) N H' (0, T; H*(Q)),
given by y(t) = S (t)yo + fot St — s)f(s)ds, such that
oy + Azy =f forte(0,T)ae., yu=0=)o
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For semigroup theory we refer the reader to [ 1.
For the operator B defined in (1.4) we have the following property.

Proposition 1.11. The spectrum of B is contained in {z € C; Re(z) > 0}. Moreover, for z € C such
that Re z < 0, we have

I(zIdsr =B)Ullr 2 |ReZ| U], U € D(B),
with 7 = HX(Q) x LA(Q).

With the Hille-Yoshida theorem [ , Theorem 3.1, Chapter 1] we then have the following
results.

Corollary 1.12. The unbounded operator (B, D(B)) generates a Cy-semigroup of contraction X(t)
on .

Corollary 1.13. For (yo,y1) € D(B) there exists a unique
y € €%([0, +00); L(©)) N € ([0, +00); Hy(Q) N ([0, +00); D(B)),
such that
7y + A’y +adyy = 0in L™((0,+00); LXQ)), Y=o = Y0, OYju=0 = 1.
The solution is given by the first component of X(t)Yy with Yo = (yo,y1). The energy t — E(y)(¢)
with
1.16 E - Loor Liavore

is nonincreasing: for 0 < t; < to we have E(y)(t2) — E(y)(t)) = — ftiz ||a/1/26,y(t)||iz(g) dt.

2. ESTIMATE AWAY FROM BOUNDARIES

For operators exhibiting at most double (complex) roots, estimates can be found in the proof of
Theorem 28.1.8 in [ ]. Here, the structure of the operator P is explicit which allows one to
expose the argumentation in a self contained yet short presentation.

2.1. Simple-characteristic property of second-order factors. We consider the augmented op-
erator P = D‘Sl + Bin Z = (0, S0) X Q, remaining away from boundaries here. We write

2.1) P = PPy, with P, = (-D’iD? + A.

Here, we show that P, and P, both satisfy the so-called simple characteristic property in the case
of a weight function whose differential does not vanish.

Let £(z, ), with (z, ) € RY x RV, be polynomial of degree m in ¢, with smooth coefficient in z.
For z — M(z) € RV \ {0}, we introduce the map

pzem Ry —C,

(2.2) 0 Uz, +iOM(2)).

Definition 2.1. Let W be an open set of RN . We say that ¢ satisfies the simple-characteristic
property in direction M in W if, for all z € W, we have { = 0 and 6 = 0 when the map p, , » has a
double root.

We can formulate this condition as follows

(2.3) Uz, { +iOM(2)) = d (2, { +iOM(2))(M(z)) =0 = (=0,0=0.
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Lemma 2.2. Let W be an open set of RN, If N > 3 and €(z,{) is of order two (with complex
coefficients) and elliptic for z € W, then for any map z — M(z) € RN\ {0}, € satisfies the simple-
characteristic property in direction M in W.

Proof. The proof can be adapted from classical ideas (see [ , proof of Proposition 1.1, Chap-
ter 2] or [ 1). We consider the polynomial f; s 4(2) = {(z,{ + tM(z)) where t is a complex
variable, forz € W, (€ RV,

If J is colinear to M(z), e.g. { = aM(z) then f,, py(1) = (a + 1)%*6(z, M(2)). Because of the
ellipticity of £, £(z, M(z)) # 0, and we only have t = —a as a double real root for f.

We set J = RV \ Span(M(z)). Note that z is fixed here and Span(M(z)) is a vector line. The set
J is connected as N > 3. Let now ¢ € J, that is, { is not colinear to M(z). As ¢ is elliptic, the roots
of f. .u cannot be real numbers. We denote by m*({) and m~(¢) the number of roots with positive
and negative imaginary parts, respectively. We have 2 = m*({)+m™({). Since roots are continuous
w.r.t. { and cannot be real, they remain in the upper- or lower-half complex plane as { varies in J,
as J is connected, meaning that m* and m™~ are then invariant. In particular, m* () = m*(-¢) and
m~({) = m™(={). Observing however, that if g is a root of ¢ — €(z,{ + tM(z)) then —ty is a root
of t = €(z,—¢ + tM(2)), we find that m*({) = m™(=¢). This gives m*({) = m~({) = 1. Hence,
complex roots are simple.

In any case, we see that if the map 6 — p, ;v = [, m(i6) has a double real root 6y then 6y = 0
and ¢ = 0. The simple-characteristic property is thus fulfilled. [ |

If we consider a weight function ¢ = (s, x), for the operators Py, k = 1,2, introduced in (2.1),
we have the following proposition.

Proposition 2.3. Let k = 1 or 2. Assume that dy # 0 in (0,S¢) X Q. Then, Py satisfies the
simple-characteristic property in direction dyr in (0, S ) X Q.

Proof. Here, the dimension is N = d + 1. The case d > 2 is treated in Lemma 2.2. It only remains
to treat the case of dimension d = 1. Then, the principal symbol of A reads a(x, &) = a(x)é2, with
a(x) > C > 0. We set M(z) = (My(2), Mg(2)) = dyi(2) € RN \ {0}. We write p in place of P(z.20.M)
for concision.

With £ = (0, &), we have

p(O) = pilz0,£ +i0M) = (= DFi(0 + i0M)” + a(x0)(é + iOM¢)*
= a(x0)& — a(x0)(OM)* — 2= 100 M, + i((-1)Fo? — (=1 (OM,)* + 20a(x0)EMp).
We thus have 39gp(6) = —a(xo)eM§ — (-DroM, + i(a(x0)éMg — (-1)¥0M2). Assuming that
My # 0, if dgp = 0 we find

3

¢
, and o = —a(xo)zf—’.
z M;

a(x)éM;
0= (-1 —

This yields p = a(x0)&*(1 + (~1)ia(xo)M2 /M2 )(1 + a(x0)*M/M%). In this case, we thus have
p =0gp =0ifand only if 6 = 0 and ¢ = (0, ¢) = (0,0).

We assume now that M, = 0. Since M # 0, we find that dgp = 0 implies 6 = 0 and & = 0. Then
p = 0 gives o = 0. Hence, in any case, the simple characteristic property is fulfilled. [ |

2.2. Local Carleman estimates away from boundaries. Let V be an open subset of Z = (0, S o)X
Q. We set z = (s, x). Let L = L(z, D) be a differential operator of order m, with smooth principal
symbol, £(z, {).
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Definition 2.4. Let ¢(z) be defined and smooth in V ‘and such that |de| > C > 0. We say that the
couple (L, ¢) satisfies the sub-ellipticity condition in V if we have

Uz, +ite(2)) =0 =
2%.{5(1,4“ +itdy(2)), {(z, { + itdp(2))} = {Re l(z, { + itdp(z)), Im €(z, { + itdp(2))} > 0,

forallze Vand € RN and 7 > 0.

Let ¥(z) be smooth in V and such that |[dy| > C > 0in V. We define ¢(z) = exp(y¥(z)).
Sub-ellipticity for the couple (Py, ¢) can be easily achieved by the following lemma.

Lemma 2.5. The couple (Py, ) satisfies the sub-ellipticity condition in V fory > 0 chosen suffi-
ciently large.

Proof. By Proposition 2.3 we see that P; satisfies the simple-characteristic property in direction
dy in V. This implies that ¢ is strongly pseudo-convex with respect to Py in the sense given in
[ , Section 28.3] at every point in V. We then obtain that the couple (Py, ¢) satisfies the sub-
ellipticity condition in V for y > 0 chosen sufficiently large by Proposition 28.3.3 in [ ]. m

A consequence of the sub-ellipticity property is the following Carleman estimate for Py in V,
that is, away from boundaries.

Proposition 2.6. Let k = 1 or 2. Let ¢ = exp(yy) with |dy| > C > 0in V. Fory > 0 chosen
sufficiently large, there exist C > 0 and 7 such that

3/2—
szr 201" D2ull 2y < Clle™ Prtll 2z,
a|<

fort>t19oandu € €7(V).
We refer to [ , Theorem 28.2.3] for a proof. In fact, to incorporate the term associated

with |a] = 2 see [ ]. This estimate is characterized by the loss of a half derivative.
From this estimate for Py, k = 1,2, we deduce the following estimate for the operator P = P P;.

Proposition 2.7. Let ¢ = exp(yy) with |dy| > C > 0in V. Fory > 0 chosen sufficiently large,
there exist C > 0 and 7 such that

3_
| |z4r “Ne™ D2ull 27y < Clle™ Pull2z),
a|<

fort>719andu € €7(V).
This estimate is characterized by the loss of a full derivative.

Proof. With the estimate of Proposition 2.6 for the operator P applied to Pou € € (V) we have

3 —
|\ZZT 127101e™ DY Paull 22, < lle™ Pull 2z
<

Observing that [DY, P;] is a differential operator of order 1 + |a| we obtain

(2.4) > 2N Py D ull g < €™ Pull 2z + w|z3 2B Dl ull 2z
<

la]<2

Applying now the estimate of Proposition 2.6 for the operator P, to Dfu € € (V) we obtain

3/2—|0| O
szr 2701 DO Ul 22y < lle™ PaDullp2z)-
o)<
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With (2.4) we then obtain

3— 3—16]— o
xT |al||6’ﬂpDal/l||LZ(z) 2 XT d ‘“'Ile“"DZ“’ulle(z)
lal<4 [61<2 |ar|<2

S le¥Pullpzy + 3 7 Pl Dlull ).
1813
We then conclude by choosing 7 > 0 sufficiently large. |

3. ESTIMATE AT THE BOUNDARY {s = 0}

3.1. Tangential semi-classical calculus and associated Sobolev norms. Considering boundary
problems, we shall locally use coordinates so that the geometry is that of the half space

RN (zeRM, zy >0}, z=(<,zy) withz e RV zy e R.
We shall use the notation ¢ = (z,4,7) and ¢’ = (z,{’, 7) in this section. (This notation is not to
be confused with that introduced and used in Section 4 and Appendix B.)

Let a(o’) € 99”""(@ x RN-1), with 7 as a parameter in [, +o0) and m € R, be such that, for all
multi-indices a, 8, we have

02a(0)] < Capli P, zeRY, ¢ e RN, Tl +00),

2 — 712 1 m —00 __ r m
where /lT’T =)+ 72. We write a € S T We also define S Ty = NyerS To Forae S T, we call

principal symbol, o(a), the equivalence class of a in ST _/S ?;1. Note that we have A7 € ST .
If a(o’) € ST _, we set

T,7°
Opr(@u(z) := 2ry™ NV [ & ao"y (¢, zn) d¢’,
RN—I

for u € #(RY), where i is the partial Fourier transform of u with respect to the tangential variables

7'. We denote by ‘I’m the set of these pseudo-differential operators. For A € Y2 , o(A) = o(a)

T
will be its principal symbol inSY /ST !, We also set AT, =0pt(A7 ), meR.
Letm e Nand m’ € R. If we con51der a of the form

alo) = zo aj@)l,  aje ST,
]:

we define Op(a) := X OpT(aj)DgN. We write a € S™" and Op(a) € ¥™™ .
We define the following norm, for m € N and m’ € R,

+
el = = Z AT, "IDLull.

lletllme = Nleellm,0,7 = Z IAT- ‘Dlully, uwe SRY),

where ||.||; := ||.||L2(Rz+v). We have

lllme =< Y " ND L,

|a|<m
aeNN

and in the case m’ € N we have

'_
= =< % % T TDYuL,.

aN<m |a|l<m+m’
a=(a’ ,arN)eNN
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If mm’ e Nand m”,m”” e R,andifa € S ?’T, then we have

T m' T S m’ . m” +m’"’ s + ).
| Opr(a)ul| < Cllul] ue SRY)

Ifae Sf?;" , then we have

” OpT(a)u”m’,m"’,T < C”u”m+m’,m”+m"’,‘ra ue y(Ri\-’)

The following argument will be used on many occasions in what follows, for m € N, m’,{ € R,
with € > 0,

(31) ”W”m,m’,‘r < ||W||m,m’+€,‘r-
At the boundary {zy = 0} we define the following norms, for m € N and m’ € R,

2

Y
vy €S EY).

m Lo,
2 m—j+m

|l - = _20|AT’TJ D] upzy=o+|

]:

3.2. Statement of the Carleman estimate. In this section, we consider z = (x,s) € RV with
xeR%and s € R. We also set Z = Q x (0, S (). We write x = 7 and s = zy, in connexion with the
notation introduced for the tangential calculus in Section 3.1.

Let z9 = (x0,0) with xy € Q. We consider a function ¢ € €*(R") such that d(z) < -C < 0
in a bounded open neighborhood V of zg in R x Q. We then set ¢(z) = e?¥@.

Using the notation introduced in Section 3.1 for semi-classical norms, we have the following
Carleman estimate at the boundary Q X {0} for functions defined in {s > 0} N V.

Theorem 3.1. Let P = D‘S1 + B = D‘S1 +A?onZ=Qx(0,50). Let W be an open set of RN such
that W € V. For y > 0 chosen sufficiently large, there exist To > 1 and C > 0 such that

3 .
3 PN D il 2z < C(Ile Pullzgy + 3 (€™ DIl 7/ )-
lal<4 Jj=0
for v > 1o and for u = wiz, with w € ‘@“(Rd X R) and supp(w) Cc W.

This Carleman estimate is characterized by the loss of a half derivative.

Corollary 3.2. Let P = D%+ B =D} + A onZ = Qx(0,S). Let W be an open set of RN such
that W € V. Fory > 0 chosen sufficiently large, there exist 1o > 1 and C > 0 such that

772 12 2 '
¥ PN DY 2z < C(Ile™ Pullyazy + 72 3 (e DIl s ):
lal<3 J=0
for v > 1o and for u = wiz, with w € %C‘.x’(Rd X R) and supp(w) Cc W.

Proofs are given below.
3.3. Sub-ellipticity property. As in Section 2.1, we write P = PP, with Py = (—=1)KiD? + A,

and P, = e™Pe™™ = Q10> with O = e™Pre” ™. The principal symbol of g, in the sense of
semi-classical operators, is given by

(2. &, 1) = (“DNi(o + ite) + a(x, & +ite),  1(z2,7) = (¢, %,) = 1dp € RY,

where a(x, &) denotes the principal symbol of the Laplace operator A.
Recalling the definition of the semi-classical characteristic set of a (pseudo-)differential opera-
tor A, with principal symbol a(p),

char(A) = {o = (z,£,7) € VX RY X R,; (£, 7) # (0,0), and a(o) = 0},

we have the following results for the characteristic sets of Oy, k = 1, 2.
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Lemma 3.3. In V, we have char(Q1) N char(Q,) = 0.

Proof. Leto =(z,{,7) € V xRN x R,, with (Z, 1) # (0,0), be such that g;(0) = g2(0) = 0, which
reads (- Dki(or + it5)* + a(x, & +itg) = 0, for both k = 1 and k = 2, meaning that we have
(C+ite)* =0, a(x,&+ite) = 0.

In particular this implies oo = 0 and 7, = 793¢ = 0. As here d,¢ # 0 we thus have o = 7 = 0. With
7 =0, we have 7 = 0, and we thus obtain a(x, &) = 0, implying & = 0 because of the ellipticity of
a(x, &). [ ]

Lemma 3.4. Let Ly and L, be differential operatorsinV. Let ¢ € €*(Z) and set L, = e™*Lie™™,
k = 1,2. Assume that char(Ly ) N char(Ly,) = 0. Then the couple (LiL,, @) satisfies the sub-

ellipticity condition of Definition 2.4 in 'V if and only if both (L, @), k = 1,2, satisfy this property.

Proof. We denote by £, the principal symbols of Ly o, k = 1,2, and £ = £;{, the principal symbol
of e™PLiL,e™™. We observe that

{€,0) = |11 62, &) + |G, €1} + flE1] 6o,

for some function f. If (£, ) satisfies the sub-ellipticity condition and if £;(0) = 0, with o =
(z,4,7) € VX RN x R,, then &2(0) # 0 and 0 < {£,£}0)/i = |61, €1}/i, thus yielding the
sub-ellipticity condition at o for £;. The same argument applies for ;.

Let us now assume that ¢; and ¢, both satisfy the sub-ellipticity condition. If £(¢) = 0 then
either €1(0) = 0 or £»(0) = 0. Let us assume that £1(0) = 0. Then ¢,(0) # 0 and {21,51 10)/i>0.
We then have {£, £}(0)/i = |62(0)/*{€1, €1}(0)/i > O. n

By Lemma 2.5, the couples (Py, ¢) satisfy the sub-ellipticity condition in V. From Lemmata 3.3
and 3.4 we deduce the following result.

Corollary 3.5. The couple (P, ) satisfies the sub-ellipticity condition of Definition 2.4 in V.

3.4. Proof of the estimate at {s = 0}. The proof of Theorem 3.1 uses Lemma 4.3 in [ ].
Proof of Theorem 3.1. We denote by a() the principal symbol of (P, + P)/2 and by b(p) that of
(P, — P5)/(2i). We have a € S7° and b € S7'. We set A = Op(a) and B = Op(b) and
Qapr(w) = 2Re(Aw, Bw),.
The sub-ellipticity of (P, ¢) given by Corollary 3.5 reads
a()=be)=0 = {a,b}>0, 0€ VxRN xR,.

With Lemma 4.3 in [ ], we obtain, for some C > 0 and C’ > 0, for 7 > 1 chosen sufficiently
large,
CIMI . < C'(IAVIE + IBVIE + [t )3 15.1) + T(Qap(v) — Re B (),
where |Z,,(v)| < |tr(v)|§’1 e for v = wyz, with w € ‘KC‘X’(Rd X R) and supp(w) ¢ W. We thus
obtain
112 . 2 2
T ||V||4J SIA+iBv|ly + |tr(V)|3,1/2,T-

As we have P, = A +iB mod ‘I’i’o, by taking 7 sufficiently large, with the usual semi-classical
argument (3.1) we obtain

(3.2) T2 llgr S NPVl + 1 tr(W)31 2

The conclusion of the proof is then classical. |
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Proof of Corollary 3.2. Let W’ be an open set of R such that W € W’ € V and let y, { € €= (W)
be such that y = 1 in a neighborhood of W and ¥ = 1 in a neighborhood of supp(y).

We may apply estimate (3.2), an equivalent form of the estimate of Theorem 3.1, to the function
7l 2)((z)AilT/ 2y, for v = wyz, with w € €°(R? x R) and supp(w) C W. Observe that we have

/\((z)A.F,lT/ 2y = A._I.’IT/ 2+ Ro_mv, PwX(Z)AilT/ 2y = )?(Z)Papl\ilr/ 2+ Ry _mv,

because of the support of v, with Ry_p € ‘I’g’_M ,and Ry _p € ‘I’i’_M , forany M € N.
Setting v = TI/ZA{IT/zv € .Z(RY), we thus obtain, with (3.2),

—1/21~ ~ ~ ~
(3.3) T2 0llyr < e Pl + | t()3 12,7 + IVIla,-pr-
‘We then observe that we have

—1/2)1~ -1/2
20l e = AT Pl = Vlla1/2r-

We also have [tr(D)l3 1,2, = Tl/zltr(v)le, as [Ds, A7 ] = 0, r € R. Next, as D}P¢,A.F1/2] €

T
‘I’i’_3/ 2 we have

~ ~ 1/2 -1/2 ~ 1/2 1/2
lePeoll < T PIAT 2Pl + T2l 3720 S PV + T2 IVIla -3 /2.r-
From (3.3), we thus obtain
1/2 ~ 1/2
IVlla—1/2,x S 1PVl + T2 030 + T2 1VIl4-3/2.7-

With the usual semi-classical argument (3.1) we conclude the proof, as |[V|ls—1/2+ 2 2. m

4. ESTIMATE AT THE BOUNDARY (0, S ¢) X 9Q

4.1. A semi-classical calculus with three parameters. We set W = RY xRN, N = d + 1, often

referred to as phase-space. A typical element of ‘W will be X = (s, x, 0, &), with s € R, x € RY,

o € R, and £ € RY. We also write x = (x’, x4), X' € R*!, x; € R, and accordingly & = (&', &,).
With s and x playing very similar role in the definition of the calculus, we set z = (s, x) € RV,

7 =(s,x)eRN! and zy = x4. We also set £ = (0,&) € RN, ¢ = (0, &) e R¥"! and ¢y = &5
In this section, we shall consider a weight function of the form

4.1) @y e() = O, Y(2) = Yled ),

with y and & as parameters, satisfying y > 1, & € [0, 1], and ¢ € €*(R"). To define a proper
pseudo-differential calculus, we assume the following properties of

4.2) w>C>0, WP < oo, keN.
In particular, there exists £ > 0 such that
(4.3) supy < (k+ 1)inf y.

RN RN

4.1.1. A class of semi-classical symbols. We introduce the following class of tangential symbols
depending on the variables z € RY, ¢’ € RV and 7 € RV. We set A2 = |¢’|* + |7

Definition 4.1. Let m € R. We say that a(z, ', /) € € (RY x RV"! x RV) belong to the class S
if, for all multi-indices @ € NV, 8 € N¥~1 5 € NV, there exists Co 5 > 0 such that

090,00z, P < Capoly P70, (0.0 ) e RY xRV XRY, 1> 1.

If I' is a conic open set of R_f x RN=1 x RN, we say thata € § T, in I"if the above property holds
for (z,’,f) € T.



SPECTRAL INEQUALITY AND RESOLVENT ESTIMATE FOR THE BI-LAPLACE OPERATOR 21

Note that, as opposed to usual semi-classical symbols, we ask for some regularity with respect
to the semi-classical parameter that is a vector of R" here.

This class of symbols will not be used as such to define a class of pseudo-differential operators
but rather to generate other classes of symbols and associated operators in a more refined semi-
classical calculus that we present now.

4.1.2. Metrics. For 1, > 2, we set
M =RY xRN X [1,, +00) X [1, +0) X [0, 1],
Mr =RY x RV ! x [1,, +00) x [1, +00) X [0, 1].

We denote by o = (z,4, 7, v, €) a point in M and by o’ = (z,{’, 7,7, €) a point in M.

We set T = 1yg, .(z) € R,. For simplicity, even though 7 is independent of {’, we shall write
T = 7(0’), when we wish to keep in mind that 7 is not a simple parameter but rather a function. As
Y > 0,7 >1,,and y > 1,we note that we have T > 7. We then set

=20 =P +T@, A7, =23:) =P+

The explicit dependences of Az and A1z upon o and " are now dropped to ease notation in this
section. Similarly, we shall write ¢(z), or simply ¢, in place of ¢, 4(2).
We consider the following metric on phase-space ‘W = RN x RV

(4.4) g = (1 +ye)ldZ |* + yldzn* + A2,

fort > 1.,y > 1, and € € [0, 1]. (Note that this metric is not to be confused with the Riemannian
metric g on Q.)

On the phase-space ‘W’ = RN xRN~! adapted to a tangential calculus, we consider the following
metric:

g1 = (1 +ye)’ldz'|* + yldznl® + 27311,
fort>71,,y>1,and e € [0, 1].

The first result of this section shows that the metric g on ‘W defines a Weyl-Hormander pseudo-
differential calculus, and that both ¢ and A; have the properties to be used as proper order functions.
For a presentation of the Weyl-Hoérmander calculus we refer to [ 1, [ , Sections 18.4-6]
and [ ].

Proposition 4.2. The metric g and the order functions ¢, s, Az are admissible, in the sense that,
the following properties hold (uniformly with respect to the parameters T, y, and €):

(1) g satisfies the uncertainty principle, that is h;l =y 1> 1.
(2) ¢y, Az and g are slowly varying;
(3) ¢y.e, Az and g are temperate.

We refer to Appendix A.2.1 for a proof. Similarly, we have the following proposition.

Proposition 4.3. The metric gt and the order functions ¢, ., A1z are admissible. For the tangential
calculus we have h;Tl =1+ sy)_l/lT,; > 1.

Note that the proof of the uncertainty principle uses that 7. > 2. The condition 7. > 1 would
suffice if we chose ¥ > In(2). We preferred not to add this technical condition on the weight
function .

Consequently, 7(¢’) is also an admissible order function for both calculi.
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4.1.3. Symbols. Let a(o) € € RN x RY), with 7, y, and € acting as parameters, and m, r € R, be
such that for all multi-indices a, 8 € NV, with @ = (¢/, ay), we have
4.5) 02a(0) < Cap ™1 +e)#V, geM.
With the notation of [ , Sections 18.4-18.6] we then have a(o) € S (7' 17, 2).
Similarly, let a(o’) € %W(R_f x RN-1), with 7, v, and € acting as parameters, and m € R. If for
all multi-indices @ = (¢/, ay) € NV, 8/ € NV¥~!, we have
4.6) 02| < Cag YN +ey) 1T AFF o e My,

we then write a(o’) € S (Tr/l’”~, g7). Observe that S (Tr/l’”~, gr)csS (/lqi’", 7).
The principal symbol associated with a(@’) e S (T’/l’” , gT) is given by its equivalence class in

S (‘T"/l’” ,eT)/S((1 +<9)/)T’/l’”~ !, g1). We denote this pr1n01pa1 part by o(a). Often, an homogeneous
representatlve can be selected and the principal part is then identified with this particular repre-
sentative of the equivalence class. (Conic sets and homogeneous symbols are precisely defined in
Section 4.1.5 below.)

We define the following class of symbols, that are polynomial with respect to &y,
s = z ST end

For a(p) € S Z”",, with a(o) = oajo )( s With a j©)es (/lm+m = , &T), we denote its principal
part by o(a)(0) = XL, o(a j)(Q )§ N

For this calculus with parameters to make sense, it is important to check that A; € S (4z, g) and
Atz € STz, 8T7)and T € S(7,2) NS (T, g7). In fact, the latter property implies the first two.

Lemma 4.4. We have T = typ, . € S(T,2) N S(%, g7).
We refer to Section A.2.2 for a proof.

4.1.4. A semi-classical cotangent vector. We sett = 1d @, o(2) = Ty@y (D)W e(2) = T(0")d Y (2) €
RN. As for 7, we shall write # = #(0’), when we wish to keep in mind that # is not a constant cotan-
gent vector. Note that T = (7, Ty) with

t(0") = 10 e(2) = 70 )dd(ed zn), Tnlo) = T30, ¥(eZ, zw).

As dyy. € S(e,g71) and 9,,¥- € S(1, g7), we have the following result.
Lemma 4.5. We have ©’ € S(e%,2)V"' N S (7, g7)V ' and ty € S(7,8) N S (7, g7).

For later use, we also introduce the following notation:
@47 to=1(0) = T0spys(2) €R, % = 2£(0)) = Tdipyo(2) e RV = RY,

= 12,(0)) = T0x,0y6(R) ER, Ty = Te(0)) = Tduipys(2) e RV = R

We then have
4.8) t={0t) = Grtets), T =00tp), tyv=1g

Even thought the following lemma is very elementary, we state it for futur reference.
Lemma 4.6. Let V be an open set of RN such that 8,,4(z) > C > 0 for z € V. Then, we have
4.9 17| < ¢, < T, zeV.

Proof. As |||l < C,if 0y, > C > 0 for z € V c RV, then we have |?| < ¢, and thus the
result. u
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4.1.5. Conic sets and homogeneity. We recall that a set I C @ x RN=1 x R is said to be conic
if (z,¢’,7) € T implies that (z, v¢’, vi) € T for all v > 0.
We introduce the map
K: Mp — RY x RVN-T xRV,
o =@ty e) e (2.0, 10).
Throughout Section 4 and Appendix B, we shall use the following terminology.

Definition 4.7. An open subset % of M is said to be conic if I' = k(%) is conic in @xRN “IxRN,
A function f : % — E, E a vector space, is said to be homogeneous of degree m if f takes the

form f = g ok with g : @xRN‘l x RN — E such that g(z, v, vi) = v""g(z, ¢, 1), for v > 0.

In other words, conic sets and homogeneity are to be understood with respect to the variables
(z,£,7) instead of the variables (z, {, 7,7y, €), where, as above, T = 1d,¢, (2) = Y@y (2)d Y s(2).

If 7% is a conic open subset of My we shall say that a € S(¥"AY,, g7) in % if property (4.6)

holds in %, with a similar terminology for symbols that satisfy the defining property of S ;"m in

.

In what follows, the following lemma will be used for instance, to generate cutoff functions. It
will also be used to obtain symbols with the adapted homogeneity with respect to ¢’ and 7. We
refer to Section A.2.3 for a proof.

Lemma 4.8. Let % be a conic open subset of Myt and set T = k(% ). Assume also that |T| < T
in%. Let m € R and a(z,{’,1) € ST, inT (as given in Definition 4.1). We then have a(’) =

aox(o’) € S(AY .. gr) in % . In fact, if a is polynomial in (¢, ?) the assumption || < T in % is not
needed.

The following lemma is elementary.
Lemma 4.9. Let % be a conic open subset of My and leta € S(¥" A7, g1) in % . Let y € S(1, g1)
in My, with supp(y) C % . Then, ya € S(T" A7 ., g1) in M.
4.1.6. Operators and Sobolev bounds. Fora € S(¥" A%, g) we define the following pseudo-differential
operator in RV:

(4.10) Op(a)u(z) = Q)™ [ e“a(z, ¢, 1.y, e)a(l) di, ue SR,
RN

where # is the Fourier transform of u. In the sense of oscillatory integrals, we have

Op(a)u(z) = Cm)™ [ “™a(z,¢, 7.y, &)u(y) d{ dy.
RZN

The associated class of pseudo-differential operators is denoted by W(7"A%, g). If a is polynomial
in the variables { and 7(0") = 7d.{+(z), we then write Op(a) € Z(¥' A7, g).

Tangential operators are defined similarly. For a € S (747 ., g1) we set

(4.11) Opr(@u(z) = 2ay NV [f a1y, 8) uy, zy) dZ dy,

R2N-2

for u € #(RY), where z € RY. We write A = Opr(a) € V(¥ A7, g7). We set A7, = Opr(A,).
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We also introduce the following class of operators that act as differential operators in the zy
variable and as tangential pseudo-differential operators in the 7’ variables:

m . .
(4.12) P =y WT T gr)D] meN, reR,
J=0

T7 N

that is, Op(a) € W7 if a € SZ*". Operators of this class can be applied to functions that are only
defined on the half-space {zy > 0}.

At places, it will be handy to use the Weyl quantization for tangential operators, namely with
aes (%F/VT",%’ g7) we define

4.13)  Opr(@u(z) = @)y MV 1 & +y)/2,2n, 1y, )u(y  zy) AL dy .

R2N-2

This quantification is often advantageous as Op7"(a)* = Opt"(a), and thus, for the symbol a real,

the operator Opt"(a) is (formally) selfadjoint. Note that Opt(a)—Opt"(a) € (1 +gy)‘P(%’/l¢?1 ,8T)-

T

We now present some Sobolev-bound type result that we shall use in what follows. We use the
following notation

[k = 112 G)e = G pgmy
for the L?-norm on the half space RY and the associated scalar product.

We have the following lemma whose proof is similar to that of Lemma 2.7 in [ 1.

Lemma 4.10. Let r,m € R and a € S(T" A7 ;, g1). There exists C > 0 such that, for T sufficiently
large,

(Opr(@u, v),| < CllOpr(Z” A ull | OprZ” AFowlle, v e S RY).
Jorr=r +r" m=m'+m", withr',r"" eR, m’,m” eR.
This contains the estimate
(4.14) 10pr(#” A4 Opr(@ulls < CllOpr(F* AL yully,  ue FSRY),
for r,m’ € R. The proof of Lemma 4.10 relies in the fact that, for r,m € R,
Opr(#' A7) Opr(F"A47%) = Id +Ry,

with Ry € (1 + £y)¥(A7%, g1) and [|Ry |2, ;2 < 1 for 7 large.
Note also that we have the following result (see Section A.2.4 for a proof).

Lemma 4.11. We have

(4.15) 1Opr(E g Julle = | Opr(H)Fulle,  we S E),
and
(416) |OpT(%r/lqu-)mZN:O*|L2(RN71) = |OpT(/lQ'nj-)%ru|ZN=0+|L2(RN71)a ue <Sﬂ(I&N—IL

for T chosen sufficiently large.

We define the following semi-classical Sobolev norms

N-1
|M|m,‘7' = |A¢ju\ZN:0+|L2(RN—l)7 me Ry uec y(R )a

m . . —_—
.
lallne = 5, IATZ Dy, me N, we . E)
j:
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We also set, for m € N and m’ € R,
m Lo, N
m—j+m
el mr 7 =< ZO IIAT; Dl ully, ue SRY).
J:

At the boundary {zy = 0} we define the following norms, for m € N and m’ € R,

m i _
[tz = 2 IATE™ Doytt=00)] ue SRY).
J:

T.7 LZ(RN—I)’

The following argument will be used on many occasions in what follows, for r,7’,m € R, and
>0,

4.17) YIIE Wl

~r +L ~r
mz < IF Wz < 1 Wlhne ez,

for T chosen sufficiently large, as ¥" < ¢, = exp(y¥,) since ¢, > C > 0. We have similar such
inequalities for the other norms introduced above.
With the above results we deduce the following two propositions.

Proposition 4.12. Let r,m € R, and a € S(T' A} ., gt). Then, for r',m' € R, there exists C > 0

such that
' - ’ _N
I¥" Opr(a@)uyy=0+l,, » < CIF™" Uen=0t i 7 U E L (RY),

m.,T —

for T sufficiently large.

Proposition 4.13. Letr,m’ € R, m € N, and a € T'ST"™ . Then, for r',m""" € R and m" € N, there
exists C > 0 such that

H%r Op(a)u”’"”’m'”j' < C”%H—r u||m+m”,m’+m’”,7~w uce y(RﬂY),
for T sufficiently large.
Similarly to Lemma 4.11, we have the following equivalences for norms.

Lemma 4.14. Let m € N and r,m’ € R. We have, for T chosen sufficiently large,

"1

~r L S AT A
E Wl 7 < ZOHDZN(T W0+ - jz < ZOIIT I 2D (T AL W)l
J= J=

wherer = v, + v, andm+m' — j = m;’ + m;”, with r},r}’ € R and m}’,m;” eR j=1,...,m
Similarly, we have

~r m ] ~t m ~r Wl}, ] " m}”
|tI'(T W)lm,m’,‘?’ = Jg() IDZN(T "V)|Z1v:0+ |m+m’7j,‘7' = Jg() IT jAT’f(DZN(T J AT,‘T’ W))|ZN:0+|L2(R”‘1)'

See Section A.2.5 for a proof.

Proposition 4.15 (local tangential Garding inequality). Let Wy, W be two open sets of RN, with
Wo € Wy. Leta(p’) € S(F" /l’{?, gT), with principal part a,,,. If there exist C > 0 and R > 0 such
that

Re ar,m(Ql) > Ct" ?,‘?’ z€ Wy, {/ € RNil, T27,, ATz2=R,

then for any 0 < C’ < C there exists 1| > T, such that
Re(Opr(@u, u)s 2 C'IF2ully per 7271
Sforu=wy, withw € €°((0,S o) X R4) and supp(w) c Wj.

In many occurrences, we shall use the following microlocal version of the Garding inequality.
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Proposition 4.16 (microlocal tangential Garding inequality). Let % C My be a conic open set.
Let also x(0') € S(1, g1) be homogeneous of degree zero and such that supp(y) C % . Let r,m € R
and a(@’) € S(F" AT ., g1), with principal part a, . If there exist C > 0 and R > 0 such that

Re ar,m(Q/) > C%r/l"?}’-;, Q/ € %, T2 Ty, /lT,‘? >R,
then for any 0 < C’ < C, M € N, there exist Cp and t¢ > 7. such that
Re(Opt(a) Opr(x)u, Opr(x)u)s = C’IF"* OprOOUlIG 07 = Cotllullg _py 2

forue Y(@) and T > 1.

4.2. Local setting and statement of the Carleman estimate. To explain the construction of the
phase function, it is useful to use a particular set of coordinates. We set Z = (0,S59) X Q and
0Z = (0,8 ) X 0Q.

Let 79 = (0, Xo) € 0Z. In a neighborhood V of zy in RV, using normal geodesic coordinates for
the x variable, we can express the principal part of the Laplace operator A in the following form

(4.18) A =D} +R(x,Dy),
where R(x, D) is a tangential differential operator of order 2 with principal symbol r(x, &),
(4.19) r(x,&) = CIE'P,

where C > 0. We denote by 7(x, £, 17") the associated real symmetric bilinear form. The boundary
(0, 80) x 0Q is locally given by {zy = 0} = {x; = O}.

Without any loss of generality we shall assume that V is a bounded open set.

We then let ¢/(z) be defined in RV and fulfilling the properties listed in (4.2) with moreover,

(4.20) B (@) =0 0(x) 2C >0,  zeV,

and we set ¢, (z) = exp(YW.(z)) with Y.(z) = Y(es,ex’,xq), fory > 1 and & € [0,1]. As
mentioned above, we shall often write ¢ in place if ¢, . for the sake of concision.

The main result of this section is the following Carleman estimate.

Theorem 4.17. Let P = D‘S1 + A2 Let 79 = (50, %0) € (0,5¢) X 0Q. Let ¢(z) = ©y.6(2) be defined as
above. There exists an open neighborhood W of 7o in (0, S ) X RY, W C V, and there exist Ty > Ty,
vo =1, & € (0, 1], and C > 0 such that

@21 y 3 IIFE e DY ull, + z3|eT¢D;du|az|

lal<4 0<j< 2T

< C(||eT‘pPu||+ + j—z()ll |€T¢D§cdulﬁz|7/2—j,-?)e

fort =10,y > v, € €0, &), and for u = wz, withw € €:°((0, S o) X RY) and supp(w) Cc W.

As written in Case (iii) of Section 1.3, the proof we provide of this theorem is based on a
decomposition of phase-space in three microlocal regions and the derivation of an adapted estimate
in each one of these regions. The definition of these three regions is based on the properties of the
roots of the principal symbol of P viewed as a polynomial function of degree four in the variable
&4. We start with the analysis of those properties in the next section and define the microlocal
regions in Section 4.4 below. In section 4.5 we provide a proof scheme for a microlocal Carleman
estimate in each of the three regions. Then, in Sections 4.6—4.8 we precisely state and prove the
microlocal estimate associated with each region. Finally, in Section 4.9 the various microlocal
estimates are patched together, to yield the estimate of Theorem 4.17.
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4.3. Root properties. Here, z will be assumed to be an element of V so that all the symbols are
well defined. We write, as in Sections 2 and 3,

P = P,P;, with P, = (-DKiD? + A.
Setting P, = e Pe™ " we have
4.22) Py, = 0,01, with Qx=e™Pre™™ = (-DXi(Dy + itd50(2))* + Ag,
with, in the selected normal geodesic coordinates,
Ay =ePAe™ = (D, + iTadeD(Z))Z + R(x, Dy + itdv9(2)), z=(s,Xx).
In fact, we shall write Qy, in the following form
(4.23) Ok = (Dy, + i‘raxdw(z))2 + My, My = (=1)%i(Dy + itd59(2))* + R(x, Dy + itd,(2)).

This form will allow us, when a smooth square root Hy of My is available in the tangential calculus
associated with g, to write, up to lower order terms,

Ok = (Dy, + 100 + iH) Dy, + 05,0 — iHp),

and, then, we shall base our derivation of a Carleman estimate for P on estimates for first-order
factors. This approach was introduced in the seminal work of A.-P. Calderén [ ]. It has
been used recently to address boundary and interface problems in the derivation of Carleman
estimates [ R ]. Of course, the two smooth square roots, H; and H;, may not always
be available. Still, on the occurrence of such a case, we shall find that the operators Q; and Q»
will be characterized by perfectly elliptic estimates at the boundary, that is, one can estimate the
semi-classical Sobolev norm of the solution in Q as well as the counterpart norms for the traces
of normal derivatives of the solution on 9 (with the natural 1/2 derivative shift for the traces)
—see Section B.1. As a preliminary to this analysis, we shall study the properties of the principal
symbols of O and O, and the properties of their roots.

We denote the principal parts of Oy and My by g and my, which gives, with o = (2,4, 7,7y, )
and ¢ = (0, &),

(4.24) qi(0) = (€4 + it (D))" + m(0") = (€a + ite, (@) + m(0'),
with
(4.25) mp(©') = (=1)Ni(0 + it (0))* + r(x, & + ite(0)),

recalling the definition of #(¢”) introduced in Section 4.1.4 and using the notation (4.7)—(4.8).
For f = (i, fr) € R X R?, with ¢ = (7, f,) € R X R, we set

(4.26) Q20,0 = (€a + ife,) + i, 00D, (2L, 0) i= (=DFi(o + it )? + r(x, & + ify).

We have Qk(Q) = Qk(a {’ %) and mk(Q,) = ﬁ”lk(Z, 4/7%)-

We now study the roots of §i(z,’, &y, 1), with ¢’ = (0, &), when viewed as a polynomial in
the variable &;, with the other variables, z, ¢/, and 7 acting as parameters. To that purpose, we
introduce the following quantity

4.27) iz, D) 1= 48, Rerin(z, ', 1) — 48, + (Imring(z, ', D).
We choose fy(z, ¢, 1) € C such that
(4.28) Rehp(z, ', ) >0 and hu(z, ', 7)? = im(z, ', D).

We may then write

(4.29) Gz, £, D) = Eq + ife))* + h(2, 0,0 = (éa = P+ @ O D) Ea = pr—(2, 1),
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with

(4.30) Pre(z. 0,0 = —ifg, + iz, ', ).

The choice of /i is unique if 77y, ¢ R_. The results of this section are yet valid in the case /7, € R_;
however, in the following sections, those results based on the factorization (4.29) will only be used

in settings where 7y, € R_ does not occur.
We give some properties of the roots Py +(z, ', 7).

Lemma 4.18. We assume that iz, > 0. Let k = 1 or 2. The roots py+(z,{’, 1) and px(z,{’, 1) are
both homogeneous of degree one in (!, 1), and such that

431) Impy— < ~fe, < Impps.

We also have

(4.32) P =Prr S Pr-=prr =iy, o iy =0.
Moreover, if iz, > 0, we have

4.33) mps S0 o f S0,

In particular, if 7, > 0, observe that the root p - remains in the lower half complex plane,
independently of the values of z,’, and 7, while the root Py may cross the real line.

Proof. The roots can be chosen continuous with respect to  and 7 and homogeneity comes nat-
urally. Observe that Impy. = —fg,, + Re ftk. As Re lAqk > 0 then (4.31) is clear. The form of py .
above yields the equivalences in (4.32).

Finally, as Imp . = 0 is equivalent to Re /i = f¢,, Lemma 4.19 below implies (4.33), since
RefszOandt}d>0. ]

Lemma 4.19. Let ¢ € C and m = 2. We then have, for xo € R such that xy # 0,
IRet| £ |xg] & 4xjRem—4x)+ (Imm)* £ 0.
Proof. Lett = x + iy. We have Rem = x*> — y> and Imm = 2xy and we observe that
4x3 Rem — 4xg + (Imm)? = 4(x3 + yH) (¥ = xD),
which gives the result. n

Corollary 4.20. We assume that f¢, > 0. Let k = 1 or 2. If C > 0, there exists C' > 0 such that
P D= CUR+1CP? = Impa@ D> Car. ar =P+ 102
for (.7, € VARY x RV-1 x RV,
Proof. We consider the compact set (recall that V is bounded)
€ ={.DeVNRY xRV xRY; A7 = 1.

The inequality fi; > C yields a compact set K of ¢". By (4.33) in Lemma 4.18, we have Im py 4 >
C’ > 0 on K, and we conclude by homogeneity. |

Proposition 4.21. We assume that iz, > 0. Let k = 1 or 2, we have the following properties:
(1) There exist 6y € (0,1) and C > 0 such that if

zeV and |f| < 6 A7,
then the roots py . are simple and non real, and moreover
(4.34) Impg, > CAr, Impy_ <-CAt (5,0, D) e VxRV xRV,
with Ar = (P +1¢'P).
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(2) There exists C > 0 such that
0<1t, <C(FI+I1), and || <Cl,

if P+ € R, where ' = (i, 1z). In such case, the value of the imaginary part of the second
root is prescribed and nonpositive: Im py _ = —2i¢,.
(3) There exists C > 0 such that |T'|/C < || < C|F'|, if g has a double root.

Finally, if tz, > 0 and if |¥'|/1, is sufficiently small, and if the polynomial gy, k = 1 or 2, has a
double root, then both roots of the second symbol, G with k' # k, are in the lower half complex
plane. More precisely, there exist Co, C1 > 0 such that if |f'| < Colg, then

(4.35) Pr+ =pr- = Impp. < —C]f.fd-

Proof. Proof of point (1). Because of homogeneity it is sufficient to assume that (7, 7) is on the
sphere S = {Ar = 1}. If f = 0, then we have 7y, = fzi = r(x, &) + (=Dkio?. Observe that Ay # 0
here. Otherwise o = 0 and & = 0, which cannot hold as |’| = 1. Moreover Re /7y, > 0. Hence, we
have Re flk > (. Then we write

Qi = E2+ I = (&q + i) (Eq — i),

yielding py_ = —ily and py, = ihy, which gives Imp;_ < 0 and Impy, > 0. As SN {7 = 0} is
compact we find that Impy - < —C < 0 and Imp,, > C > 0, for some C > 0, for [{’| = 1 and
f = 0. Then, using a compactness argument once more, using the continuity of the roots, there
exist 6y € (0, 1) such that

Impy (z,¢',0) < -C' <0, Impg(z,¢',0)>C" >0,
if z € V and |f] < 6, recalling that V is bounded. We then obtain (4.34) in V by homogeneity. In

particular this excludes having double roots and real roots.

Proof of point (2). Observe that the inequality /| < C|{], in the case of a real root is simply another
formulation of part of point (1). Next, we observe that || < 1712+ implies | Re el < 17|+ IZ’].
Since having p; 4 € R is equivalent to Re /i, = f¢, by (4.30), we thus obtain 7z, < || +[{’|. As
Impy - = —fg, — Re J, we then have Im p; _ = —2fe,.

Proof of point (3) The equation /7y, = 0, which is equivalent to having a double root, reads
(4.36) r(x, &) = r(x, ) — (=120, = 0, o — 2+ (=1)*2F(x, &, Fe) = 0,

with 7(x, &, 1) defined below (4.19). From (4.36), using that r(x, .) is uniformly positive definite,
we obtain

2 22 s 217 2 y

€7 < lig ™ + |ollio, o™ < o] + 1€ le .
The sum of the two estimates gives |¢’[> < |7'* + ||| | + €]l ], and with the Young inequality we
obtain |¢’| < |#|. Similarly, from (4.36) we obtain

A2 2 A ) 2 A

lie 1= < ') + |olliol, lio]” < o™ + 1€ ]I,
and the sum of the two estimates gives |7'|*> < |¢’? + |o||s| + |€||7 |, and with the Young inequality
we obtain || < |].

Note that we could deduce that |//| < || from point (1). Here, we have obtained a sharper
estimate.

Proof of (4.35). If §; has a double root, then || < |/’| by point (3). Let 6 € (0,1), and set
Ci; =1-6. Tohave Impy » < —Cil, it suffices to have Impy . < —Cfz, by Lemma 4.18. With
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the notation of the proof of that lemma, this reads —7, + Re he < -C 17g,, thatis 0 < Re he < Olg,.
Now as we have |Re fip| < || < [A|'/? < || +1|, we find that O < Re iy < |7'| here. The result
thus follows if we assume that |f'|/ t}d is chosen sufficiently small. [ ]

Lemma 4.22. Assume that |f'| < Cot}d for some Cy > 0. There exists 6o > 0 such that if 6 € (0, d)
and u(z, ¢, 7) > 6%, with ;l% = 11> + 1’|, then the roots of §i are simple.

Proof. Because of homogeneity it is sufficient to work on the sphere S = {1t = 1}. Writing
my = iz% with Re izk > 0 asin (4.28), we observe that fi; > —0 reads
Afz, + Am )*)(Re h)* - 12,) = =6,
using the computation of the proof of Lemma 4.19 with x = 7,. Assume that we have a double
root. In such case 77y, = 0 by Lemma 4.18 and || < || by point (3) of Proposition 4.21. We then
have h; = 0, yielding 4?4(1 <6= 6;11 < 6%, using that |'| < Cofg,. Thus, for § chosen sufficiently
small we reach a contradiction. [ |
Lemma 4.23. Let k = 1 or 2. If both § > 0 and 1’|/, are sufficiently small, there exists C > 0
such that for (z,¢’',1) € VNRY x RN=I x RV
fu(z, ¢ D = 615 = [ <l

with A% = |1 + |’
Proof. Because of homogeneity it is sufficient to work on the sphere S = {A7 = 1}.

Let us now assume that the implication does not hold. Then there exists (z, '™, ") e
V N RY xS, such that f(z", /™, 1) > —§ and [{7| > n|¢’™|. As (2™, '™, {) lays in a compact
set (recall that V is bounded), it converges, up to a subsequence, to (z'*), ", 7)) e VN RY x S.
We find that ¢/ = 0 and (2™, 0, 7)) = (=D i) — r(x, z*;”) , yielding

A, 0, 1) = —4E) (0, 187) = 460 + (i) < -3,

for || /fg:) sufficiently small, as we have [7*)| = 1. For 6 sufficiently small, we hence reach a
contradiction. ]

4.4. Microlocal regions. With the functions fix, k = 1,2, introduced in (4.27) we shall define
several microlocal regions. Observe first that fi; is an homogeneous polynomial function of degree
four in (7, 7). We thus have ji; € S #f in the sense given by Definition 4.1. From Lemma 4.8, we

find that we have fix(z, (', 7(0")) € S (Af‘r 2> &7)- We thus define

(4.37) (@) = ﬂ?é(@')ﬂk(z 1) eSgn, k=120 = 17y,8).
We recall that T = 7d, ¢, (2) = T(0")d Y¥¢(2) and Y¢(2) = ¥(ez’,zn) with 0 < & < 1. Observe that
we have [7(0")] = T(@)ld el < T(@)lldllL~. Thus, having 0 < 7 < 6601 2(0")/Ild L, for
6 € (0, 1], implies |7(0")| < GpATz(0"). The value 6 is as introduced in Proposition 4.21. We set
01 = 35600/Ild-0l .

Let 5 € (0,1] and let V be the bounded open neighborhood in RY of zy € 4Z, introduced in
Section 4.2. We set Mty = V X RN-1 x [r,, +00) X [1,+00) x [0, 1]. We define the following
microlocal regions, for k = 1, 2,

F(V,0) = {0’ € Mry; z€V, #(0') < 661 A12(0")},
EDV,8) = (0’ € Mry; z€ V, (o)) < -6,
EPV,6) = (o' € Mry; z€V, (@) = —6).
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H2

Ficure 2. Microlocal region &E_. In dark color is the region where X;}z =
1. In light color is the support of )(552. The boundaries of the associated

regions for Xg,zz are marked dashed.

Evidently, we have My y = E(_k)(V, o) U E(()k)(V, 6). We now set
E-(V,6)=EVV, ) UED(V.6),  &(V,8) = ES’(V.6) N EJ (V. 6),

and we have Mty = E_(V,6) U Ep(V, 9). Below, in the text, when no precision is needed, we shall
use the “vague” terminology F, &_, or &, to refer to microlocal regions that take the forms of
F(V,6), &-(V,9), Eo(V. 6).

We let y_, xo € € (R), with values in [0, 1], be such that

X-= 1 on (—OO, _1]’ and Supp(X—) - (_009 _1/2]a
Yo =1lon[-2,+00), and supp(yo) C [-3, ).

Let V) € V be an open neighborhood of zg in RY and let XV, € € (R") be such that supp(xv,) C V
and yv, = 1 in an open neighborhood of Vj. With n € €,°(—0, 6,), with values in [0, 1] such that
n=1in[-601/2,6,/2], we set

xor@) =n(F@)/(6A12(0")) € S(1, g7).
and
xrF(©") = xv,(2) x1,r(0") € S(1, g7).
We set
X520 = xvo(@ (1 = x1/a.r(0) x—(u(@)/6) € S (1, g1).

Observe that we have

* _ (k) k) )

Xs. =1 on EZ(Vo,6) \ F(V,1/4), supp(xs_) c EZ°(V,6/2)\ F(V,1/8),
and thus
W4 DS on & WL, 2 cg
XD+ x? 21 on E.(Vo.9) \F(V.1/4),  supp(x” +x2) C E.(V.§/2)\ F(V. 1/8).

5

We finally set
X600") = xv, (@) (1 = x1/4,7(0") xo(u1(0))/6) xo(u2(0")/6) € S(1, g7).
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M2

Ficure 3. Microlocal region &. In dark color is the region where ys0 = 1.
In light color is the support of y.

Observe that we have
x50 =1 on &(Vo,26) \ F(V,1/4)  supp(xs0) € Eo(V,30) \ F(V, 1/8),
and
(4.38) XF+ X5 + X5 + xs0 2 1 ona conic neighborhood of Mr.y,.

With the microlocal cutoff functions we have just introduced we associate tangential pseudo-
differential operators, all in ¥(1, g7),

(4.39) Er=0pr(yr). Ep =0pr(x\)). k=12,  and Zs9 = Opr (xs0).

4.5. Proof strategies in the three microlocal regions. Derivations in all three microlocal regions
require first the proof of estimates for various factors and second the concatenation of those es-
timates. For this second part, to avoid redundancies, we describe in Appendix B.4, along with
proofs, how various type of estimates can be concatenated.

The estimate associated with region &_ is proven in Section 4.6. In region &_, we have P, =
010> where at least one of the factors is characterized by a principal symbol with two roots in
the lower half complex plane. This yields for this factor, say Q;, a perfectly elliptic estimate at
the boundary {x; = 0}, as given by Lemma B.1 (see Appendix B.1). For the second operator
0>, one can derive an estimate whose form is classical and exhibits a loss of a half derivative, as
given in Proposition B.10. A proof is provided in Appendix B.5, in particular since the estimate
needs to hold uniformly with respect to all parameters introduced. Finally, the two estimates are
concatenated to obtain an estimate for Py in &_.

The estimate associated with region &g is proven in Section 4.7. The treatment this region
requires the most delicate argument and justifies the development of the Weyl-Hormander calculus
of Section 4.1. Microlocally, in this region we write P, = Q10> and we manage to write each Qy,
k =1,2, in the form

Ok = Q-0+ + (1 +ye)Ry,

where Ok _, O+ and R; are all first-order operators. The operator Qy_ is characterized by
a principal symbol with a root in the lower half complex plane. Setting O~ = Q;_-Q>_ and
0" = Q1+0>+, with delicate commutator arguments we obtain P, = Q- Q" + (1 + y&)R3 where
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R; € ‘Pi’l. We thus manage gather togethers factors with similar root locations without generat-
ing a remainder in y‘I’i’l. Observe that this latter class for the remainder is obtained if operator
commutations within the Weyl-Hormander calculus are carried invoking usual arguments. Here,
to obtain the sharper class (1 + ys)‘I’?’l, we use the precise forms of the involved operators and
symbols.

For O~ we have a perfectly elliptic estimate at the boundary {x; = 0}, as given by Lemma B.1
(see Appendix B.1). For each operator Qi + a sub-elliptic estimate can be obtained with a trace
term used as an observation as given by Lemma B.6 in Appendix B.3.3. Concatenated together,
two such estimates yield an estimate for O, with a loss of a full derivative and observation terms
that involve both the Dirichlet trace and the Neumann trace of the solution. Concatenating now
the estimates for O~ and Q* one obtains microlocally an estimate of the form

1 _
YIE Vllaoz + 1trWl31 27 < 11Q7O V4 + [tr(V)]; 5727

With the form of the remainder term (1 + y£)Rj3 that appeared above in the decomposition of P,
one then sees that a similar estimate can be obtained for P, in place of Q~Q* by choosing y > 0
sufficiently large and & > O sufficiently small. Observe that if the remainder term had been in
y‘I’g’l we would not have been able to transform the estimate obtained for Q~ Q™ into an estimate
for Py.

Some technical aspects of the proof in the region &y described above require to have 7(o") of
the same order as At z(0’). This is however not true in that region. One thus rather considers a
region of the form & \ F, since region F is characterized by 7(0’) < CAtz(0’) for a well chosen
constant (see above). A last microlocal region, namely F, thus needs to be considered.

The treatment of region F' is given in Section 4.8 and has some similarities with what is done
in the region &y \ F. Yet, the treatment of remainder terms needs not be as refined. The operator
P, is written in the form P, = Q™0 + yR3 with R3 € ‘I’i’l and again O~ = Q;-0>_ and
0" = 01+0>.+. Here also, for O~ we have a perfectly elliptic estimate at the boundary {x; = 0}.
For Q*, the estimate we obtain is very different from what is done in & \ F. The region F
is designed so that the roots associated with the factors Q. and QO are both located in the
upper half complex plane. For each of these operators one can thus obtain a microlocal elliptic
estimate at the boundary {x; = 0} with one trace used as an observation term yet without any
loss of derivative as given in Lemma B.4 in Appendix B.3.1. Put together, with a concatenation
argument, an estimate for Q% is obtained with observation terms that involve both the Dirichlet
trace and the Neumann trace of the solution. This estimate for Q" does not exhibit any loss of
derivative: it is an elliptic estimate. Concatenated together the estimates for Q* and Q™ yield also
an elliptic estimate for O~ Q" with the above two traces as observation terms. The elliptic strength
of this estimate then allows one to handle the remainder term in y‘Pﬁ’] yielding a similar result for
P, in the microlocal region F.

As a final step of the proof of Theorem 4.17, we patch together the estimates obtained in the
above three microlocal regions. This is done in Section 4.9.

4.6. Microlocal estimate in the region &_. We prove the following estimate.

Proposition 4.24. Let M € N. Letk = 1 or 2. For § € (0, 1), there exist Tg > T, yo = 1, and
C > 0 such that

La—1/2=k) _ =) =) =)
@40) T PED vlsos + UGV, |, < CIPLED VL + &)

5

orne + llacasz)

fort =10,y =70, € €[0,1], and forv e Y(@).

The term ||v]l4 —pzz in the r.h.s. stands as a remainder that will be absorbed’ once the estimations
in the different microlocal regions are patched together. In fact, observe that this term is much
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weaker than that in the Lh.s. in the Carleman estimate (4.21) of Theorem 4.17. The meaningful
observation term in the r.h.s. of (4.40) is | tr(v)|y 7,2z, which is of the strength as the terms in the
Lh.s. of (4.21), and can be found in the r.h.s. of that latter estimate.

Proof. We have P, = Q10,. We consider the case k = 1. The same proof can be written in the
case k = 2. To ease notation we write y in place of y;5— and Z in place of = _.

In a conic neighborhood of supp(y) € Mr.y, with V introduced in Section 4.2, we have u; <
—Co6. As (4.20) holds in V we have T, > C7 and thus |7¢| < ¥. By Lemma 4.18, both roots of the
symbol g; of the operator Q; are in the lower half complex plane. Thus,

“4.41) the operator Q; fulfills the requirements of Lemma B.1.

Also, for the operator O, without any assumption on the position of the roots in the complex
plane, we have the following estimate, characterized by the loss of a half derivative and a boundary
observation term, by Proposition B.10, for £ € R,

1/212=1/2— —_ —_ —
(4.42) YR 2EIh ez + [0 (EV 127 S 11028Vlo g7 + [EEV.43/2.25

forv € f(RﬂY), for 7 > 7, and ¥ > 1 chosen sufficiently large, and ¢ € [0, 1] (recall that
supp(xy) € Mty which gives supp(Ev) c V' € V, for some open set V’, thus permitting the
application of Proposition B.10).

With (4.41), (4.42), and Proposition B.8, applied with Q- = Q; and Q* = Q> here, and with
a1 =0and @y = 1 and 6; = 1 and J, = 0, we obtain the result of the proposition, by choosing

T > 7, and y > 1 sufficiently large. n

4.7. Microlocal estimate in the region &) \ F. We prove the following estimate.

Proposition 4.25. Let M € N. For 6y € (0, 1) chosen sufficiently small and 6 € (0, 6¢), there exist
To = Ts, Yo = 1, &9 € (0, 1], and C > 0 such that

J, —_ — —
A Esovllaos + 10 Es0)l3 1 27 < C(IPeEsovlls + [ (Es0v)y 5707 + Mla-prz)-

fort >10,Y =0, € €0,&0], and forv € Y(@).

Before giving the proof of this microlocal estimate we need to provide some additional proper-
ties of the symbols my, introduced in Section 4.3 and its square root, h;. Note that the region F is
introduced to isolate the case where ¥ < C|{’| and this permits to exploit the relation || < CT in
the region &g \ F. This is used to obtain some symbol properties of /.

We recall the form of the tangential differential operator M, as introduced in (4.23),

My := (=1)"i(Ds + itd5(2))* + R(x, Dy + itdv(2)),
whose principal symbol is given by mi(0’) = (=Dfi(o + it050(2))* + r(x,& + itdvo(z)) €

S (/l% 2> 8T)- Observe that we have the following symbol estimation.

Lemma 4.26. We have 0,,m; € S((1 + 57)1% 2 &T)-

Proof. We write my(0’) = (=1)i(o + i‘?'g(g’))2 +r(x, & +it(0")), with the notation of (4.7). We
then have

Ay, My = —2(—1)k(6xd%0)((7 +iTy) + 20X, & + iTe, 0y, Ter) + O, (X, & + iTg),
with #(x,¢&’,n’) defined below (4.19). By Lemma 4.5, we have ¥ = (7,,T¢) € S(ef, g)V!
yielding 0,7’ € S(ey7, gr)¥~!, and as d,,r(x, & + itg) €S (/l%%, g7), the result follows. [ ]
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Let k = 1,2. If ux(0’) = —Cé, and for 6 > 0 sufficiently small then m; # O and, equivalently,
the roots of gx(o) are simple, by Lemma 4.22 since |?'| < 7¢, for z € V; recall the definition of the
operator Q, Ok = (Dy, + iraxdgo(x))z + M}, and its principal symbol g in (4.22)—(4.24).

Lemma 4.27. Let C,C’ > 0 and let ;s be a conic open set of Mty such that p(o") = —Cé and
Atz < C'|t(x)| in Us. For 6¢ € (0,1) and gy > O chosen sufficiently small, if 0 < § < 6o and
0 < & < &, the symbol my, is elliptic and there exists hy € S(A1z, 8T) in %s that is elliptic and that
satisfies

h: = my and Rehy > 0.
Moreover, we have 0., hy € S((1 + €y)A1 7, 87) in Us.

The second part of Lemma 4.27 improves, for A, upon the natural behavior of an arbitrary
element of f € S(Arz,g7) for which we have d,,f € S(yAtz g7). This is a key aspect of our
proof strategy of the Carleman estimate. In fact, if one chooses & = 0, that is, a weight function
¥ = Y(xg), then one finds directly that 8, ,m; € S (/l%%, g7) and d,,hx € S (A2, 87), as confirmed
by Lemmata 4.26 and 4.27. However, such a weight function is not convex with respect to the
boundary {x; = 0}, which turns out to be an obstruction for the applications of the Carleman
estimate we consider here. If we simply let ¢ be of the form (s, x’, x;) we then obtain 0,/ €
S (yA1 2, g7) and the proof scheme for the Carleman estimate collapses: the parameter y needs to
be set large, which yields uncontrolled terms in the derivation. The introduction of the parameter
&, writing ¥ .(z) = y(es, ex’, x4) is thus designed to control this behavior and to bring the analysis
as “close” as we wish to the case € = 0 for the derivation of the estimate and yet preserving some
convexity with respect to the boundary {x; = 0}.

Proof. In V, we have 0,4 > C > 0 yielding |7| < Tz, < T by Lemma 4.6. Next, |#'[/7¢, can
be made as small as needed by choosing £ > 0 small. Thus, if we choose ¢ € (0,80] and € > 0
sufficiently small, by Lemma 4.23 we have |7(x)| < |£’| and with the additional assumption made
here we obtain

(4.43) | =<%=<%,  in%.

If mi(0”) remains away from a neighborhood of the negative real axis in the complex plane for
o € %, we can then define /(o) as the principal square root of n (o). Then, it is straightforward
to obtain A € S(A1z,87) in %s. In fact, if we assume | Im my(0”)| < A% _, as we have, recalling
the definition of yy, in (4.37),

T,7°

1(0)A%1(0)) = 472 Remy(o') — 4% + (Immy(0))*

it yields, using (4.43), Re my(0’) > %2 (1 + 0(8 + @)). By choosing a and § sufficiently small, we
obtain Re my (o) = T in %.

As myp(0) is homogeneous of degree two, we find that 4 is homogeneous of degree one in Y.
Recalling that z = (x, s) remains in a compact domain here, we thus find

(4.44) (@) 2 A1z in %.
Next, as hi =my #01in % we may write, with Lemma 4.26,
2hid,hic = O i € S((1 + £Y)A3 5, 7).

which yields the result using the ellipticity estimate (4.44). |
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7 =(s,xX) e RxRFT = RN

90

FiGure 4. Open neighborhoods of zy € dZ introduced in the course of the
proof of Theorem 4.17.

We let XypXo1 € S (1, g7) be supported in My y, homogeneous of degree zero, and be such that

i = —Co for both k = 1,2 on their supports and ys; = 1 in a conic neighborhood of supp(xs0)
and X5 = 1 in a conic neighborhood of supp(ys;). Recalling the notation of Section 4.4 and

the microlocalization symbols constructed there, this can be done as follows, for instance for the
construction of ;. Let ¥1 € € (R) be such that

supp(x1) € [-4,+c0), x1 = 1 on a neighborhood of [-3, +c0).
We also introduce V| C V an open neighborhood of supp(yvy,) in @, in particular Vy € V; (the
local geometry is illustrated in Figure 4) and we choose yy, € €*(RY) such that
Xv, = 1 on aneighborhood of Vi, supp(xv,) Cc V.
We set

X510 = xv,(2) (1 = x1/16,F(@") X1(1(2")/6)%1(2(0")/6) € S (1, gT).
we have y;1 = 1 in a conic neighborhood of supp(ys,)-

We choose ¢p > 0 sufficiently small so that the results of Lemmata 4.22 and 4.23 apply, that is,
on supp% ) the roots of g are simple and |7(0’)| < |{’], and also the result of Lemma 4.27 holds
for % a conic neighborhood of supp% ), for ¢ € (0, 8p) and for £ > 0 chosen sufficiently small.
With the value of ¢ fixed now, to ease notation we now write X>X0, X1 in place of X5 X60,X61 and

Eo, Z1 in place of Opt(xs0), Opt(xs,1)-

—
—

Lemma 4.28. Let y = yo or y1 and, accordingly, E = Ey or 1. We have
OkE = O+ Qr-E+ (1 +ye)RIE+ Ry
= Qk-Qk+E+ (1 +ye)RIE+ Ry,
where Qrq = (Dy, + ite, — iaOp7"'(hiy)), a € {+, -}, and Ri,R| € ¥(A1z g7) and R_y, R, €
‘P(/l}lg , 8T), for arbitrary large M € N.
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Proof. In the proof we shall denote by R; a generic operator in ‘I’(xl%, 27), J € R, whose expres-
sion may change from one line to the other.
Observe that we have, for any M € N,

ME = My Opr(x)°E + R_yy = Opr(mx*)E + (1 + y&)R|E + R_p.
With Lemma 4.27 applied with %;, a conic neighborhood of supp(x), we have
Opr(mx”) = Opr(ley)>  mod W((1 +y&) Az, 81),
using the properties of the tangential calculus (see Proposition 4.3). This yields
ME = Opr(hiy)*E + (1 + ye)RIE + Ry
= Opr"(hiy)’E + (1 + yO)RIE + R
We then find
OLE = (Dy, + itg))*E + MyE
= (Dy, + itg, +i0p1" (hey))(Dy, + ite, — i Opr" (hix))=
+i[Dy, + ¢, Opr" (Y)IE + (1 + YO)RIE + R_y,
In fact, the order of the operators can be changed and we find
OiE = (Dy, + ite, — iOpr" ()(Dy, + ite, + i Opr” ()=
—i[Dy, + itg,, Opt" ()IE + (1 + Y)RIE + R_p.
The following lemma then yields the result. [ ]

Lemma 4.29. Let y = xo or x1 and, accordingly, E = Zy or E|. We have, for a € {+,-},
[Dy, +its;, QkalE = —ia[D,, +1t¢,, OpTW(hk)ﬁ)]E = (1 +ye)RIE+R_py with Ry € Y(A1z,8T) and
R_m € ‘P(A;f?, gr)-

Proof. We have [7¢,, OpTW(hk)ﬁ)] € Y((1+vye)dr s, g1) as a consequence of the tangential calculus
we have introduced. We have [D;, OpTW(hk)ﬁ)] = Op7" (Dy d(hk)ﬁ)). We then write

D, (i) = Dy, (h)x + D, ().

Because of the definition of y we have D, d)ﬁ(g’) = 0 in supp(x(¢’)). Thus Opt" ((Dy d)ﬁ)hk)E €

‘I’(/l}’;” ,8T1), for any M € N. Next, by Lemma 4.27 we have yD, h; € S((1 + &y)At2, g7), which
concludes the proof. [ |

Lemma 4.30. Let y = xo or x| and, accordingly, = = Eg or 1. Let k,{ € {1,2} and a,b € {+,—}.
We have, for any M € N,

[Oka» QeplE = (1 +ye)RIE+R_py, [Dy, +i%¢;, OkaQeplE = (1 +¥8)R11E+ Ry _y,
with Ry € ¥(A1.z,g7), Ri.1 € ¥Y', Ropy € W™, and Ry _y € P27,

Proof. Since [OpTW(hk)L/), OpTW(hl)ﬁ)] € W((1 + ye)A1 1, g1), using the properties of the tangential
calculus (see Proposition 4.3), the result follows from Lemma 4.29. ]

We may now provide a proof of the microlocal estimate for the region &y.

Proof of Proposition 4.25. In the proof, we shall denote by R, a generic operator in ‘I’;I’k, JEN,
k € R, whose expression may change from one line to the other. We denote by M an arbitrarily
large integer whose value may change from one line to the other.
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With the previous lemmata we write, using that y; = 1 on supp(yo),
(4.45) PyEo = 010250 = Q1510250 + Ry —m
= 01,-01+8102-02+E + (1 + ¥&)R21E0 + Ra—m
= 01,-01,+02-02+E0 + (1 + y&)R2,1E0 + R4 —m
= 01,-01,+02-E102+E0 + (1 + ¥&)R21E0 + R4—m
= 01,-02-01+8102+E0 + (1 + ¥&)R21E0 + Ra—m
= Q Q"Eo + (1 +y&)R21E0 + Ry -,
with 07 = 010> - and 0" = 01402 +-
The principal symbol of Q™ is ¢~ = qj-g2—- € S g,o in a conic neighborhood of supp(xo), where
all the roots of ¢~ have negative imaginary parts. Thus,
(4.46) the operator Q™ fulfills the requirements of Lemma B.1.

For both Q; ;+ and O, we have the following estimate, characterized by the loss of a half
derivative and a trace observation, as given by Lemma B.6, for £,m € R,

1/2y2m—1/2— ~ — JUP—
Y22l xS 1P Qs Bovlloer + 1EE " EoWogs1 07 + IMloomzs k= 1,2,

forve.¥ (@), and for 7 > 7, and y > 1 chosen sufficiently large, and € € [0, 1]. Then, according
to Proposition B.7, applied with a; = @, = 1, we have the following estimate for the operator Q*,
for M >0and € € R,

JO —_ —_ —_
(4.47) YIE Bovllaez + 1t(Eov)li 4127 S 10 Eovlloez + [trEoWy o172, + IVl2,- a2

forve . (@), and for 7 and y chosen sufficiently large.
With (4.46) and (4.47), applying now Proposition B.8, and using that, for any M € N, [D,, +
ite,;, QY121 = (1 + y&)R1 12 + Ri_y by Lemma 4.30, we obtain

JO —_ R _
YIE Bovllaoz + [trEoV31 /22 S 107 O Eovlls + [tr(ZEov)l15/2.2 + IVlla—pr7s

forv e . (@), and for 7 > 7, and y > 1 chosen sufficiently large, for € € [0,&(] with g1 > 0
chosen sufficiently small. Finally, with (4.45), we conclude the proof of Proposition 4.25 by
choosing y large and ¢ € [0, &;] with &, > 0 chosen sufficiently small. ]

Remark 4.31. Note that the end of the proof of Proposition 4.25 is a point where the introduction
of the second large parameter v is crucial. Even in the case € = 0, that is for a weight function that
only depend on the variable zy, taking y large is needed to conclude.

4.8. Microlocal estimate in the region F. In the region F we have ¥ < Atz and the symbols
of the operators Qy are characterized by two simple roots that are separated (see the first item of
Proposition 4.21). We prove the following estimate.

Proposition 4.32. Let M € N. There exist Ty = T«, Vo = 1, and C > 0 such that
IZrvla0z + @)1 00 < C(IPGERVIls + 1rErv)1s 2z + IVlla -z,
fort =710,y = 7v0, € €[0,1], and forv € y(@).

Proof. We write yo = yr and Ey = E, to ease the reading of the proof.

We also let yq, X € S (1, g1) be supported in Mt y, homogeneous of degree zero, and be such
that |7(0’)| < %Ho/lm(g’) in their support (using the notation of Section 4.4) and such that y; = 1
on a conic neighborhood of supp(yo) and y = 1 on a conic neighborhood of supp(y). This can be
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done as follows, for instance for the construction of y;. We introduce V; c V an open set of R
that is a neighborhood of supp(yy,) in @, in particular Vjy € V| (the local geometry is illustrated
in Figure 4) and we choose yvy, € (5‘”(@) such that
Xv, = 1 on aneighborhood of V1, supp(yy,) C V.
We set
X1 = xv,(@xar € S(1,871),

with the function ys 7 as introduced in Section 4.4. We have |T(0")| < %HO/IT’;(Q,), which leaves
“enough room” for a similar construction for X We set E; = Opt(y1)-

With Proposition 4.21, in a conic neighborhood of supp(x) the roots of gk, k = 1,2, are simple,
and we may write

q(©0) = qr+(©)qk-(©0)s  qx(0) = Ea — pr+(0),
where py .+ € S(A7#, g7) in a conic neighborhood of supp({) and there we have
Impy+ 2 CATz, Impr- < -CAatxz.

We set Qr+ = Dy, — Op1" (xpr,+)-

In the proof we shall denote by R ;4 as a generic operator in ‘Pé’k, j €N, k € R, whose expression
may change from one line to the other.

Lemma 4.33. Let E = Ey or E1. We have, for arbitrary large M € N,
OkE = O+ Ok -E+ YR10E + Ry -
= Ok-Ok+E+YR10E+ R .
Proof. We have
O+ Ok~ = D3, — (Opr” (xpr+) + OpT” (xpx,-))Dsy + OpT" (i +) OPT” (xpr,-) + YRo,1.
We thus find, for any M € N,
Ok+ Ok -E = (0prT" (D2, = (OpT" (xpr.+) + OPT" (xpr, ) Dy, + OPT" (xPr ) OPT" (xP. ) )E
+YR1pE+ Ro—ym
= Op"(xg)E + YR10E + Ro-m
= OklE+YR1pE+ Ry _u.

This result yields, for any M € N,
(4.48) P,y = 010250 = Q15210250 + Ry -y
= 01-01+E102-02+F0 + YR30Z0 + R4 —m
= 01-01+02-02+F0 + YR3 050 + Ra—-m
= Q Q" +YR30Z0 + Ry
where 07 = Q10> _and 0" = Q10> +.

Both roots of the symbol ¢~ of the operator O~ are in the lower half complex plane in a conic
neighborhood of supp(yo). Then, with Lemma B.1 we have the following perfect elliptic estimate,
forany M > 0,

(4.49) 1Bovil2.07 + [trEoWl1 127 S 1O Eovil+ + IVIl2-m7,

forve. (@), for T > 7, and y > 1 chosen sufficiently large, and ¢ € [0, 1].
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The roots of the first-order factor Oy ., kK = 1 or 2, are in upper half complex plane. Then, with
Lemma B.4, we have the following elliptic estimate, yet with a trace observation term in the r.h.s.,
for M >0and ¢ € R,

I1Z0vllnez < C(1Qk+Eovllo.cs + [t Eovlo 1727 + IVllo-nrz)-

forve.? (@), for 7 > 7, and y > 1 chosen sufficiently large, and € € [0, 1]. Then, according to
Proposition B.7, applied with @) = @, = 0 and 6; = 6, = 0, we have the following estimates for
the operator Q*, for M > 0 and £ € R,

(4.50) IZovll2,ez + 1t (Eov)li 4127 S 1O Eovlloez + [trEoWy 41722 + IVll2-ar25

forve . (@), and for 7 > 7, and y > 1 chosen sufficiently large.
Applying now Proposition B.8, with (4.49) and (4.50), we obtain

IZ0vlla.0z + [tr(EoV)l3 127 < 107 O Zovils + [tr(EoV)ly 527 + Vlla -7

forv e .7 (@), and for 7 > 7, and y > 1 chosen sufficiently large, for € € [0, 1]. Finally, with
(4.48), we conclude the proof of Proposition 4.32 by choosing 7 and y large. |

4.9. Proof of the Carleman estimate of Theorem 4.17. We choose W an open neighborhood
of zo in RY such that W € V; (see Figure 4). Let u = wiz, with w € €:°((0,S0) x R?) and
supp(w) C W. We set v = e™u.

We collect the different estimations that we have obtained in Propositions 4.24, 4.25, and 4.32.
For some 6 = dg € (0, 1) to be kept fixed, for 79 > 7., yo > 1, and &g € (0, 1] we have

@)y IEE o + 160GV, L S IPE VL + 0GPV )+ il
fork =1,2, and

(4.52) NE Esovllaoz +1tEso)l 10z S IPGEsovlle + 1 a0 50,7 + Vlla-prs
and

(4.53) IEvlla0z + 1rERV31/27 S IPeERVI + [0(ERV 5727 + IVIla-m7,

for t > 79, ¥ = v0, € € [0, &].

We then pick @ > 0 meant to be chosen small in what follows, and we shall consider a((4.51) +
(4.53)) + (4.52). We will choose 7 sufficiently large so that at'’? > 1.

We first note that we have the following lemma whose proof is provided below.

Lemma 4.34. There exists C > 0 such that

~—1/2—(k — ~—1
kz 7722 vy 0z + VIE Esovllaos + AErvilaos = CYIF Mlaoz,

for T chosen sufficiently large.
With a similar, yet simpler, proof, we have the following lemma.

Lemma 4.35. We have
@ 3 |wE )

k . s12e T [tr(Es0V)l31 /2 + AUERVI3 127 2 A tt(V)l31/275

for T chosen sufficiently large.
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With these two lemmata we obtain

o —_ 1 o k
4.54) Ay ‘v||4,o,f+a(||m||4,o,?+yz 3 I 220 vla0z)

+ o] tr(W)l3 127 S @(rh.s.(4.51) + ths.(4.53)) + ths.(4.52).

The next lemma is crucial in the computation of the commutator [Py, Z50]. A proof is given
below.

Lemma 4.36. We have [Py, Z50] = Op(g)+Op(h)+¥*Rs _1, where g,h € y¥3° and Ry 1 € ¥,
with

e g(0)=0 for zina neighborhood of Vo

e h(o) = Zj o hj(@)E, hj e y‘I’(/l ,&T), homogeneous of degree 3 — j, and x;” + )(((52)

xr = 1 in a conic nelghborhood of supp(h;) in the variables ({,7,v,¢€), for z € Vy,
j=0,...,3

1)

=) =@

We have [Py, E] € yR3), for 2 = Es_» B

IlOp()Vll+ < IIVIl3,-m.7, and we obtain

or Ef. Lemma 4.36 gives, for any M € N,

@ Z IP,2 "(k) VIl + 1P Esovils + allP Ervls < 1Pl + [ Op(Vils + aylvVlizoz +¥ ?|Vll3.-1.7-
From (4.54) and (4.51)—(4.53) we thus obtain, for a chosen sufficiently small (and kept fixed for
the remainder of the proof) and 7 chosen sufficiently large

1/2 (k)

~—1 —_ 1 ~
(4.55) AF Vllaoz + IErvilaoz +y2 kzllz 17~ V407

+rW)l31/2.2 S 1PVl + [teWly 5727 + | Op()Vl+.

We set y = X(l) + ng) + yr. We have the following lemma whose proof is given below.

Lemma 4.37. Let W be an open set of RN with W € V,. There exist C > 0and 7\ > 7, such that

| Opr(jwlls < Cy(lIl Opr(Iwllos-jz + ¥(1 + epliwlloz—jz). for w € S REY), supp(w) ¢ W and
T2>T].

Thus, we obtain
3 . 3 .
Il Op()vlly < ZO | Op(h)Dy Vll+ < ZO YII0pT() D Vllo3-j7 + ¥(1 + e)lvllz -1 7.
J: ]:

s [OpT(0). Did] € 7‘1’;_1’0 we obtain

10pUnVlls < Y OprOOVIz0z + ¥ IVl -1 2

<A, D) E oz +1Ervilos) + VIVl -1

Using this estimate in (4.55), for 7 chosen sufficiently large, we thus obtain

|~—1/2~(k)

W Wllaoz + IEpvilaoz + 72 kZ | a0z + 1ttW3 1727 S [1Pvll+ + [tr(W)]; 5.2 7.

The end of the proof of Theorem 4.17 is then classical. [ |



42 JEROME LE ROUSSEAU AND LUC ROBBIANO
Proof of Lemma 4.34. With Lemma 4.14 we may write
~—1/2=(k —_
X =ay I, PEO Vaor + I Esovllags + allEpvilaos

1

4
1 —— 4— —(k —1 44— —_ 4- —_
2 2 (eyr 3 1FPATIDLED VL +yIF AT DL Zs vl + llATY DL ERvIL)

Jj=0 k=1,2

yielding

4 -

U =k . - 1 A4 -
Xzy .zo(kz1 AT/ DLE VI + 1F7 AT D] Bl + IF7 AT DL ERv ),

j=0 "k=12
as a > ozy%%‘lﬂ > y*~! using, on the one hand, that (r¢)~ 1/2 = )/l~ 2 < 1sincer>7, > 1
and ¢ > 1, and, on the other hand, that at!/? > 1 implies a7'/? = a/(Tygo)l/ z2> yl/ 2 since ¢ > 1.

We then find, with & = x5 +x§” + xao +xr € S(1Lgn). X 2 yz“ oIF AT/ DI, Opr (.. As
[D],, Opr(h)] € y¥. ', we obtain

4 . .
~— — 4—
X+ 1 Msor 2y z I 'AT7 Opr(W)DY Vs
]:

By the (local) Garding inequality of Proposition 4.15, as h(0’) > 1 in a neighborhood of Vi N @
that contains supp(v), we obtain

4 .
221 ~—1 ~—1
X+y T vz 2y ZO 177" Dy Vloa—jz = YIF Vilaoz
J:

We conclude by taking 7 sufficiently large with the usual semi-classical inequality (4.17). [ |

Proof of Lemma 4.36. Up to yzS z’_l, the principal symbol of [Py, Zs0] is given by —i{p,, x50},
and thus involves derivatives of y;s0. We recall the form of x5, as introduced in Section 4.4,

X600 = xvy (@) (1 = x1/4,7(0") x0(11(0")/8) x0(12(0")/6).

Computing —i{py, x50}, we obtain the following list of terms.

Terms involving derivatives of yv,(z): Those terms contribute to the symbol g that van-
ishes in a neighborhood of V.

Terms involving derivatives of x1/4,r(0"): Those terms are supported in {#1A7z/8 < T <
0147 7/4}, using the notation of Section 4.4. As y1r = 1 for T < 8;477/2, we see that
Xr©") = xv,(2x1,r(©") = 1 in a neighborhood of the support of those terms for z € V.
Those terms contribute to the symbol 4.

Terms involving derivatives of yo(ux(0’)/6), k = 1,2: From the definition of yo we see
that those terms are supported in {-3 < u(0’)/6 < —2}. We have y_(ux(0’)/0) =
in a conic neighborhood of this set. As x1r(©") + (1 — x1/ar(©")) = 1 we find that
xr©)+ )(gfi (©") = 1 in the support of those terms if z € V. Those terms contribute to the
symbol 4. [ |

Proof of Lemma 4.37. Let yw(z) € €,°(Vp) be such that yw = 1 in a neighborhood of W. The
microlocal version of the Garding inequality of Proposition 4.16 gives, by Lemma 4.36,

Re(Opt(x) Opr(xwhy)w, Opr(ywh)w)s + IWll5 _prz 2 110pTCrwhwll3 .

Then, with the Young inequality, we obtain

10pT(0) OprOywhwlls + [IWllo,-mz, 2 | OpTOrwh pwll+.
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Since Opt(ywhj)w = Opt(hj)w + Ro_pmw, with Ry_y € ‘I’Q’_M for any M € N, we obtain
1OpT(x) Opt(hj)wll+ + [IWllo.-m7, 2 1| OpT(hj)Wl+.
s [Opt(x), Opt(hj)] € y(1 + sy)‘I’(/l k ,gT) we obtain the sought estimate. |

5. SPECTRAL INEQUALITY AND APPLICATION

We start this section by stating and proving an interpolation type inequality. Next, we prove the
spectral inequality of Theorem 1.3. Finally, as an application, we state a null-controllability result
that follows from it.

5.1. An interpolation inequality. Let Sy > 0 and @ € (0,5¢/2). We recall the notation Z =
(0,S0) x Q and we introduce Y = (@, S — @) X Q for some a > 0. As is done in other sections,
we denote by z = (s, x) € Z, with s € (0,S¢) and x € Q. We recall that P denotes the augmented
elliptic operator P := D? + B, where B = A2.

Theorem 5.1 (Interpolation inequality). Let & be a nonempty open subset of Q. There exist C > 0
and 6 € (0, 1) such that for u € H*(Z) that satisfies

u(s, X)|xeaq = 0, 0yu(s, x)lxesn = 0, s €(0,50),
we have
: )
(5.1 leell g3 vy < C IIMIIH%(Z)(”P’/‘”LZ(Z) + 0<Z<3 ||6£M|szollmff(ﬁ>) .
<j<

First, we provide a local interpolation estimate in a neighborhood of a point of {0} X &.
Lemma 5.2 (local interpolation near s = 0). Let xo € O, there exist V a neighborhood of (0, xo)
inRxRY C>0,andés € (0,1) such that for u € H*(Z) we have

: 5
(5.2) ||M||H3(vn2) < C””HH%(Z)<”P””L2(Z) + 05‘23 ||5£M|s:0||1-13—j(f/’)) :

Second, we provide an interpolation estimate with an interior observation, that is, we have an

estimate away from the boundary 0 x Q.

Proposition 5.3 (Interpolation with an interior observation). Let % be a nonempty open set in Z.
There exist C > 0 and § € (0, 1) such that for u € H*(Z) that satisfies

u(s, X)|xeaq = 0, 9yu(s, x)lyeaq =0, 5s€(0,50),
we have
s
(5.3) llell 3 vy < C||M||H3(Z)(||PM||L2(Z) + ||M||L2(3f)) .

With these two local interpolation results, whose proofs are given below, we can then write a
proof of Theorem 5.1.

Proof of Theorem 5.1. Introducing V as given in Lemma 5.2, we let 2 be an open subset of VNZ.
With Lemma 5.2 we then have

o
(5.4) |wwma+wmm@scwmgiwwy@+mgﬂ%%ﬂmwmﬂ,
<J<

as we can assume that ||Pull;2z < llullg3z) otherwise estimate (5.1) is trivial. Applying Proposi-
tion 5.3 we have, for some 8" € (0, 1),

’

o
sy < Cllallyy, (I1Pull2z) + Nl 2 )
This, with (5.4), gives (5.1) with ¢’§ in place of 6. [ ]
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For the proofs of Lemma 5.2 and Proposition 5.3. We shall need the following lemma whose
proof can be found in [ ].

Lemma 5.4. Let A > 0, B> 0, and C > 0. We assume that A < B and that there exist T > 0,
u > 0andv > 0 such that

(5.5) A<e"B+e'C, fort>Ty.
Then A < KB'9C°, where K = max(2, e"™) and 6 = v/(v + u) € (0, 1).

Proof of Lemma 5.2. Let r > 0 and zp = (—r, xo), where r is chosen sufficiently small to have
BN {s =0} c ¢ with B = B(zg,4r). Let ¢ = —|z — zo|*, with z = (s, x). We have d,(z) < —-C < 0
in B. We set ¢(z) = V@, Let y € 65°(R?*!) be such that x(2) = 1 if |z—zo| < 7r/2 and x(z) = 0 if
|z — zol = 15r/4. We apply the local Carleman estimate of Corollary 3.2 to v = yu, and we obtain,
for y > 1 chosen sufficiently large (to be kept fixed in what follows),

3 .

2- 172

(5.6) ||Z3T7/ |“|||eT“"D§v||Lz(BnZ) S e Pylliazy + / ZO|tr(eT“’D£V|S:0+)|0,3_j’T.
@|<Z j=

Note that if y is fixed we have 7 < 7. In {0} X &, we have ¢ < e then

3 . 3 . 5
CRANEE o 2 1@ D3y o S o Z IDstorlipiioy - C3 = (L+a)e™”,
J= J=

for any a > 0. We have Pv = yPu + [P, y]u. The term [P, x] is a differential operator of order 3

and it is supported in {z € R9*!; 7r/2 < |z — 70| < 15r/4}. On this set, we have ¢ < e77"/2’ We
thus find

(5.8) I[P xTull2z) S € llllppgzy, €1 = YT

In Z, we have ¢ < e < C3; this implies

(5.9) le™ x Pull 2z) 5 e“TIIPull 2z,

In {z € R 7= 70l < 3r}, ¥ = 1 thus u = v, and on this set ¢ > ¢~73"’ then we have

G100 s < 2 TN g, €=
al<
Remark that C; < C < C3, for a > 0 chosen sufficiently small. Following (5.6)—(5.10) we obtain
3
||u||H3(B(ZO,3r)ﬁZ) S e(C3_C2)T(”Pu||L2(Z) + Z() |Déu|S:O+|H3—_1‘(ﬁ)) + e_(cz_C])T”M“HS(Z).
j:

Applying Lemma 5.4, we obtain the result with V = B(zg, 3r). [ ]
We prove Proposition 5.3 by means of two lemmata. For o’ € (0, @) and a € (0, 1), we set

(5.11) Yoa=(@,So—a)xQ,,

where Q, = {x € Q, dist(x, dQ) > a > 0}.

Lemma 5.5. Let & be a nonempty open setin Z. Let &’ € (0, @) and a € (0, 1). There exist C > 0
and 6 € (0, 1) such that for u € H*(2),

- o
(5.12) llliy, ) < Cllallsty, (I1Pull 2z + Nl z))
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Lemma 5.6. Let (s, x0) € (0,S¢) X 0Q. There exist 6 € (0,1), C > 0, Vy a neighborhood of
(50, Xx0), @ € (0, @), and a € (0, 1) such that we have

_ o
(5.13) el vonzy < Cllullz2,, (1Pull2zy + il )
for u € HY(Z) satisfying
u(s, X)|xeon = 0, dyu(s, x)lyeaq = 0, s €(0,50).

Proof of Proposition 5.3. We can assume that ||Pull;2z) < ||ullg3z), otherwise inequality (5.3) is
obvious. In particular, if (5.3) holds for a value 6 = ¢y > 0 the estimate also holds for all 6 € [0, 6¢]
possibly with a larger constant C = Cs. The same observation can be made for the estimations
(5.12) and (5.13).

With a compactness argument we can find a finite number of open sets V;, j € J, where esti-
mate (5.13) holds for some values 6 = 6; € (0, 1), a/;. € (0,@), and a; € (0, 1), and such that

(a,S¢g—a) X 0Q C UjejVj.

Fora € (0,1)and o’ € (0,a), set Yo, = (@, S¢ — @) X Q,, where Q, = {x € Q, dist(x, Q) < a}.
There exists a; € (0,1) and a1 € (0, @) such that Ym,a, C Z N (UjesV)). Applying the local
interpolation estimate (5.13) for each V;, using now

61:r}161;16j€(0,1), a/2=r§1€1}1&j€(0,a/), and azzr?el}laje((),l)

(note that the set Y, , increases as o’ and a decrease) we obtain

1-6, o1

(5.14) Wl ) < Mllagy, (1Pllzzy + Ml )
Let 2 be a nonempty open set in Z. By Lemma 5.5 we obtain, for some 6, € (0, 1),

1-6 ()
(5.15) 1Pull2z) + lullery, ) < Nllgags, (1Pullzz) + ullzez)

as the estimate of ||Pul| 2z, is clear here. Then, estimates (5.14) and (5.15) give

1-6162

0102
(5.16) ldlpgscr, ) S Nellagse (I1Pullizcz) + Nl 2 )

Taking a € (0,a;) and @’ € (0,@), we have Y C Yy , U Yal,al, and, by (5.12) in Lemma 5.5 and
(5.16), we obtain (5.3). [ ]

Proof of Lemma 5.5. By a compactness argument, it suffices to prove (5.12) with B(z, R) in place
of Yoo 4o where z € Yy 4, and 0 < R < min(a/, a)/2, implying B(z,R) C Z. Let 79 be in &
and ry > 0 such that Bz?,ry) € Z. As Yy 4 1s connected, there exists a path I' € Y, , from
7O =T(0) to z =T(1). Set r; = dist(T", 0Z). We have r; > 0 by compactness.

Setting now r = inf(R, ro, r;/4), we define a sequence (Z) j» for j > 0, by ¥ = I'(z;) where
to = 0 and

Aj={o e (tj1,1]; T(o) ¢ BE ™, r).

_ [infA; ifA; 20,
T ifA; =0,

The sequence (7)) ; 1s finite by a compactness argument. The construction of the sequence is
illustrated in Figure 5.
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ZM Z(NAD
=y 7V

7 = dist(T, 6Z) > 4r \

j+1
\\\ Z(J+ )
[=-~X 70\ 2N
r Y
\
3r 'T

0z

Ficure 5. Construction of the sequence (z);, j € J, along the path .

Let (z9,---,z™) be such a sequence with z") = z. Note that we have B(zU*V, r) c B(z\?,3r) c
Z,for j=0,---,N—1, because of the choice we made for r above. Now we claim that there exists
C > 0and ¢ € (0, 1) such that
(5.17) el aeon vy < Mol pen 3my < Cllallysd, (1Pull 2z + Ndlpgs o )
for j =0,...,N — 1. This claim is proven below.

We assume that ||Pul|;2(z) < ||lullg3(z), since otherwise the estimate we wish to prove is obvious.
We then have

— o
1Pullzy + el g,y < Ml (1Pullacz, + el an ) -
By induction on j, we find

- u
(5.18) 1Pull2zy + leell g3 Biry) S HMHH;(IZ)(”P’/‘“LZ(Z) + ||M||H3(B(z<0>,r))) ,

where u = 6.

As P is elliptic, and Bz, r) € 2 we have ||ull3 5.0 1) S |Pullz2z) + lull 2 7). This estimate
and (5.18) give (5.12).

To prove estimation (5.17) we apply the local Carleman estimate of Proposition 2.7. We set

W(z) = -z — z91? and ¢(z) = €@ and y € € (B(z", 4r)) to be such that

1 if3r/4 < |z -9 < 7r/2,
X(2) = , 0 ’
0 if|z—2zY|<5r/80r15r/4 <|z -2V
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The function v = yu is supported in the open set B(z”, 4r) \ B(z,r/2) c Z where dy does not
vanish. For v > 1 chosen sufficiently large, by Proposition 2.7, we have
(5.19) 3 e D2z < e PVl z)-
lal<4

We have Pv = yPu + [P, y]u and [P, y] is a differential operator of order 3 supported in A; U Ay
with

Al =1z 5r/8 <l —2P <3r/4), Ay =z Tr/2 <|z-7Y| < 15r/4).
We write

”€T¢PV”L2(Z) < ||€T¢Pu||L2(B(Z(.f),4r)) + ”eT‘p[P’X]u”LZ(Alqu)'
Since ¢ decreases as |z — z/)| increases, we find

(5.20) e PYlli2iz) S € CNPuUlli2z) + €l s ) + €™l z),

where Cy = ¢ 77/2" and C3 = ¢ 767/8,
As we have y = 1 on Bz, 3r) \ Bz, r) we have

(5.21) eTCZ||M||1-]3(B(Z(j),3r)\3(z(j),r)) < | |Z4T3_|al||ewD?V||L2(z),
|<

where C, = 73"’ Remark that C; < C, < Cs.
Inequalities (5.19), (5.20), and (5.21) give

7(C3 -T(C2

—C -
leell g3z 3ry) S € D(IPull 2z + ull g3 aer ) + € Dllull g z).-

as the estimate on B(z”, r) is clear with such a r.h.s. if 7 > 7, > 1. We can optimize this last
estimate applying Lemma 5.4, which yields (5.17), and concludes the proof of Lemma 5.5. |

Proof of Lemma 5.6. The proof follows the same ideas as that of estimate (5.17) applying the
boundary-type local Carleman estimate of Theorem 4.17. We use local coordinates in a bounded
neighborhood V in RN of the point zg = (s, Xp) of (0, Sg) X dQ as introduced in Section 4.2, such
that this part of the boundary is locally given by {zxy = x4 = 0} and Z is locally given by {zx > 0};
coordinates can be chosen to have moreover zg = (z;,0), with z; = 0. We set zD = (0,2r) where
r>0.

We let € €°(R") be such that

1272 = |z = 2P if |z -2V < 3r,
Y(2) =1 , i M
r ifdr<lz—2z".

We have y(z) > r*> > 0, [[y®||;~ < o0, k € N, and
OW(2) = =0,,0(2) =2(zy —2r) < —-C < 0,

for |z — zV| < 3r and zy = 0. Upon reducing the open neighborhood V, the weight function ¢
fulfills the requirements listed in (4.2) and (4.20).

We set ¢(z) = e?¥+®), where y,(z) = Y(eZ, zn). According to Theorem 4.17, there exist a neigh-
borhood W € V in RN of 79, 79 > 7, vo = 1, and gy € (0, 1] so that the Carleman estimate (4.21)
holds for 7 > 19, v > 0, € € (0, 9] and smooth functions supported in W. We set y = yp and
€ = g. The geometry of the level sets of the weight function is illustrated in Figure 6.

In connection with the weight function ¥, we introduce the following anisotropic norm in RV,
that depends on the (now fixed) parameter &,
2=y, = (& =Y P + (v - }’N)z)l/z-

Note that with y and ¢ fixed we have 7 < 7.
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3 Z/ — (S,)Cl) c RN_I

(0,S0) X 0Q

FiGure 6. Geometry near the boundary for the application of the local Car-
leman estimate of Theorem 4.17.

We denote by B.(z, r) the ball of radius r centered at z associated with this norm. We have
"o 12 — 2= zZO if |z - 2D, < 3,
Z =
° r? if 4r <z - zVL,.

Let xo € €,°(R) be such that

( ) 1 if |ZN| < ro,
Z =
XORN) =30 if 250 < Lewl,

where ry < r/4. Let also y; € €°(Bs(z'", 3r)) be such that

@ 1 |z-20 <r,
1) = )
X 0 if r{<lz -z,

where 7y, r| are such that 2r < r; < r} < 3r. Observe that if we choose the values of r| —2r > 0
and ry > O sufficiently small, then the open set {z € Z; zy € (0,2r9)} N{z € Z; |z — z(l)ls < ri} is

contained in W. We now set x(z) = x1(z)xo(zn). Figure 7 shows, near zg, the region where y = 1
and where it varies, that is supp(y’) N Z C A| U A, with

Ay =1{z€Z;zy € (r0,2r0) and |z — 21|, < 1/},

Ay =1{z€Z;zy €(0,2r) and ry < |z — 21|, < 7))
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>

(s,x") e RV!

1 _
lz -z, =7
lz—z2V, =r

(0,S0) X 9Q

Ficure 7. Geometry near the boundary for the derivation of the local in-
terpolation inequality. The light color region shows where y = 1; the dark
color region shows where y varies. Note that the relative scale of the two
axes has been modified, if compared to Figure 6, for a better display of the
regions A; and A, near z.

The Carleman estimate (4.17) applies to v = yu, by a density argument. As u;,—o+ = 0 and
Oyup,=0+ = 0 we obtain (the values of y and & were fixed above)

(5.22) | |z373—'“‘||ewD‘;xv||Lz<wmz> S e“Pvllzwnz, T =70
a|<

We have Pv = yPu + [P, xy]u, where [P, y] is a differential operator of order 3 that is supported
inA; UAj,. On Ay, we have ¢ < e?(127=2r=200)  Op Aj we have ¢ < ¢"127=1) We thus obtain

(5.23) ||€T¢PV||L2(an) S ETC3(||PM||L2(Z) + ||u||H3(Ya/ﬂ)) + eTC1||u||H3(z),

where C; = e7(12’2_’%), C; = 1277 =C2r=210") and 0 < a < ro and some o’ € (0, @) (recalling the
definition of the set Y,/ 4 in (5.11)).

We restrict the Lh.s. of (5.22) to Vo = {z € Z; zy € (0,70)} N {z € Z; |z — 2V| < 1y}, with
ry = r + r1/2, whose closure is a neighborhood of zg in Z. Note that 2r < r, < r;. As on this set
we have ¢ > 1271 and u = v, we obtain

3_
(5.24) e ull vy < | |Zf “Ne™ DY Wllr2wnz)»
<
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where C, = ?127°=(r+11/2") Then (5.22), (5.23) and (5.24) give

_T(CZ —

(5.25) sy < € "D Pullaizy + lully,, ) + € Plullgs z),-

Observe that we have C; < C, < C3. By Lemma 5.4, we obtain the sought local interpolation

inequality at the boundary. [ |

5.2. Spectral inequality. Let ¢; and u; be eigenfunctions and associated eigenvalues of the bi-
Laplace operator B with the clamped boundary conditions, that form a Hilbert basis for L?(Q),
viz.,

Boj=pj¢j  bjga =0 =0 (@)@ = I

with O < pog < py <-+- <pj <---. We now prove the spectral inequality of Theorem 1.3, namely,
for some C > 0,

1/4
|

(5.26) llull 2y < Ce Hlull 20 pu>0, wueSpan{g;; u;j <pub.

Proof. We let u > 0 and we pick ay, ..., @, € C with n € N such that u,, < u < 1. We set

u) = 3 g0, wis,n) = 3 e ee,),
Hisp Hjsp

where f(s) = ysin(ys) cosh(ys) — y cos(ys) sinh(ys) where here y = V2/2. As Df = —f, we
have Pv = 0, with P = D? + B. We also have

fO) = =r20=0 fI0)=1,
and
f(s) =glys), g(s)= %(e‘s cos(s — /4) — e’ cos(s + m/4)).
Since w(s, X)|xeaq = OyW(s, X)|xega = 0, the interpolation inequality of Theorem 5.1 yields

1-6 3 o

Observe that we have 52W|s:0 = uand [Wllg3yy 2 [IWllz2(y) With

1/4

2 32, 259 o 2 1 /4 Gomeh; 2
W2y = 2 p7 gl [ fQu7s)7ds = X laly ™ I g(s)ds
K< a Hi<H ayult

2 S el = Tl g
Hjsp

using the following lemma, whose proof is given below.

Lemma 5.7. Let 0 < a < b and ty > 0. There exists Cy such that fal;t g(s)*ds > Cy for t > 1.
We thus obtain

(5.27) lull 2 < 17 ¥ W0 i3 -

Next, we estimate ||w|| H3(Z)» with the following lemma, which, from (5.27), allows one to conclude
the proof of Theorem 1.3. [ |

Lemma 5.8. There exists C > 0 such that ||wl| g3z, < CeC/‘mIIulle(Q).
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Proof. We have

5 3 So L ) 3 So k )
Wil 7y = kgo({ 1O5w(s, Mgt ds S kgoof I05w(s, sy ds

where H*(€2) denotes the classical Sobolev spaces in Q. Recalling from (1.15) that, if vjgo =
6VV|[)Q = 0, we have I|V||H4(Q) < ||A2V||L2(Q), we find

k 2 2 o (k=3)/4 k), 1/4 12 _ (k1) /4 k), 1/4 Y
||8XW(S, )||H4(Q) s ||A 'ujzgyaljﬂj f (/lj S)¢/||L2(Q) - ”'ujzglu a/j#j f (/"tj s)¢j“L2(Q)

2 (k+1)/2 1/4 \\2 2 14 2
= 3 la PO )7 < 28T 8 ol
Hjsp Hj=p

Integrating this estimate over (0, S¢) and summing over k yields the result. |

Proof of Lemma 5.7. For s € [-n/2 + 2kn,2kn], k € N*, we have cos(s + n/4) > V2/2. For 1,
chosen sufficiently large, if ¢ > ¢, there exists k € N such that [-n/2 + 2kn, 2kn] C [at, bt] and
lg(s)| = 3le™* cos(s — m/4) — e° cos(s + m/4)| > 1. Then, % ¢(s)ds > n/2. Finally, there exists
C > 0 such that ab,’ g(s)zds > C for t € [tg, 1], since the function g(s)2 is almost everywhere
positive. [ |

5.3. A null-controllability result for a higher-order parabolic equation. Let 7 > 0. We con-
sider here the controlled evolution equation on (0, 7)) X Q with the clamped boundary conditions
(v denotes the outer unit normal to JQ):

(5.28) Oy + A%y = xof, yio.rxee =0, dyyo.mxee =0, Yi=0 = Yo € LA(Q),

where & is an open subset of Q and y»s € L™(Q) is such that y» > 0 on &. The function
f € L*((0,T) x Q) is the control function here. Well-posedness for this parabolic system is
recalled in Corollary 1.10. One may wonder if one can choose f to drive the solution from its
initial condition yq to zero at final time 7. Thanks to the spectral inequality of Theorem 1.3 one
can answer positively to this null-controllability question.

Theorem 5.9 (Null-controllability). There exists C > 0 such that for any yo € L*(Q), there exists
fe L*((0, T) x Q) such that the solution to (5.28) vanishes at T = 0 and moreover f1lz2¢0,mx) <

Cllyollz2)-

The proof can be adapted in a straight forward manner from the proof scheme of [ ] de-
veloped for the heat equation and that is presented in a fairly synthetic way in the survey article

6. RESOLVENT ESTIMATE AND APPLICATION

Using one of the interpolation inequalities proven in Section 5 (Proposition 5.3), we prove the
resolvent estimate of Theorem 1.4. Finally, as an application, we state a stabilization result that
follows from it for the plate equation.

6.1. Resolvent estimate. Let U € D(B) = (H(Q) N H3(Q) X H}(Q) and F € # = H3(Q) X
L*(Q), be such that

6.1) (iocldyy -B)U =F, U="(u.m), F="(fo.fi),
for o # 0. Our goal is to find an estimate of the form ||U]||;» < KeKlo—ll/z”F”jf. We have

(6.2) ioug + u; = fo, (—0'2 —ioca+ Bug = f, with f=(ic—-a)fy— fi.
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Multiplying the second equation by ug and an integration over Q give

(=0 + Byuo, uo) 120 ~ iorlle Puoll} o) = (fs 0120
The first term is real and the second term is purely imaginary. We thus have
1/2

ol Moll%z(g) = —Im(f, uo);2(q2)-

Using that @ > § > 0 in & yields
(6.3) 8070 lluoll? 2, < orlle2uoli} ) < N1l loll 2

for o > 0.
A key estimate is given by the following lemma. We provide a proof below.

Lemma 6.1. There exists C > 0 such that

Clo"

2
lletol| 3y < Ce (A Nl2@) + llollz2(e))-

Then estimate (6.3) yields

12 1 1
luolliriey < €M7 (1 2 + ol 2 2 @ 2 00,

and with the Young inequality we obtain

1/2
ol S €711l 2
Using the form of f given in (6.2) we then obtain

Clo|'/

2
luoll2o) < e (ol 2 + Ifill2))s

Finally as u; = fy — ioup we obtain

1/2
(6.4) lluoll 2y + il 2y < €71 (lfoll 2 + Ifill2)s

yielding the resolvent estimate of Theorem 1.4.

6.2. Proof of Lemma 6.1. Let p = exp(i sgn(o)n/4), yielding p> = sgn(o)i and p* = —1. We

set u = exp(splor|'®)ug and have Qu = el

f, with Q = D* + B + aD?, recalling (6.2). Let

So>0andB € (0,5¢/2). Letalso Z = (0,5¢9) x Q and Y = (5,S5¢ — ) X Q. We then apply the
interpolation inequality of Proposition 5.3: with 0 < 81 < 8, < S¢ we have C > 0 and 6y > 0 such

that

_ 1
(6.5) gy < Cllull2, (1Qull 22y + Nl 2 s, gy -

Next, we note that we have

_ 1/2
il ey = el 2s.0-p 3y = €7 uolls ),

Clo|l/?
T ol 3

CIO.II/Z

lullgsz) < e

||u||L2((ﬂ1,ﬁ2)><ﬁ) <e ”uO”Lz(ﬁ)’

yielding with (6.5)

1/2
lluoll gy < Ce“M (I fll2ez) + luoll2e)-

This concludes the proof of the estimate of Lemma 6.1.
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6.3. A stabilization result for the plate equation. Let now (yo,y;) € D(8%), k > 1, and y be the
solution of the damped plate equation

(6.6) 97y + A%y +ady =0, Yi=0 = Y0, OrYji=0 = Y1, VI[0,400)x8Q = OyY|[0,+00)x8Q = 0,

with @ a nonnegative function such that y > 6 > 0 on &, an open subset of Q. If we set Y = (y, 0;y)
we have (0; + B)Y = 0. From the resolvent estimate of Theorem 4.17 we obtain the following
energy decay for the damped plate equation, using the results set in an abstract framework in

[ I

Theorem 6.2. With the energy function introduced in (1.16) the solution to the damped plate
equation (6.6) satisfies, for some C > 0,

EG)0) € —— I8l 150, Yo = (o, 1) € D(BY).
(log(2 + 1))

Among the existing results available in the literature for plate type equations, many of them con-
cern the “hinged” boundary conditions. We first mention these result. An important result obtained
in [ ] on the controllability of the plate equation on a rectangle domain with an arbitrary small
control domain. The method relies on the generalization of Ingham type inequalities in [ 1.
An exponential stabilization result, in the same geometry, can be found in [ ], using similar
techniques. In [ ] the localized damping term involves the time derivative d;y as in (6.6).
Interior nonlinear feedbacks can be used for exponential stabilization [ ]. There, feedbacks
are localized in a neighborhood of part of the boundary that fulfills multiplier-type conditions. A
general analysis of nonlinear damping that includes the plate equation is provided in [ ] un-
der multiplier-type conditions. For “hinged” boundary conditions also, with a boundary damping
term, we cite [ ] where, on a square domain, a necessary and sufficient condition is pro-
vided for exponential stabilization. In [ ], a polynomial stabilization rate is obtained if the
condition of [ ] is relaxed.

For “clamped” boundary conditions, few results are available. We cite [ ], where a general
analysis of nonlinearly damped systems that includes the plate equation under multiplier-type
conditions is provided. In [ ], the analysis of discretized general nonlinearly damped
system is also carried out, with the plate equation as an application. In [ ], a nonlinear
damping involving the p-Laplacian is used also under multiplier-type conditions. In [ ], an
exponential decay is obtained in the case of “clamped” boundary conditions, yet with a damping
term of the Kelvin-Voigt type, that is of the form J;Ay, that acts over the whole domain.

Theorem 6.2 provides a log-type stabilization result. Optimality is a natural question and one
could be interested in seeking geometries that improve this decay rate, yielding polynomial or
exponential rate, in the case of “clamped” boundary conditions, in the spirit of some of the existing
results we cite above.

APPENDICES
A. PROOFS OF SOME TECHNICAL RESULTS

A.1. Proof of the estimate optimality in the case of symbol flatness. Here, we provide a proof
of Proposition 1.6.

We have Q(z, D;) = q(z, D;) + rip—1(z, D;) + rm—2(z, D;) with r,,_1(z, D;) homogeneous of degree
m — 1 and ry,_2(z, D) of order m — 2 (non necessarily homogeneous).

If there exists (zo, {o, 7o) as in the statement of the proposition, then by homogeneity, as 7o # 0,
there exists {| € RY such that

(A.1) q(z0,61) =0, d.q(z0,61) =0, 67 #0, with =1 + idp(zp).
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Without any loss of generality we may assume that zp = 0. Because of the form of (1.14), observe
also that there is no loss of generality if we assume that ¢(0) = 0.
We then introduce w(z) = (z, 6;). We note that

¢(2) - Imw(z) = G(2) + 1P 0(1),  G(z) = %dfso(o)(z, 2).

We then pick f € €°(RYN), f £ 0, and set u,(z) = ¢™ f(r!/27). We have

3 _ —1/21,3
(A2) e ¥urlg, = [ OO f 122z = N2 [ 260 PO £y )2y
RN RN
~ TV [ 2OV f(y)Pdy,
T—00

RN

with the change of variables y = 7!/2z and the dominated convergence theorem.
As we note that

e ™ODYY, = (D, + 16 f(7'1%2) = 7963 f(z1/22) + 712 (1),

similarly, we find

L2®Y) 5o

(A.3) lle™ D% u. 1> ~ HNZiga2 260 £y 2 dy,
RN

as we have 67 # 0.
We have
e ™D Q™ = (7, D, + 101) + rp-1(z, D, + T01) + rm_2(z, D, + 16)).
With the Taylor formula and homogeneity we observe that
4 D+ 70h) = (e, 00) + 7" dq(e, (D) + 57 d2q(z, 0D, D)
+ % Ofl(l — 1)°d}q(z, 1D + 76)(D:, D, D;) dt.

Next, we write

1 11
q(z,61) = q(0,6,) + d.q(0,6,)(2) +5d§q<o, )@ + 5 0f<1 — 02 d3q(tz,01)(z, 2, 2)dt,
=0 =0

1
drq(z,0)(D;) = dgq(0,61)(D,) +d¢d.q(0,61)(D,, 2) + [(1 - t)dgdZZCI(tz, 01)(D., z,2)dt,
NGRS 0
=0

and

1
d2q(z,0,)(D;, D;) = d24(0,6,)(D;, D,) + [ d2dq(1z.61)(D;. Dz, 2)d1,
A . /4
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which gives

. . 1 1 1
e M@ Qe ™ = rm—‘(idfq(o, O %2 7120 + o712 [0 - P dq(1z, 607 P2, 7P, 7 Py
0
1
+712d,d q(0,0)(D,, 71%2) + 771 [(1 - 1)d;d>q(1z,0,)(D., 7'z, 7' z)dt
0
1 1p 1 3p ¢ 0 1/2
+ ET dé’q(o’ 01)(DZ7DZ) + ET Ofdé‘dZCI(tZ9 61)(DZ’DZ’T Z)dt

+ 7" (o1 (z, D, + T0)) + Fua(z, D + 16, ))).
We then find
: 1
™ Que = NS d2q(0. 00 22, T2 £ 2) + dydoq(0.01)(D:f (722, 7!/

+ %(déq(o, 00D, D)f )22 + 11 (2, 00 f(7120) + 72 6(D)).

Arguing as for (A.2), we obtain, as T — oo,

- a1
(A4 Nl€ Quellpogey, = T2 [ 20|2d7q(0,000, 0 F ) + ded:q(0,6)(D-f (). )
R

1
+ S(d29(0.6)(D=. DY) + 10,00 f ) dy
+ ﬁ(TZ(m—l)—N/Z—l/Z).

The assumed estimate (1.14) along with (A.2)—(A.4) thus implies that 6 = 0 and moreover that the
integral above does not vanish. [ |

Remark A.1. Observe that if in addition we assume that m > 3 then the partial Carleman estimate
(1.14) with the loss of a full derivative implies that d¢(z) does not vanish in Q. In fact, if dp(zg) = 0
and if we pick o = 0 then 8; = 0 and since m > 3 we have the properties listed in (A.1). The
remainder of the proof then yields a contradiction as the integral term in (A.4) vanishes.

In the case m = 1, it is known that a Carleman estimate with the loss of a half derivative can hold
even if the gradient of the weight function vanishes (see Lemma 8.1.1 in [ ]). For instance,
for ¢(z) = z%/ 2 and for the operator D.,, we have

1/2
2 lle™ull 2 gy S lle™ Dy ull 2@,

for 7> 0 and u € €°(RY). Then, for the operator D2, we have

tlle™ull 2@vy < le D2 ull 2y,
fort>0andu € %‘X’(RN ). We then have the case of an operator of order m = 1 or 2 in RY such

that an estimate with a loss a full derivative holds and yet dy may vanish.

Remark A.2. The reader should observe that the statement of Proposition 1.6 assumes that the
symbol g(z, { + itdy(z)) vanishes at second order at a complex root, that is, for 7 > 0. Flatness at a
real root may not yield § = 0. In fact, in RV, N > 2, consider the operator Q = (D,, + D,,)" with
m > 2 and ¢(z) = z1. Then g({ + itdy) = ({1 + {» + iT)™ which vanishes (at order m) for T = 0 and
{1 + & = 0. Yet, we have the following estimate

(A.5) lle™ullp2@wyy < lle™ Pull 2@y,

for v € €*°(R?). This means § = 1 here.
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The proof of (A.5) is as follows. We write e™*(D;, + D, )u = (D, + it + D_,)v with v = e™u.
We then have

e (D2, + Dull}any = D2y + Doyl agy + 1TV gy — 2T Re [ WDy, + Doy)v dz
= I(Dzy + Doy WIITa vy + VI 2 vy = 7 [0y + 0Pz
=0 as supp(v) compact
> CIiiGagy, = Tlle™ull} g,

Multiple applications of this estimate yield (A.5).
Note however that we do not claim to have |le™ Dull;2gyy < [l€™(D;, +Dz,)ull 2wy, as Dz, + Dy,
is not elliptic.

A.2. Proofs associated with the semi-classical calculus.

A.2.1. Proof of Proposition 4.2. The dual quadratic form of g on ‘W is given by
dc’ 2 d 2
ldZ’| N |ddnl ‘

T = 2dz? +
§ =Rl T ot

We then have, for X = (zx,{x), asy > 1,

(he)™' X0 = inf (g%(T)/gx(T)

T#0

)" = min (71, (1 +y8) )X

> 2y) " (X) 2 Te(zx)/2 > 1,

as T > 7, > 2. The uncertainty principle is thus fulfilled.
For X = (zx,{x) € W, we write zx = (z%,(zX)N), with zgf e RN, Similarly, we also write

{x = ({y (&), with € RVN7L
We now prove the slow variations of g and ¢, Az, namely, there exist K > 0, r > 0, such that

gy(T) < Kgx(T),

1 gl 1 )
K" <oy <K K <yHm <Kk

where X = (zx, x) and Y = (zy, {y). We thus assume that gx(Y — X) < r?, with 0 < r < 1 to be
chosen below. This gives

(A.6) (1 +ye)(IZx — 23 + YI@x)n = @rInl + =X) " (x = &y < Cr

‘We observe that we have

VXY, TeW, gx(Y-X)<r* = {

o(zx) = V@) = g7y We@—vee),
where ;- (zx) = Y(gZ, (zx)n). Note that

We(zx) = Yelzy)l < (elzy — 2yl + [@x)n = @rINDIY L

With (A.6), we thus obtain

(A7) e(zx) < p(zr)eC M < o(zy).
Similarly, we have
(A.8) @(zy) S p(zx).

We also have

(A.9) gyl < 1y = x| + 10x] £ Craz(X) + |£x| < 4x(X).
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Next, we write

x| < 1&y = x| + 1gy] < Craz(X) + 1yl < Cr(typ(zx) + 1x) + Lyl
Hence, for r sufficiently small, with (A.7), we have
(A.10) 1{x| < Tye(zx) + I¢y] < A=(Y).
With (A.7) and (A.10), resp. (A.8) and (A.9), we find
A(X) S 4(Y), resp. (YY) S 4x(X).
Then, if T = (z7,{7) € W we find

|7l - |7l < |7l
LY T X2 T (V)
and this gives gy(T) < gx(T) < gy(T), concluding the proof of the slow variations of A; and g.

We now prove the temperance of g, ¢ and Az, namely, there exist K > 0, N > 0, such that

VXY, T € W, i’;g; < (1 +g5xX - 1)V,
@(zx) . Ny AX) - N
xyew, EES<caggx-m)Y, SEE <l ggoc-m)Y,

where X = (zx,{x) and Y = (zy, {y). We have

g2 _ 2
§TK = V) = (0 zx — 2y + XS0 10w = Gont”

(1 +vye)? ¥
We note that
(A1 vl < kvl +12x = 01 < Il + = eeiey)
< 1ol + (2 |§1X+_ yl N I({x)n — (§Y)N|)Ty¢(zy)
& y

< (1+ 85X = N)(Y).
First, if (1 + &y)lzy, — 23| + ¥l(zx)n — (zy)n| < 1, then, arguing as in (A.7), we find

@(zx) < ¢(zy), Typ(zx) < A:(Y).

Second, if (1 + ey)lzy — 25| + Yl(zx)v — (zy)nl = 1, we then have 2|zx — zy| > 1/y. We write, as
T>7, 21,

T(zx) < Ax(X)
Y
using that ¢ > 1. We also write
A:(Y)

@(zx) = S lox — 2l (X) < (1 + 87X = ) < (1 + g%(X = )2 0(zy),

Typ(zx) < A2(X) < Ax(X) S lzx = vl e (X)A(Y) < (1 + 87X = V) A(Y).

In any case, we have

@(zx) < (1 + 85X = V' )p(zy) < (1 + 85X = V)e(zy),

that is, the temperance of ¢ and we have Typ(zx) < (1 + gxX -Y )/ 2)/l;(Y), which, along with
(A.11), yields the temperance of Az:

LX) < (1+g%(X = YY) 5 (1 + g%(X — V) Ax(Y).
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For the temperance of g we need to prove

17l
Ax(X)

S (1 +g5(X - Y))N((l + 8y)|z’T| +YIzr)nl + 17 )’

(1 + &)zl + YIr)nl + A:(Y)

for T = (z7,{r) € W. To conclude it suffices to prove

(1) s (1+ g5(X = V)V 2:(X).

We have
I{x — Lyl
(A.12) ICyl < x|+ 10x — ¢yl < x| + 5 Tye(zx)
<ol + (2|§1X_+__f;/| N I(x)n ; ((Y)N|)Ty¢(ZX)

< (1+ 87X - N'):(X).
It thus remains to prove
(A.13) Typ(zy) s (1 + g3(X = V)V 4:(X).

First, if (1 + ye&)lzy — 24| + Yl(zx)v — (zy)nl < 1, then ¢(zy) < ¢(zx), arguing as in (A.8). Es-
timate (A.13) is then clear. Second, if (1 + ye)lzy — 24| + yl(zx)v — (zy)n| = 1, which implies
2|zx — zy| = 1/, with (4.3) we write

A#(X)

k+

A (X)kH < (ﬂ%(x))k
(Ty)k Ty

< (1+ 85X = V)2 2:(%),

k+1 k
Tye(zy) < Tye(zx) " < X)) < (|ZX -z ) :(X)

since T > 7, > 1. In any case, we thus have
Tye(ar) < (1+ 85X = ') 2:00),

which concludes the proof. u

A.2.2. Proof of Lemma 4.4. We have T < Az (resp. T < At7) and d;7 = 0. Only differentiations
of ¥ with respect to z thus need to be considered. Recalling that ¥ = 7y¢, . we find that, for
@ = (¢, ay) € NV, we can write 077(0’) as a linear combination of terms of the form

1+k k o)) 1+k _Jo'| k oD ’
Ty T y.6(2) H16Z Ye(@) =1y €Y 0y £(2) _Hlﬁz (e, zn),
J= J=

with @ + -+ a® = o, @V > 1, j = 1,...,k, and k < |al, implying, as y > 1, |027(0")] <
o' )yl < 70" )y (7)1, as Ol < C for any ¢ € N, which yields the results. n

A.2.3. Proof of Lemma 4.8. For a = (a’,ay) € N¥ and 8/ € NV, we may write aga‘;fa(g') as a
linear combination of terms of the form,

kKo o )
b@) = (11924, (@) 2" 80" ale),
]:
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for some o® € NV, with k = |@®)|, with @ = @@ + oD + - + a®, o] > 1, and where
pj€fl,...,N}, j=1,...,k Using Lemma 4.5 and Definition 4.1, and we obtain

k i)’ j ’
6@ < TT (Ar(1 + &)yl (2] + 1y 11"
j=1
S (1 eyl e gk (o) + 1y e
< (L+ &)™ ly™ 2k (12 + 1" ¥,
asy > 1. If & is polynomial then the term b(o’) vanishes if m — |8'| — [a®”’| < 0. Thus if m — |8’| -
la®] > 0 and, as || < 7 in %, we obtain
b < (1 +&y)ly™ 27 P,
which yields the result. If & is not polynomial and if we have T < |7|, we obtain the same estimation,
even if m — |8 — [a®)] < 0. n
A.2.4. Proof of Lemma 4.11. By applying (4.14), we have
IAT 7 ull+ < 110pT(F" A7 Pull.
Next, we write OpT(%’/l’” ) = Op(/l’” )¥" + yR, with R € ‘I’(T”/l”ﬂ , &T) by the tangential calculus
we have introduced. This yields, as 7" € § (/l T 27),
| Opr(# A% Dull < | Op(AF ¥ ulls + Yl Opr(F" 445 ulls.,
which yields (4.15) by choosmg 7 sufficiently large. Estimation (4.16) follows the same. [ ]

A.2.5. Proof of Lemma 4.14. By definition of the Sobolev norms introduced in Section 4.1.6 we
have

m
+
E Wil 7 < Z 1D, EW)llomsm -7 Z IAFZ" DL EFwll,.

Let m}’ € R. We have [A?{, ] € Z’ Y ‘I’(/l i, gT)D)C , » from the tangential calculus we have

"1
introduced. With Lemma 4.4 we have [7" ,AT %] e(l+ S’y)‘P(%’A;.n’% , 7). With the same lemma,

7

for 7, € R we also have [#7, D) e Zj VP, gT)Dj_i Forr = ri+r7, and m+m’~j = m7/+m’/’,

with r r € R and m m”’ e R, we thus obtain, by Proposition 4. 13

’r m’//
||Trw||m,m’ T = Z ||TrjA / D] (Trj AT,{? W)||+ c’ Z Z Y ”TrDj W”O,m+m’—j,‘7'
j=li=

-c” 'Zo E DY Wlomsm—j-1.7

m m'’ .
> Z II?rfA JD’ Nl AT~ wlls = C’ ZO Z YIE DLWl mm—j-ice
j=0 Jj=0i=

- 2 NE DL Wlowsnr—j-1.z-
=0
With the argument given in (4.17), we have

m—1 m m .

Z Z Y ”TrDj W”O,m+m'—j—i,‘? + Z 7||%rD§ch||0,m+m’—j—1,‘? < ”‘TJW”m,m',‘?v
=0

J=0i= J=
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for T chosen sufficiently large, and we thus find

"

" U NN
I# Wl 2 2, IF5ATLDY 7 AL, Wl
]:

for T chosen sufficiently large. Similarly, we find that
17 Wl 5 2 17 AT ;DL 7 A Wl
]:
for 7 chosen sufficiently large. The result for the trace norms is obtained arguing the same. [ ]

B. ELLIPTIC AND SUB-ELLIPTIC ESTIMATES AT THE BOUNDARY (0, S ) X 0Q

B.1. Roots with negative imaginary part: a perfect elliptic estimate. For zg € 0Z, V denotes
the neighborhood introduced in Section 4.2. We recall that Mty = VxRN Ix[1,, +00)X[1, +00)x
[0, 1].
Let £(0) € S 21’0, with o = (z,{,7,7,&) and m > 1, be polynomial in {y with homogeneous

coefficients in (/’, %) and L = €(z, D,, 7,7, &).
Lemma B.1. Let % be a conic open subset of Mtyy. We assume that, for £(0’, {n) viewed as a
polynomial in Ly, for o' € %,

o the leading coefficient is 1;

e all roots of €(0’, {n) = 0 have negative imaginary part.

Let x(0') € S(1, g1), be homogeneous of degree zero and such that supp(y) C % . Then, for any
M €N, there exist C > 0, 19 > 7., Yo = 1 such that

10pTOOWImoz + 1teOPTOOW),o1 1727 < CILOPTOOWs + Wl -7

forwe S®Y)and > 1o,y > y0, € € [0, 1].

This lemma can be proven by adapting the proof of [ , Lemma 6.5] to the semi-classical
calculus we use here. For the notion of homogeneity for symbols and conic sets in the present
calculus, we refer to Section 4.1.5.

B.2. Sub-ellipticity quantification. For zyp € 0Z, V denotes the neighborhood introduced in Sec-
tion 4.2. We let the function ¢ be as introduced in Section 4, satisfying (4.2) and (4.20), and we
recall that ¥.(z) = ¥(eZ,zy) and ¢(z) = exp(y¥.(z)). We also recall that /1% =72 4 | 1> with
7(0") = Typ(2).

Proposition B.2. Let £(z,) be polynomial of degree m in {, with smooth coefficient in z. We
assume that for any M € RN \ {0}, the symbol € satisfies the simple-characteristic property in
direction M in a neighborhood of V (see Definition 2.1). There exist C > 0 and yy > 1 such that,

16(z, £ + it (0 + @)W (2)PRe £(z, £ + it(0), Im £z,  + it(0"))} = CAZ™,
forzeV,eRN, t>1, y>yande € [0,1].

Proof. We have 0 < Cy < |y(2)]| < C; forz e Vandweset K = {M eRN;Cy < |M| < C,}. AsV
is assumed bounded (see section 4.2), we consider the compact set

C={z00M); P +|P =1, zeV, L eR", 6eR,, MeK).
We define
(B.1) F@ 0.0, M) = |6z, + M) +10MPKE, (. ¢ + i0M), M),
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As the simple-characteristic property holds in direction M for all M € K and z € V, we have
f(z,(,6,M) > C >0, (z,{,0,M) e €.

By homogeneity, we obtain

(B.2) f@60,M)>CEH +1P)", zeV,leRN 9eR,, MeK.

We compute the following Poisson bracket, with 7(0") = tdy(z),

] ———
(Re ((z,¢ +it(0), Im £(z, £ + i@ D} = 5-Al= £+ 170, £z £ + i@ )} = Or (2.4, 7),
with
Or (2,4, 1) 1= 1 1,87, 6(2) 0,L(z, L + itd$(2)) B Lz, { + i1d(2))
Jik

+1Im ¥ 0, £(z, ¢ + itdd(2)) 9y, 0z, ¢ + itd(2)).
J

Note that @,4(z, {, t) is homogeneous of degree 2m—1in (£, t). With ¢(z) = exp(y¥/:(z)) we obtain

Or (2. £:7) = Oy, (2. £, 7)) + YHEQ LUz £ + it (@), W)
We thus find, with f defined in (B.1),
(B.3)
6@ ¢ + it + @MW {Re £z, + it(0). Im £(z, { + (o))
= 16z ¢ + it )P + Te@W L) Oz £, 7)
= |6z, £ + i@ DI + R WP KL,  + i#(0)), e + 9@ Oy, (2, £, 7(0)))
= f(2.£, 70", Yi(2) + Te@W (D Oy, (2, £, F(0")).
Now, as ¥.(z) remains in the compact set K, we find, by (B.2),
(B.4) f@ 87 vp@) 2 () + 1P 2 42",
since [T(0")| = W.IT(0") = CoT(0’). The homogeneity of @y, (z,, T(0")) gives
T @Oy, (2 & F@ N S ¥ T HAF" <y 43"
With (B.3) and (B.4), we obtain the result for y chosen sufficiently large. [ |

We recall the definition of g (o) given in (4.24), we have qi(y) = pr(z, { +iT(0")) with pi(z,{) =
(-Dio? + ffl + r(x,&"). From Proposition 2.3 and Proposition B.2, we have the following result,
in any dimension N > 2, thatis, d > 1.

Corollary B.3. Let k = 1 or 2. There exist C > 0 and yy > 1 such that
k@ + Te@I ()P Re gi(@), Imgi(@)} = CA}, 0= (,4,7.7,9),
forzeV, . eRN, > 1,y >y, and € € [0, 1], and where t(0") = Typ(2)dw+(2).

B.3. Estimates for first-order factors. In this section, we shall assume that %4 C M7 is a conic

open set where the symbol gx(0) = pi(z, ¢ + iT(0”)) can be factorized into two smooth first-order
terms,

q1©) = qi-(©)qk+(©0),  qr+(0) = &4 — pr+(0).

By Lemma 4.18 we see that gy — is elliptic, and g, + may vanish.



62 JEROME LE ROUSSEAU AND LUC ROBBIANO

B.3.1. A root with a positive imaginary part: an elliptic estimate with a trace term. Here, we
further assume that there exists a second conic open set % C % such that Im py +(0") 2 A1, for
o € % . Welet y, x € S(1, gT) be homogeneous of degree zero and such that

X = 1 on a conic neighborhood of supp(y), supp(x) C L.

With Qi 4 = D, — Opt"(x*px.+) we have the following estimation.

Lemma B.4. Let £ € R and M € N. There exist T1 = Ty, v1 = 1, and C > 0, such that
®B.5)  10prwlher < C(IQk+ OprrWlos + tHOPTCOWNo 41725 + IWlo-arz)
fort =71,y >y, €€|0,1], and forw € Y(@).
Proof. We write Q = A — iB with

A =D, -Opr"(x’Reprs), B=O0pr"(x*Impy,),

both formally selfadjoint.
We use a pseudo-differential multiplier technique, following for instance [ ] and compute,
with s = 20 + 1,

2 Re(Q Opr (0w, —iA}.; Opr()W)s
= ~2Re(A Opr(x)w, iA3 . Opr(x)w)s + 2 Re(BOpr()w, AL . Opr(x)w),
= —(i[A, A7 ;1 Opt(x)w, OpT(x)W)+ + 2 Re(B Opt(x)w, AT ; OPT(X)W)+
= (AT : OPT(V)Wixy=0+ > OPTONW =0+ ) 21
> 2Re(BOpr(y)w, A} Opr()w): — CY I OpTOOWIIG 1122
— 10OPT(OWiy=0°15 1127
which by the (microlocal) Géarding inequality of Proposition 4.16 yields, for any M € N,
Re(A§ ;0 Opr(O)w, —iATH Opr()w)s + 10PTOOWL,=0+15 44127 + IWIIG _42 2 I1OPTOOWIG £ 2
for 7 and y chosen sufficiently large. Then, with the Young inequality, we obtain
1Q OpTOWllo.e.7 + 1 OPTOOWIxy=0+lg £11 /2.7 + Wllo~am7 2 [1OPTOOWIl0 417
Finally, observing that we have
IDx, OptrOIWllo.c.z < 11Q OprOwllo.ez + Il Opr(xIwllo,e+1,2

allows one to conclude the proof. [ |

B.3.2. Transmitted sub-ellipticity. In 74 where gx(0) is smoothly factorized, gk(0) = gk.—(0)qk +(0),
we now describe how the sub-ellipticity property of Corollary B.3 is “transmitted” to the nonel-
liptic factor gy +.

Proposition B.5. Let k = 1 or 2. There exist yo > 1, ag > 0, and C > 0 such that
(B.6) oyt [ Impp i * + {€g — Reprs —Imp i} 2 CyE ' 23, o € %,
fory = yoand a > ay.
Proof. We write
2ifRe gy, Im i} = (@i qi) = lar-F(Gicrs G} + i PG, gi-) + 20 Im (@i, e Yaiorqe-):
yielding
(Re g, Im i} = |gx-*(Re i+, Im g} + e+ P{Re g Im gy} + Im (@i, e Jqhcr qe,-)-
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We write, for M > 0,
e+ P {Re g, Tm g )| + | Im (G, g Vv qe )| < C(v el + v A2lgucs))
< C'(1+ Mydslgis > + C' M1y A3,
For M > 0 and y¢ > 1 chosen sufficiently large we obtain, with Corollary B.3,
- ©@P(1g6+ @) + 7@ Re gt . Im gr 1 J0)) = CAE = C'(1 + M)FAzlgi s,
In %4 we have |gx—(0)| < Az, as gi- is elliptic which gives

algi+ @) + oW Re grv, Im i+ }(0) = CAZ, 0 € U, éq € R,

for @ > 0 chosen sufficiently large. If we now choose &; = Re pi +(0”) we then obtain the result.
|

B.3.3. A root with a vanishing imaginary part: a sub-elliptic estimate with a trace term. Here,
we consider as above a conic open set %) C Moy, such that the symbol gi(0) = pr(z, ¢ + iT(0"))
can be factorized into two smooth first-order terms, gx(0) = gk —(0)qgr.+(0). We let x,x € S(1,871)

be as above and we recall that Oy ;. := D, — OpTW()fpk,Jr). We have the following lemma.

Lemma B.6. Let £,m € R and M € N. There exist T1 > T, v1 = 1, and C > 0, such that
(B.7)
Y212 0prOowlli ex < CI7" Qe OpTOOIWlo ez + 1E" OpTOOWg £41/0.2 + Wl -a1.7).

fort =71,y =y, €€[0,1], and forw € Y(@).

Proof. For concision, we write Q in place of Oy . We decompose Q according to Q = A + iB
with

(B8) A=D, —Opr(*Repr) € ¥1°,  B=-0pr"(Impr.) € Y = P(drz. g1
Observe that both A and B are formally selfadjoint.
We set we, = %’”A."r - Opt(x)w and compute
B.9)  11Owemll; = A + iBweulls = 1Awemlls + 1Bwemlly + 2Re(AWem, iBWem)+
From the form of A and B given in (B.8) we find
2 RC(AWg’m, iBWf,m)+ = l([A’ B]Wt’,m, Wt’,m)+ - (OPTW(/\_/z Impk,+)wé’,m|xd:()+ s Wlm|x,=0+ )Lz(RN‘l)'
yielding, with (B.9),
IQWemlly + [t OpTOOWIG 44127
2 Awemlly + 1Bwemlls + i(LA, Blwem, Wem)+
2 Awemll; + (v B> + ilA, B)Wem, wem)+
2 Awemll} + (AL 7" (ay? ™' B* +i[A, B)F"AL . Opr(x)w, Opr(x)W)+

for @ = ag with e given by Proposition B.5, and for 7 such that ay7~! < 1. As the principal
symbol of AL _#"(ay™'B? + i[A, B])¥" AL _ is given, in a conic neighborhood of supp(y), where
x =1,by

P (vt (Imprs)” + (€0 — Reprr, —Impy 1)) € S(rF" 1 A7 gr),
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then Proposition B.5 and the (microlocal) Garding inequality of Proposition 4.16 yield, for any
M € N, by choosing 7 and 7y sufficiently large,

1Qwemlls + 1" OpTOOWo 41722 + IWllo- 2 NlAWemll + 7! 2IIF" 2 OprOOWllo, 46,7
From the form of A in (B.8) we have
Y PIRTPD wemlls < HAwemlls + ¥ P1E Pwello,ne
< Awemlls + 521712 OprOwllo, e
We thus obtain
1OWemll+ + e OpTOOWo 41 /2.7 + IWllo,-m

2 Y212 Opriowllo, e + 17D wemlle)

2y 212 Oproowll e
by choosing 7 sufficiently large and using Lemma 4.14. This concludes the proof. [ |
B.4. Estimate concatenations. Let % be on conic open set of Mr. Let )ﬁ(g’) e S(1,g7) be

homogeneous of degree zero such that supp(y) ¢ %. Let p®(0o") € S(Arz,¢71), k = 1,2, be

homogeneous of degree one in %4 and define oW = Dy, - Opt"'(x?p®). The operators Qy .,
k = 1,2, defined in what precedes and in Section 4 are of this form. Above, for such operators, we
proved some microlocal estimates of the form

(B.10) y™ 2z ™12 Opr Qw7 + 6l e (@™ OpTOOW)o 41/2.2
< (I @ Opr(x)wllo.cz + (1 = 6 trE™™ OpTCOW £ /2.2 + IWllo -a1.2),

with 0 = (1 — ax)(1 — Bx) and g, Bx € {0, 1}, £,m € R, and where y € S(1, gT), homogeneous of
degree zero and such that y = 1 on a conic neighborhood of supp(y).
If @ = 0 and By = O the estimate reads

10pTOOWII1 ez + [ OPTOOWg 41727 < C(IQY OpTOWll0.2z + [IWllo.-a1.)-

This is a perfect elliptic estimate that holds if o® is in the lower half complex plane —see Lemma B.1.
If @ = 0 and B = 1 the estimate reads

10pTOWll1ex < C(IQ Opr(IWlo.cz + It (OPTOOWNg 4122 + IWllo.-az.)-

This is an elliptic estimate, yet with a trace observation term in the r.h.s., that holds if p®®) is in the
upper half complex plane —see Lemma B .4.
Finally, if oy = 1, independently of the value of 5; we have

Y212 0proowll ez < C(I" QY Opr(x)wlioce + 1@ OprOOWlg p11/2.7 + Iwllo-ar2)-

This estimate is characterized by the loss of a half derivative and a boundary observation term in
the r.h.s.; such an estimate is proven in Lemma B.6 when the root p® may cross the real axis.

We shall now describe how such estimates can be concatenated, as this is often done in the
course of the proof of Theorem 4.17.

Proposition B.7. Let £ € R and M € N. Let Q" be defined as above, for k = 1,2. Let o > T,,
vo = 1 and C > 0 such that estimate (B.10) holds, with ¢, miR, with ay, B € {0, 1}, for both

k=1and?2, fort > 71y, v =7y €€ [0,1)], and for w € Y(Rﬂ:’). We assume that a; < ap and
1-01 <1-0m.
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Let y € S(1,81), be homogeneous of degree zero and such that y = 1 on supp(x). There exist

71 > 7y, y1 > 1 and C > 0 such that the following estimate for the second-order operator Q') Q®
holds,

7’(01+02)/2||'7'_(m+02)/2 Opr)wl.ez + |tr(OPT(X)W)|1,f+1/2,%
< (10" @ Opr(x)wlio.cz + (1 = DI (OPTOOW f11/2.2

+ (1= )y PG 2 Opr()Wly 13727 + W27,

fort =71,y >y, €€[0,1], and forw € y(@).

Note that the assumptions made on oy and 1 — &, k = 1,2, imply that Q1 yields an estimate of
better quality than that associated with Q.

Proof. We introduce y1 € S (1, g7) that is such that y; = 1 on supp(y) and y = 1 on supp(y). For
concision, we write = = Opt(y) and Z; = Opt(x1). Here, M will denote an arbitrary large integer
whose value may change from one line to the other.

Using Q@ Zw as the unknown function in the estimate (B.10) for 9V, with m = 0 gives,

B.11) Yy 22 0PEW 0z + 611t (QPEW) 441 /22
<y P2E 28 QDB ez + 61 (B QPEWo 44122
+ Wil -az + e W] _arz
< IOVEI QP EWllo ez + (1 = SDIEI QP EWo £41/2.7 + Wl -z + 1 TOW]y _prz
<10V 0P EWllo ez + (1 = SOICEW £41/27 + IWll2,-pr7-
Observe now that we can write, using that D, — Q(z) e Y11z, 81),
(1 = &)y 2 ae(F N 2EW) p41 )05
< Sy PLuE P QPEW g 1107 + (1= )Y PG PEW 4412
+ (1= &)y e (F " 2EW)lg r43/2.2
< St (QPEWg r1/2.5 + (1 = SOITEW 1725 + (1 = Sy 2L PEW)o £43/2.2-

With this estimate and (B.11), we thus obtain

(B.12) y"2(IF " 2QPEwll1 ¢z + (1 = 6| r(F " 2EW); p1/2.7)
SNV QP EWlo ez + (1 = SOITEW 41127 + (1 = Sy 21 u G 2EW)lg 13727
+ wll2,-p1,7-

Up to creating error terms, we shall now modify this inequality to be able to apply the estimate
(B.10) associated with Q®. We write

~— 2 2) = — ~— 2= —_
IF 2 QPE Dy, Ewllo.cz + (1 = ) e 21 D, Ewy 1122
~—a1/2 A2 — ~—a1/2 —_
< IE QP D, Ewllocz + (1 = )G 2Dy, Bl 11 oz + Wl —arz + 1 EOW]; _pyz

~— 2 2)— ~— 2
SIF2ODEW 1 p7 + (1= )G 2EW g1 /05 + IWIh -z + TEOW]) a7

~— 2 —
+YIEF 22wl ez
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using that [D,, 0% e y‘I’l’O and using Lemma 4.14. Hence with (B.12) we have
(B.13) Yy 2(IF 2 QPE Dy Ewllocr + (1 = 62| trF ™ /*E1 Dy, EW)lg 1105
+IE 2P Ewllg pa15 + (1 = 62| rE " 2EW)g 14307
<y (IF " PQPEWI £z + (1= 5) r G EW)) 14127

a1 /2=

+IE 2Bl ez) + Wl —age + O] a7

<110V OPEWlo,e7 + (1 = SDITEW)y £41/27 + (1 = Sy P e G PEW)o £43/2.5

1+a1 /22— /2=
+y O E 2B + Wz
We write, with Lemma 4.14, for 7 chosen sufficiently large,
. 2 - 2y = - 2=
(B.14) [T 2Bz < T RD, Bl er + IF PB4

—— 2= —_ - 20
< |F@r D25, D Bwlly oz + IFCDRE W 5+ Wz

and

(B.15)

|tr(77 122

) -
EW ea1j25 < [ 0E 2D EWg g0y oz + G 2EWo 43727
S G 2EID L EWlg 11 0z + 1 EE T PEWg r1307 + [ TOW] _p17-

Applying now estimate (B.10) associated with Q® to D,,Zw and w, with m = —a /2, using that
a1 = a1y, we obtain
(B.16)

YR @28 D, Bl er + 2y e PED EWg 41 0.0
<y (I 2 QP2 Dy, Ewllo e + (1 = 6 tr(F 2By Dy Bwlg g1 0.2) + Il -ase
and
(B.17) y@re 2@ Rg i, s+ 6y P ae(E N PEWg 30

<Y1 QP E Wl 417 + (1= 52 r(E" 22wl 043/2.7) + IWllo 7.

With (B.14)—(B.17), we achieve

YRR E iy g + Sy P u N PEW 1120

<y (Il 2 QPE Dy Ewlo cx + (1= 6) e E1 Dy EWlg 4122

~—1/2 A2)— ~— —_
+1F 20D E W0 o1z + (1 = O 2EW)g 11370,7) + W27

Combining this latter estimate with (B.13) we obtain

(a1+a3)/2 I3 ~—(a1+a2) /2

Y Ewllez + 62y | te(F /2 EWier1)27

SOV OPEWllo ez + (1 = SOIEEW £41/07 + (1 = Sy 2 e G 2 EW)lg 43/2.5
+ ,yl+al/2”,7_—(11/2'—~

which, with the usual semi-classical inequality (4.17)

(a1+a2)/2 I3 ~—(a1+a2)/2m

=wllex + IWll2,-amz
2 ~—
y Ewlbez + 62y 21 tr(E N PEW ) pe1/0
S0P OPEwllo ez + (1 = SDIEEWp41 /07 + (1= )Y 21 eGE M 2EW)g £43/2.7
+ w2 —pm 2.

Let us now consider two cases:
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Case @y = 1: Then 6; = 0 and @, = 1. We thus have the term | tr(Ew)|; s11/o 7 in the rh.s.
of the estimation and the sought result then holds.
Case @1 = 0: Then we write
= D= -
Le@EW 1122 S TEQPEW.p11/25 + [TEWo 14372
2 Lwn] — p—
S t(QPEWo £41/2.5 + 21 TEW ) p41/27 + (1 = ) TEWl 43727

which leads to
SUTEW 122 S SIEQPEWg £41/27 + N TEW ) 1/2.5 + (1 = D EEWo £43/2.7-

Recalling that the term 0| tr(Q(z)Ew)lo’{;H /2.7 can be found in the Lh.s. of (B.11), We thus
obtain

Y2 2YF 0228wl 2 + (81 + SDIEW| 141/27
S 10V QPEWIo ez + (1 = SOIEW p41 /2.5 + (1 = SDITEWlo £43/2.7
+ w2, —pm 2.

If 61 + 6o > 0 we then have the sought estimate in the case @y = 0. If 61 + 6o = 0
then the term | tr(Ew)|; 141,27 can be found in the r.h.s. of the estimation and can thus be
“artificially” added in the Lh.s..

This concludes the proof of Proposition B.7. |

We now show how to obtain microlocal estimates for some products of two factors of order
two.

Proposition B.8. Letr assume that Q~(z, D,,T,7,€) € ‘I’g’o fulfills the requirement of Lemma B. 1

in some conic open subset % . Let Q% (z,D;,7,7,€) € ‘Pg’o be such that, there exist 1o > T, o = 1
and C > 0 such that, for € € {0,1,2} and all y € S(1, gT), homogeneous of degree zero, with

supp(x) C %, for E = Opr(x),

(B.18) OO @t RZy 2+ [ EW 4127
< C(IIQ Ewllocr + (1 = S rEW) g410.7
+ (1= &)y aE 2 Ew)g 4307 + ||W||2,—M,%)7
fort > 10,7 > y0, € € [0,1], and for w € S RY), where ay,a> € {0,1} and 61,6, € {0,1)

with a1 < ap, 1 — 81 < 1 — 6, and moreover 6, = 0 ifay = 1, k = 1,2. We also assume that
Q*E=DXE+ T EwithTy, € P,

Let M € N and let y € S(1, g1) be as above. In the case a) + ap = 2, we furthermore assume
that, for any M € N, [Dy, + it¢,, 0*10pt(x1) = (1 + £¥)R20 Opr(x1) + Ra_ps, with Ry € ¥2°
and Ry _y € ‘Pi’_M, if x1 € S(1, g1) is homogeneous of degree 0 and such that x| = 1 in a conic
neighborhood of supp(y) and supp(x1) C % .

There exist T1 > T, y1 = 1, €1 € (0, 1], and C > 0 such that

(B.19) Y2 F @D RE ) 6 - 4 [ (EW)3 125
< (10" Q*Ewlly + (1 = Sl trEw)ly 52,2

—

+ (1= &)y Pl 2Bl 70,7 + IWla-arz).

fort =11,y >27v1, €€[0,¢e1], and forw € Y(@). In the case a1 + ap < 1, we can take g1 = 1.
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In Section 4, for example, this proposition will be applied to Q" = Q0>+ for which an
estimation of the form of (B.18) will hold by Proposition B.7. Note that this proposition, in the
case a1 + ap = 2, is one instance where it is important to take £ > 0 sufficiently small.

Proof. We introduce y; € S(1,gr) that is such that y; = 1 on supp(y) and supp(y1) € % . For
concision, we write = = Opt(y) and E; = Opt(y1). Here, M will denote an arbitrary large integer
whose value may change from one line to the other.

Using Q" Ew as the unknown function in the estimate of Lemma B.1 for the operator Q™:

(B.20) 10" Ewll07 + 1 tr(QTEW)I; 125
< IE1Q Ewllaoz + |tr(51Q+EW)|1,1/2,% + wlla,-p1.7
SO EI QT EWly + Wl -mz
<S1Q™ O Ewlly + [Wlla-prz-

Combining (B.18), for £ = 2, with (B.20) we find

(B.21) 10" Ewlla07 + [tr(QTEW)y 1 /27 + [tr(EW)]; 5/2.2
SO0 Ewlly + (1 = SDIr(EW)l 1527 + (1 = Sy 2 tr(F* 2 EW)lg 705
+ Wlla-prz-

We now make the following claim whose proof is given below.
Lemma B.9. There exists C > 0 such that
[tr(EV)l3.1/2.2 < C(tr(QTEW)N 107 + [ 1EV)]1 5/2.7)-

This gives

(B.22) [1Q"Ewlboz + [trEVl31/27 S 107 QT Ewlly + (1 = DI EW)l1 5727

+ (1 = &)y e 2Ew) 725 + IWlla—prz-

First, we treat the case @) + a» < 1. As @ < ap then a1 = 0. We write

Z (||Q 1D Ewlloa-jz + |tr('—‘1DXd'_'v)|15/2 JT)
=0

z (107D Ewllo-is + 10D EV 53 5z) + il

[38)

< '20 (||ch,,Q Ewlloz-jz + |tf(Dxd~V)|1 52— ]T) + YlIEWl3,0 + lIWll4,-pr.7
]:
SO Ewlhoz + [trEV)l3 127 + VIEWI3,0 + (W4 -7
With (B.22) we then find

2
ZO (HQ '—‘led'—'W”OZ -jxt |tr('—'led'—‘V)|15/2 ]‘r)
J_

SO Q" Ewlly + (1 = DI trEW)ly 572 + (1 = 5 trEW).7/2.2
+YIIEW|3,0 + [Wll4,-p7-
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Now, applying (B.18) with £ = 2 — j, we obtain
2
2)15-2/2m -
(B.23) > (v PlE P DY Ewla-jz + 1@ DL, EW) 5 ],)

j=0
<o Q Ewlls + (A =oDItr@Ew)ly 507 + (1 -

With Lemma 4.14, we write, for T chosen sufficiently large,

21z 2
y2l2|gee/ 2+ [ tEWls 10z

X
Mo

22—2/2 ) = —_
(y“z/ F72 D] Ewllan- iz + 11 (DLEW), 5/ 7)

< 3 (y2F 222, D] Ewlha- iz + |12, DL, Ew)| + 1Wlla a2
o - d 1,5/2—j%
J:

Finally, using (B.23) we obtain

21— 2~
Yy F 2 2B la gz + [ H(EW)l3 1 22

<100 Ewlls + (1 = ) rEw)ly 507 + (1 -

and taking 7 sufficiently large, as 0 < a; < 1, we achieve the sought estimate.
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Second, we treat the case a1 + ap = 2, thatis, a; = a, = 1. We set l~)xd =D,, +ifg € ‘I’;’O.
We use the further assumption made in this case, namely, for any M € N, [D, L0 15 = (1 +

8’}/)R2’0E‘1 +Ry_m with Ryp € “Pg’o and Ry_m € \Pi’_M. We write

ZO(IIQ 21 D), Ewlloa—jz + 0@ DLE 5 57
]_
<3 (IIQ DY, Z1Ewlloa-jz + 10(DLE 55 7) + IWlla ez
2
2 +
< 2 (152, Q" E1Ewloz-js + 10 (DGE 575 5) + (1 -+ eEwilo + Wl -z
]_
< Q" Ewloz + | EV)l3 127

With (B.22) we then find

Jg (10" 21D, Ewllojz + (21 DL, EV, 5 s)

<o o* wn+ + (1= DIe@EW 50 + (1= 82y 2F 2 Ewlg 722

Now, applying (B.18) with £ = 2 — j, we obtain

2 . -
B24) 3 (YIF' 21D}, Ewllaa-j + | tr(alDidEwnl,s i)
<10 Q Ewlly + (1 - s+ (=o' P2

+ (1 +ey)lEwllso + ||W||4,—M,-?-
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Now, as [Dxd, 7 1e y‘Pg’_l, we have

2 . ,
o o
P (DL T EWla iz + |0 (DLEW) 55 7)

(3]

1R = N = 2z—1=
< 2 (M D Ewllaajie + 10D EW 55 j2) + VIF Ewlag
j:

M

o e
< ] O(ynr 1D, Ewlha gz + 1 E1DLEW 5 sz)
]:
1=

+y2||‘7' =w

30+ [Wlla—pr 2,
yielding with (B.24), as y?7#7! < 1,
Z N a—1m ~jo—
(B.25) % (VD37 Bloa-je + 10Dy Ewl 50 )
]:
SN QO EWlly + (1 = DI e EWy 5702 + (1 = 82)y' 2 rEWlo 725
+ (I +epllEwllzo + lw

4,-M7-
AsD,, - D, =T ¢ ‘I’g’l, observe that we have

1D+, 7 Bl < 1D, 7 Ewllz + 1T Ewlho2z,
meaning that we have

—

~—1 A ox—lm 21—
1T Ewlls,17 < 1Dy, T Ewll 17 + 177 Ewlla27.

Next, we write
ID% 7' Ewlooz S 1D, Dy, ¥ ' Ewlboz + IDx, TF ' Ewlho
d
N2 ~—1— e ~—1=
S Dy, T Ewllaoz + 1Dy, T Ewlla 1z + I Ewllz15,

and thus
-1 2 R =1
1T Ewllaoz < 2 IIDx, T Ewlhaa-jz-
J=0
Similarly, we find

2 .
- N/ =
[tr(EW)l31/27 S jgo | (Dy, EW)l; 55— i

With (B.25) we thus obtain

JU, - =
YIF Ewllaoz + [t(EW)31 /25

SNIQ™ O Ewlly + (1 = S)ItrEW)l 1507 + (1 = )y 2F V2 eEW)lo7/25
+ (1 + ey)IEwWll30 + [Iw

l4,—m 7.

Then, taking y sufficiently large and € > O sufficiently small we obtain the sought estimate.
Proof of Lemma B.9. Recalling that Q"= = D)%dE + T8, where T | € ‘I’;’l, we have

- 2~ - - -
[trEV)h 3727 < 1Dy, BV 502 T 1TEV 5727 = [tr((Q = T1.1)EWg3/27 + [ tHEV)]1 52,2
< | tr(QFEv)

0327 t1r(EV)1 5/2.7.
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We then write
— 3 — — — —
[tr(EV)l31/07 < |t1'(DxddV)|0,1 nat [tr(EV)a3/07 = [tr(Dy, (QF - T1,0)EV 107 + 1EEV) 327
S It(QT BV 10z + [1(EV)p 307

Combining the two estimates yields the result. [ |

B.5. An Estimate for Q). We recall that
Ok = (D, + it,(0)) + (=1)i(Dy + it,(0"))* + r(x, Dy + itz (0")),
with k& = 1, 2. For this operator we have the following estimation.

Proposition B.10. Let V' € V. Let £ € R. There exist 19 > 7., Yo = 1 and C > 0 such that
YIE 2l e + 10O a1 27 < C(IQ0Mlocr + 10 Wlor1327) ko =1,2,

fort =10,y = v0, € €0, 1], and for v = wl—, withw € CKC‘X’(RN) and supp(w) C V.

@)
The open neighborhood V is that introduced in Section 4.2.

Proof. Let k be equal to 1 or 2. We write Q in place of Oy for concision. We also write u in place
of Mk-

We need to define microlocalization symbols and operators as in Section 4.4 and use some of
the symbols introduced therein. Let yy» € €*(RY) be such that supp(yy/) € V and yy» = 1 on an
open neighborhood of V’.

For 6 € (0, 1], we set

Xo.-©) = xv (@) x-(u@)/6) € S, g1)  Xs50(0") = xv(2) (1 = x—(u(0")/6)) € S(1, g1),

for y_ defined in Section 4.4, and observe that y5_ + ys0 = 1 on Mty.. We set Z5_ = Op1(ys-)
and Es0 = Opr(¥s0)-

In a conic neighborhood of supp(ys-) € Mty we have u < —C6. As (4.20) holds in V we have
T¢, 2 C7 and thus |T¢| < 7. Thus, by Lemma 4.18, both roots of the symbol g of the operator Q
are in the lower half complex plane. Then, with Lemma B.1 we have the following perfect elliptic
estimate, for any M > 0,

(B.26) 1B5,-vIl07 + tr(Es -V /27 S 1QEs Vil + Vll2,-m7,

forve. . (Riv ), for T > 7., ¥y > 1 chosen sufficiently large, and ¢ € [0, 1].

We now let Xy X51 € S (1, g1) supported in My y, homogeneous of degree zero, be such that
{ = —C¢ on their supports and ys; = 1 in a conic neighborhood of supp(¥s0) and X, = lina
conic neighborhood of supp(xs,1).

We choose ¢ > 0 sufficiently small so that the result of Lemma 4.22 applies, that is, on supp()ﬁ(S )
the roots of g are simple. We have

q(0) = q-(0)9+(0),  q+(0) = &4 — p+(0").
We set Q. := D, — Opr”(x2ps).

We shall denote by R, as a generic operator in ‘Pé’k, j € N, k € R, whose expression may
change from one line to the other. We denote by M an arbitrary large integer whose value may
change from one line to the other. We have with a proof similar to that of Lemma 4.33,

(B.27) 0=50 = Q-0+Es50 + YR10Es0 + Ro 1.
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In a conic neighborhood of supp(ys0), the root of the symbol of Q_ is in the lower half complex
plane. Then, with Lemma B.1, we have the following perfect elliptic estimate, for any M > 0,

(B.28) 1Zs0vll1.07 + [tr(EsoVlg 127 < 1Q-Esovil+ + [IVII1-m.7,

forve (@), for T > 7., y > 1 chosen sufficiently large, and € € [0, 1].

For Q. we have the following estimate, characterized by the loss of a half derivative and a trace
observation, as given by Lemma B.6,

Y P2 Esovles S 1" Q4 Esovllos + 1t @ Esonly r1 27 + V0.~ a2
forv € Y(@) and £ € R, and for 7 and y chosen sufficiently large, and &£ € [0,1]. Then,
according to Proposition B.7, applied with @1 = 0, ap = 1, 6; = 1, and 6, = 0, we have the
following estimates for the operator Q_Q., for M > 0 and £ € R,
Y PIE P Esovln0z + 10Esov)ly  jnz S I10-0+Esovlls + | (Es0vlg 307 + IVIl2 -z

forve. (@), and for 7 and y chosen sufficiently large. With (B.27) we thus obtain

1/2)==1/2— —_ —_ _
B29)  yVEPEsovbos + [Esov) 0z < 10850Vl + 1 (Esovg 307 + V-

for T chosen sufficiently large with the usual semi-classical inequality (4.17).
Using that y5—- + ys0 = 1 on Mty we obtain, with (B.26) and (B.29)

1/212=—1/2
Y PE Y 20z + 0001122

1/211~—1/2— —_ —_ —_
< YV21EY2Es vibos +y Esovlloz + 1(Es- V), 1 1ns + [TE(E50V)]; |12
/2, /2,
S NQEs- vl + 1QZs0vlls + 1 rEs0W)lg 32 + Vl2-p 7

1/2”,7_—1/2

for v = wlR—N, with w € €= (RY) and supp(w) C V’. Observing that [Q, Zs_] and [Q, Zs0] are

both in y‘I’;’O we conclude the proof with the usual semi-classical inequality (4.17) for T chosen
sufficiently large. [ |
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