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SPECTRAL INEQUALITY AND RESOLVENT ESTIMATE FOR THE
BI-LAPLACE OPERATOR

JÉRÔME LE ROUSSEAU AND LUC ROBBIANO

Abstract. On a compact Riemannian manifold with boundary, we prove a spectral in-
equality for the bi-Laplace operator in the case of so-called “clamped” boundary condi-
tions, that is, homogeneous Dirichlet and Neumann conditions simultaneously. We also
prove a resolvent estimate for the generator of the damped plate semigroup associated
with these boundary conditions. The spectral inequality allows one to observe finite sums
of eigenfunctions for this fourth-order elliptic operator, from an arbitrary open subset of
the manifold. Moreover, the constant that appears in the inequality grows as exp(Cµ1/4)
where µ is the largest eigenvalue associated with the eigenfunctions appearing in the sum.
This type of inequality is known for the Laplace operator. As an application, we obtain
a null-controllability result for a higher-order parabolic equation. The resolvent estimate
provides the spectral behavior of the plate semigroup generator on the imaginary axis.
This type of estimate is known in the case of the damped wave semigroup. As an ap-
plication, we deduce a stabilization result for the damped plate equation, with a log-type
decay.

The proofs of both the spectral inequality and the resolvent estimate are based on
the derivation of different types of Carleman estimates for an elliptic operator related to
the bi-Laplace operator: in the interior and at some boundaries. One of these estimates
exhibits a loss of one full derivative. Its proof requires the introduction of an appropriate
semi-classical calculus and a delicate microlocal argument.

Keywords: high-order operators; boundary value problem; spectral inequality; resolvent
estimate; interpolation inequality; controllability; stabilization; Carleman estimate; semi-
classical calculus.

AMS 2010 subject classification: 35B45; 35J30; 35J40; 35K25; 35S15; 74K20; 93B05;
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1. Introduction

Let A be the positive Laplace operator on a compact Riemannian manifold (Ω, g), of dimension
d ≥ 1, with nonempty boundary ∂Ω. In local coordinates, it reads

A = −∆ = |g|−1/2 ∑
1≤i, j≤d

Di
(
|g|1/2gi jD j

)
,

where D = −i∂. For boundary conditions, say of homogeneous Dirichlet type1, we denote by
0 < ω1 ≤ · · · ≤ ω j ≤ · · · , the eigenvalues of the operator A, associated with a family (φ j) j∈N

of eigenfunctions that form a Hilbert basis for L2(Ω). We refer to this selfadjoint operator as the
Dirichlet Laplace operator. The following spectral inequality originates from [LR95, LZ98, JL99].

Theorem 1.1. Let O be an open subset of Ω. There exists C > 0 such that

‖u‖L2(Ω) ≤ CeCω1/2
‖u‖L2(O), ω > 0, u ∈ Span{φ j; ω j ≤ ω}.(1.1)

It provides an observation estimate of finite sums of eigenfunctions. The constant CeCω1/2
in

the inequality is in fact optimal if O b Ω [JL99, LL12], and can be seen as a measure of the
loss of orthogonality of the eigenfunctions φ j when restricted to O . This inequality has various
applications. It can be used to prove the null-controllability of the heat equation [LR95] (see
also the review article [LL12]), the null-controllability of the thermoelasticity system [LZ98], the
null-controllability of the thermoelastic plate system [BN02, Mil07], and the null-controllability
of some systems of parabolic PDEs [Léa10]. It can also be used to estimate the (d − 1)-Hausdorff
measure of the nodal set of finite sums of eigenfunctions of A, in the case of an analytic Rie-
mannian manifold [JL99], recovering the result of [Lin91], that generalizes a result of [DF88] for
eigenfunctions.

Consider now the unbounded operator acting on H1
0(Ω) × L2(Ω)

A =

(
0 −1
A α

)
,

with domain D(A) = (H2(Ω) ∩ H1
0(Ω)) × H1

0(Ω), where α(x) is a nonnegative function. One can
prove the following resolvent estimate [Leb96].

Theorem 1.2. Let O be an open subset of Ω and α be such that α(x) ≥ δ > 0 on O . Then, the
unbounded operator iσ Id−A is invertible on H = H1

0(Ω) × L2(Ω) for all σ ∈ R and there exist
K > 0 and σ0 > 0 such that

(1.2) ‖(iσ Id−A)−1‖L (H ,H ) ≤ KeK|σ|, σ ∈ R, |σ| ≥ σ0.

This resolvent estimate allows one to deduce a logarithmic type stabilization result for the
damped wave equation

∂2
t y + Ay + α∂ty = 0, y|t=0 = y0, ∂ty|t=0 = y1, y|[0,+∞)×∂Ω = 0,

for y0 and y1 chosen sufficiently regular, e.g. (y0, y1) ∈ D(A) [Leb96, Bur98, BD08].

It is quite natural to wish to obtain similar inequalities for higher-order elliptic operators on Ω,
along with appropriate boundary conditions. The bi-Laplace operator, that can be encountered in
models originating from elasticity for example, appears as a natural candidate for such a study. To
understand some of the issues associated with the boundary conditions one may wish to impose
let us consider the case of a spectral inequality of the form of (1.1). If the boundary conditions

1What we describe is yet valid for more general boundary conditions of Lopatinskii type for the Laplace
operator.
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used for the bi-Laplace operator precisely make it the square of the Laplace operator A (with its
boundary conditions) then the spectral inequality is obvious as the eigenfunctions are the same for
the two operators and λ j ≥ 0 is an eigenvalue of the bi-Laplace operator if and only if

√
λ j is one

for the Laplace operator. To be clearer, let us consider the positive Dirichlet Laplace operator A.
If A2 is the bi-Laplace operator on Ω along with the boundary conditions u|∂Ω = 0 and ∆u|∂Ω = 0,
then the family (φ j) j∈N introduced above, is in fact composed of eigenfunctions for A2 associated
with the eigenvalues λ j = ω2

j . This set of boundary conditions is known as the “hinged” boundary
conditions. We refer to this operator as the “hinged” bi-Laplace operator, and, for this operator,
with Theorem 1.1, we directly have the following spectral inequality, for O ⊂ Ω,

‖u‖L2(Ω) ≤ CeCλ1/4
‖u‖L2(O), λ > 0, u ∈ Span{φ j; λ j ≤ λ}.(1.3)

One is naturally inclined to consider another set of boundary conditions, the so-called “clamped”
boundary conditions, u|∂Ω = 0 and ∂νu|∂Ω = 0, where ν is the outward normal to ∂Ω. We refer to
this operator as the “clamped” bi-Laplace operator. It is sometimes referred to as the Dirichlet-
Neumann bi-Laplace operator. Eigenfunctions of the “clamped” bi-Laplace operator are not re-
lated to eigenfunctions of the Dirichlet Laplace operator. In fact, observe that an eigenfunction
of the “clamped” bi-Laplace operator cannot be an eigenfunction for the Laplace operator A, in-
dependently of the boundary conditions used for A. Indeed, from unique continuation arguments,
if a H2-function φ is such that Aφ = λφ on Ω and φ|∂Ω = ∂νφ|∂Ω = 0, then φ vanishes identi-
cally. Thus, a spectral inequality for the “clamped” bi-Laplace cannot be deduced from a similar
inequality for the Laplace operator A with some well chosen boundary conditions. Yet, such an
inequality is valuable to have at hand, in particular as the “clamped” bi-Laplace operator appears
naturally in models. It is however often disregarded in the mathematical literature and replaced
by the “hinged” bi-Laplace operator for which analysis can be more direct, in particular for the
reasons we put forward above. A resolvent estimate of the form of (1.2) is also of interest towards
stabilization results.

The main purpose of the present article is to show that a spectral inequality of the form of (1.1)
and a resolvent estimate of the form (1.2) hold for the “clamped” bi-Laplace operator and, more
generally, to provide some analysis tools to carefully study fourth-order operators that have a prod-
uct structure. Carleman estimates will be central in the analysis here and we shall show how their
derivation is feasible when the so-called sub-ellipticity condition does not hold, which is typical
for product operators. If B is the “clamped” bi-Laplace operator, that is, the unbounded operator
B = ∆2 on L2(Ω), with domain D(B) = H4(Ω) ∩ H2

0(Ω), which turn B into a selfadjoint operator,
let (ϕ j) j∈N be a family of eigenfunctions of B that form a Hilbert basis for L2(Ω), associated with
the eigenvalues 0 < µ1 ≤ · · · ≤ µ j ≤ · · · (the selfadjointness of B and the existence of such a
family are recalled in Section 1.7 below). We shall prove the following spectral inequality.

Theorem 1.3 (Spectral inequality for the “clamped” bi-Laplace operator). Let O be an open subset
of Ω. There exists C > 0 such that

‖u‖L2(Ω) ≤ CeCµ1/4
‖u‖L2(O), µ > 0, u ∈ Span{ϕ j; µ j ≤ µ}.

Note that the spectral inequality of Theorem 1.3 was recently proven in [AE13] and [Gao16].
In [AE13] the coefficients and the domain are assumed to be analytic (the techniques used for the
proof are then very different and exploit the analytic properties of the eigenfunctions). In [Gao16],
the result is obtained in one space dimension; yet , therein, the factor eCµ1/4

is replaced by eCµ1/2
,

yielding a weaker form of the spectral inequality.
We shall present a null controllability result for the parabolic equation associated with B which

is a consequence of this spectral inequality. Such a result can be found in [AE13, EMZ15] in
the case of analytic coefficients and domain. Here, coefficients are only assumed smooth. We
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conjecture that regularity could be lowered as low as W1,∞ for the coefficients in the principal part
of the operator. This would require further developments in the line of what is done in [DCFL+17]
for instance. This would however significantly increase the size of the present article. Note that
the analytic setting allows the authors of [AE13, EMZ15, EMZ17] to obtain control properties by
only requiring the control domain to be of positive measure.

We shall also prove a resolvent estimate for the unbounded operator acting on H2
0(Ω) × L2(Ω),

(1.4) B =

(
0 −1
B α

)
,

with domain D(B) = (H4(Ω) ∩ H2
0(Ω)) × H2

0(Ω), where α(x) is a nonnegative function.

Theorem 1.4. Let O be an open subset of Ω and α be such that α(x) ≥ δ > 0 on O . Then, the
unbounded operator iσ Id−B is invertible on H = H2

0(Ω) × L2(Ω) for all σ ∈ R and there exist
K > 0 and σ0 > 0 such that

‖(iσ Id−B)−1‖L (H ,H ) ≤ KeK|σ|1/2 , σ ∈ R, |σ| ≥ σ0.

We shall present a log type stabilization result that is a consequence of Theorem 1.4 for the
following damped plate equation

∂2
t y + ∆2y + α∂ty = 0, y|t=0 = y0, ∂ty|t=0 = y1, y|[0,+∞)×∂Ω = ∂νy|[0,+∞)×∂Ω = 0.

Both the proofs of the spectral inequality and the resolvent estimate are based on Carleman
estimates for the fourth-order operator P = D4

s + B.
The subject of the present article is connected to that of unique continuation, in particular

through the use of Carleman estimates. Moreover, the spectral inequality of Theorem 1.3 is a
quantified version of the unique continuation property for finite sums of eigenfunctions. There
is an extensive literature on unique continuation for differential operators; yet, positive results
require assumptions on the operator or on the hypersurface across which unique continuation is
pursued. For instance, a simple-root assumption is often made following the work of A. Calderón
[Cal58] or the celebrated strong pseudo-convexity condition is assumed following the work of
L. Hörmander [Hör58, Hör63]. For second-order elliptic operators (with smooth complex co-
efficients) these assumptions are fulfilled. However, for higher-order operators they may not be
satisfied. Counterexamples for the non uniqueness of fourth-order and higher-order operators with
smooth coefficients can be found in [Pli61] and [Hör75]. See also the monograph [Zui83] for man-
ifold positive and negative results. The question of strong unique continuation is also of interest for
higher-order operators; see for instance [AB80] for a positive result and [Ali80] for a large class of
negative results. Note that the above literature concerns unique continuation properties away from
boundaries. For the results of Theorems 1.3 and 1.4 the analysis we use mainly focuses on the
neighborhood of the boundary of the open set Ω. There are few results on unique continuation near
a boundary. Under the strong pseudo-convexity condition the unique continuation property can be
obtained, even for higher-order operators; see [Tat96] and [BL15]. For the operator P = D4

s + B
that we consider here, the strong pseudo-convexity property fails to hold near the boundary and
also away from it. General approaches as developed in [Tat96, BL15] cannot be used. This is one
of the interests of the present article.

1.1. On Carleman estimates. Carleman estimates are weighted a priori inequalities for the solu-
tions of a partial differential equation (PDE), where the weight is of exponential type. For a partial
differential operator Q away from boundaries, it takes the form:

‖eτϕw‖L2 . ‖eτϕQw‖L2 , w ∈ C∞c (Ω), τ ≥ τ0.
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The exponential weight involves a parameter τ that can be taken as large as desired. Additional
terms in the l.h.s., involving derivatives of u, can be obtained depending on the order of Q and on
the joint properties of Q and ϕ. For instance for a second-order operator Q, such an estimate can
take the form

τ3/2‖eτϕu‖L2 + τ1/2‖eτϕDxu‖L2 . ‖eτϕQu‖L2 , τ ≥ τ0, u ∈ C∞c (Ω).(1.5)

One says that this estimate is characterized by the loss of a half derivative. This terminology
originates from the underlying semi-classical calculus where one gives the same strengths to the
parameter τ and to D. Whereas Q is a second-order operator, the l.h.s. only exhibits derivatives or
powers of τ of order 3/2. For most operators, this cannot be improved [Hör63, Hör85a]. In the
proof of a Carleman estimate one introduces the so-called conjugated operator Qϕ = eτϕQe−τϕ,
and estimate (1.5) reads

τ3/2‖v‖L2 + τ1/2‖Dxv‖L2 . ‖Qϕv‖L2 , τ ≥ τ0, v = eτϕu, u ∈ C∞c (Ω).

This type of estimate was used for the first time by T. Carleman [Car39] to achieve uniqueness
properties for the Cauchy problem of an elliptic operator. Later, A.-P. Calderón and L. Hörmander
further developed Carleman’s method [Cal58, Hör58]. To this day, the method based on Carleman
estimates remains essential to prove unique continuation properties; see for instance [Zui83] for
an overview. On such questions, more recent advances have been concerned with differential
operators with singular potentials, starting with the contribution of D. Jerison and C. Kenig [JK85].
There, Carleman estimates rely on Lp-norms rather than L2-norms as in the estimates above. The
proof of such Lp Carleman estimates is very delicate. The reader is also referred to [Sog89, KT01,
KT02, DSF05, KT05]. In more recent years, the field of applications of Carleman estimates has
gone beyond the original domain; they are also used in the study of:

• Inverse problems, where Carleman estimates are used to obtain stability estimates for the
unknown sought quantity (e.g. coefficient, source term) with respect to norms on mea-
surements performed on the solution of the PDE, see e.g. [BK81, Isa98, Kub00, IIY03];
Carleman estimates are also fundamental in the construction of complex geometrical op-
tic solutions that lead to the resolution of inverse problems such as the Calderón problem
with partial data [KSU07, DSFKSU09].
• Control theory for PDEs; Carleman estimates yield the null controllability of linear par-

abolic equations [LR95] and the null controllability of classes of semi-linear parabolic
equations [FI96, Bar00, FCZ00]. They can also be used to prove unique continuation
properties, that in turn are crucial for the treatment of low frequencies for exact control-
lability results for hyperbolic equations as in [BLR92].

To indicate how the spectral inequality of Theorem 1.3 for the bi-Laplace operator B can be
proven by means of Carleman estimates, we first review a method, that yields the spectral inequal-
ity of Theorem 1.1 for the Laplace operator A. In this introductory section, we have chosen to
mainly focus on the method of proof of the spectral inequality; a comprehensive presentation in-
cluding a presentation of the proof of the resolvent estimates of Theorems 1.2 and 1.4 would not
bring any further insight to the reader as the line of arguments is quite similar.

1.2. A method to prove the spectral inequality for the Laplace operator. The method we
describe here originates from [LR95]. We consider the elliptic operator PA = D2

s + A on Z =

(0, S 0) × Ω, for some S 0 > 0 meant to remain fixed. We also pick 0 < α < S 0/2. Three different
types of Carleman estimates are proven for the operator PA: (i) in the interior of (0, S 0) × Ω; (ii)
at the boundary {s = 0} ×Ω; (iii) at the boundary (α, S 0 − α) × ∂Ω. The three regions where these
Carleman estimates are derived are illustrated in Figure 1. It is simpler to first describe Case (i),
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S 0 − α

Ω

V3

V2

S 0

α

0

z(3)

O z(2)

V1

z(1)

Figure 1. Location and geometry of the three types of estimates. Dashed
are level sets for the weight functions ϕ used in the Carleman estimates.
Arrows represent the directions of the (non vanishing) gradient of ϕ.

that is, the estimate in the interior. In Figure 1, this corresponds to the neighborhood V1 of some
point z(1) ∈ Z. There, the Carleman estimate for this operator PA is of the form described above,
that is,

τ3/2‖eτϕw‖L2(Z) + τ1/2‖eτϕDzw‖L2(Z) . ‖e
τϕPAw‖L2(Z),(1.6)

where the weight function ϕ = ϕ(z) is real-valued with a non-vanishing gradient, τ is a large
positive parameter, and w is any smooth function compactly supported in V1. In fact, this estimate
holds if the so-called sub-ellipticity condition is fulfilled by PA and ϕ. If pA(z, ζ) is the principal
symbol of PA, the sub-ellipticity condition in V1 reads

pA(z, ζ + iτdϕ(z)) = 0 ⇒
1
2i
{pA(z, ζ + iτdϕ(z)), pA(z, ζ + iτdϕ(z))} > 0,(1.7)

for z ∈ V1, ζ ∈ Rd+1, and τ ≥ 0. It is in fact equivalent to a Carleman estimate of the form (1.6) for
PA (see [Hör63] or [LL12]). Observe that pA(z, ζ + iτdϕ(z)) is the semi-classical principal symbol
of the conjugated operator PA,ϕ = eτϕPAe−τϕ.

The function ϕ is chosen of the form ϕ(z) = exp(−γ|z − z(1)|2) and V1 is an annulus around z(1),
thus avoiding where the gradient of ϕ vanishes (see Figure 1). For γ > 0 chosen sufficiently large,
one can prove that the sub-ellipticity condition (1.7) holds and thus estimate (1.6) is achieved (see
e.g. [LR95] or [LL12]).

From estimate (1.6), one can deduce the following local interpolation inequality, for all r > 0
chosen sufficiently small, for some δ ∈ (0, 1) (see e.g. [LR95]),

‖v‖H1(B(z(1),3r)) . ‖v‖
1−δ
H1(Z)

(
‖PAv‖L2(Z) + ‖v‖H1(B(z(1),r))

)δ
, v ∈ H2(Z).(1.8)

We now consider Case (ii). In a neighborhood V2 of a point z(2) ∈ {0} × O , one can derive an
estimate of the same form as (1.6), yet, with two trace terms in the r.h.s., that is,∑

|β|≤1
τ3/2−|β|‖eτϕDβw‖L2(Z) . ‖e

τϕPAw‖L2(Z) + τ1/2
(
|eτϕw|s=0+ |H1(O) + |eτϕ∂sw|s=0+ |L2(O)

)
,(1.9)
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for τ ≥ τ0 ≥ 1 and w smooth up to the boundary {s = 0}, with supp(w) ∩ Z ⊂ V2, with V2 as
represented in Figure 1. This can be obtained by locally choosing a weight function of the form
ϕ(z) = exp(γψ(z)) with ψ(z) such that ∂sψ(z) ≤ −C < 0 in V2 and choosing the parameter γ > 0
sufficiently large (see e.g. [LZ98]). We use the notation ‖.‖ for functions in the interior of the
domain and |.| for functions on the boundaries.

From estimate (1.9) one deduces the following local interpolation inequality: there exist V ⊂ V2
and δ ∈ (0, 1) such that

‖v‖H1(V∩Z) . ‖v‖
1−δ
H1(Z)

(
‖PAv‖L2(Z) + |v|s=0+ |H1(O) + |∂sv|s=0+ |L2(O)

)δ
, v ∈ H2(Z).(1.10)

We finally consider Case (iii). In a neighborhood of a point z(3) ∈ (α, S 0 − α) × ∂Ω, one can
derive an estimate of the same form as (1.6), yet, with a single trace term in the r.h.s., that is,

(1.11)
∑
|β|≤1

τ3/2−|β|‖eτϕDβw‖L2(Z) + τ1/2|eτϕ∂νw|∂Z |L2((α,S 0−α)×∂Ω)

. ‖eτϕPAw‖L2(Z) +
∑
|β′ |≤1

τ3/2−|β′ ||eτϕDβ′

T w|∂Z |L2((α,S 0−α)×∂Ω),

for τ ≥ τ0 ≥ 1 and w smooth up to the boundary (α, S 0 − α) × ∂Ω, with supp(w) ∩ Z ⊂ V3, with
V3 as represented in Figure 1. This can be obtained by locally choosing a weight function of the
form ϕ(z) = exp(γψ(z)) with ψ(z) such that ∂νψ(z) ≤ −C < 0 in V3, where ν is the outward normal
to ∂Ω, and choosing the parameter γ > 0 sufficiently large (see e.g. [LR95]). Here, for |β′| ≥ 1,
Dβ′

T stand as differentiations in the tangential directions only, along vector fields that form a local
frame.

From estimate (1.11) one deduces the following local interpolation inequality: there exist V ⊂
V3, with V neighborhood of z(3) in Z, some open subset Q ⊂ V3 with positive distance to the
boundary, and δ ∈ (0, 1) such that

‖v‖H1(V∩Z) . ‖v‖
1−δ
H1(Z)

(
‖PAv‖L2(Z) + ‖v‖H1(Q)

)δ
, v ∈ H2(Z), v|(0,S 0)×∂Ω = 0.(1.12)

The three interpolation inequalities (1.8), (1.10), and (1.12) can be used to form a global inter-
polation inequality, by means of compactness arguments. In particular, the interior inequality (1.8)
permits the “propagation” of the estimate. Then, there exists δ ∈ (0, 1), such that

‖v‖H1((α,S 0−α)×Ω) . ‖v‖
1−δ
H1(Z)

(
‖PAv‖L2(Z) + |v|s=0+ |H1(O) + |∂sv|s=0+ |L2(O)

)δ
,(1.13)

for v ∈ H2(Z) satisfying v|(0,S 0)×∂Ω = 0. This inequality then implies the spectral property for the
Laplace operator for u =

∑
ω j≤ω u jφ j ∈ Span{φ j; ω j ≤ ω}, if applied to a well chosen function

v(s, x), namely,

v(s, x) =
∑

ω j≤ω
u jω

−1/2
j sinh(ω1/2

j s)φ j(x).

Details can for instance be found in [LL12]. In the present paper, we shall apply this approach for
the bi-Laplace operator, the argument is provided in details in Section 5.2.

1.3. Outline of the proof of the spectral inequality for the bi-Laplace operator. Above we
described how Carleman estimates can be used to prove a spectral inequality of the form given
in Theorem 1.1 for the Laplace operator. To prove the spectral inequality of Theorem 1.3 for
the “clamped” bi-Laplace operator, we shall prove several Carleman estimates for the following
fourth-order elliptic operator

P = D4
s + ∆2 on Z = 0, S 0) ×Ω.
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As for PA above, we shall prove such estimates at three different locations: (i) in the interior
of (0, S 0) × Ω, in Section 2; (ii) at the boundary {s = 0} × Ω, in Section 3; (iii) at the boundary
(α, S 0−α)×∂Ω, in Section 4. In Section 5, these three types of estimations are then used to achieve
local interpolation inequalities that can be used to prove, first, a global interpolation inequality and,
second, the spectral inequality of Theorem 1.3. Note that for the proof of the resolvent estimate of
Theorem 1.4 only steps (ii) and (iii) are needed.

Cases (i) and (ii). The weight functions that we shall use will be the same as that used for the
operator PA for Cases (i) and (ii). In Case (ii), the estimate we obtain for P takes the form

τ−1/2 ∑
|α|≤4
‖τ4−|α|eτϕDα

s,xu‖L2(Z) . ‖e
τϕPu‖L2(Z)

+
3∑

j=0

(
τ7/2− j|eτϕD j

su|s=0+ |L2(Ω) + |eτϕD j
su|s=0+ |H7/2− j(Ω)

)
,

for functions localized near a point z(2) ∈ {0} × O , with O ⊂ Ω. We have observation terms at the
boundary {s = 0}. We use the notation ‖.‖ for functions in the interior of the domain and |.| for
functions on the boundaries.

Note that this estimate is characterized by the loss of half-derivative, similarly to the estimate
one can derive for PA. In fact, the sub-ellipticity condition holds in V2 despite the fact that Pϕ =

eτϕPe−τϕ can be written as a product of two operators, Pϕ = Q1Q2, as, here, char(Q1)∩char(Q2) =

∅.
In Case (i), however, the estimate we obtain is characterized by the loss of one full derivative,

taking the form ∑
|α|≤4

τ3−|α|‖eτϕDαu‖L2(Z) . ‖e
τϕPu‖L2(Z),

for functions compactly supported away from boundaries. In fact, this loss cannot be improved as
explained in Section 1.4. Here also, the operator Pϕ can be written as a product of two operators,
Pϕ = Q1Q2, and here, as opposed to Case (ii), we have char(Q1) ∩ char(Q2) , ∅.

We provide fairly short proofs of the Carleman estimates in Cases (i) and (ii) in Sections 2 and
3. Note, however, that the loss of a full derivative in Case (i) does not create any obstruction to the
derivation of a local interpolation inequality in Section 5.

Remark 1.5. Sub-ellipticity does not hold in V1. The reader should note that the failure of the
sub-ellipticity property does not automatically imply a loss of one full derivative. The phenomena
that can occur require a fine analysis to be understood. This is carried out in [Ler88]. Roughly
speaking, if sub-ellipticity does not hold, and if some iterated Poisson brackets vanish up to order
k and an iterated Poisson bracket of order k + 1 is positive, then an estimate can be obtained
with a loss of k/(k + 1) derivative. In the present case, as we can prove that the loss of one full
derivative cannot be improved, we then know that all the iterated Poisson brackets used in [Ler88]
vanish. The essential problem is that the conjugated operator Pϕ can be written as a product of
two operators Q1Q2, and in the case char(Q1) ∩ char(Q2) , ∅, not only does sub-ellipticity not
hold, but we see that the iterated Poisson brackets also vanish.

Case (iii). This case is delicate and the derivation of the Carleman estimate at the boundary (α, S 0−

α) × ∂Ω is one of the main results of the present article. This case is also precisely where we have
to take into account the boundary conditions for the bi-Laplace operator B. The estimate we obtain
in Case (iii) in Section 4 is characterized by the loss of one full derivative and, as for case (i), this
cannot be improved as explained in Section 1.4. This is a source of major complications for the
proof of the Carleman estimate itself. As in Case (i) this, however, does not create any obstruction
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in the derivation of the local interpolation inequality in Section 5. In fact, the proof of the local
Carleman estimate in V3, a neighborhood of a point of the boundary (α, S 0 − α) × ∂Ω, requires
microlocal arguments. This implies the introduction of microlocalization operators that realize
some partition of unity in phase space over V3. For each induced microlocal region, a Carleman
estimate is derived. One region is less favorable: there, the fourth-order conjugated operator Pϕ
can we written as a product of four first-order factors, and two of them fail to be elliptic. Moreover,
their characteristic sets intersect; sub-ellipticity does not hold there and, in fact, this generates a
loss of a full derivative in the estimation. There, the a priori estimate one derives permits to only
estimate the semi-classical H3-norm, viz., ‖w‖3,τ � τ3‖w‖L2 + ‖w‖H3 . In other microlocal regions
over V3, the conjugated operator Pϕ exhibits at most a non elliptic first-order factor only yielding
a half derivative loss as sub-ellipticity holds. If one does not proceed carefully, the derivation in
the least favorable region yields error terms that can be of the same strength as the norm ‖w‖3,τ,
preventing to conclude positively to the Carleman estimate.

We define the weight function in the form ϕ(z) = eγψ(z) and keep track of the parameter γ that is
meant to be large. The function ψ is chosen such that ∂νψ ≤ −C < 0 in a neighborhood of a point of
the boundary where we try to derive the Carleman estimate. The use of an exponential form for the
weight function can already be found in the seminal work of L. Hörmander ([Hör63, Section 8.6]
and [Hör85a, Section 28.3]), in connexion with the celebrated notions of pseudo-convexity and
strong pseudo-convexity. This introduces a second large parameter. Several authors have derived
Carleman estimates for some operators in which the dependence upon the second large parameters
is explicit. See for instance [FI96]. Such result can be very useful to address applications such
as inverse problems. On such questions see for instance [Ell00, EI00, IK08, BY12]. In [Le 15],
an analysis framework is introduced, based on the Weyl-Hörmander calculus ([Hör79], [Hör85b,
Sections 18.4–18.6]), that allows one to describe the explicit dependence of Carleman upon the
second large parameter γ for general classes of operators. That analysis is carried out away from
boundaries. Here, we use that approach by means of a tangential Weyl-Hörmander calculus. The
introduction of the second large parameter γ allows us to handle some error terms in the derivation
of the Carleman estimate in V3. This is however not sufficient to have control over all the error
terms that appear in the microlocal region within V3 where sub-ellipticity does not hold, since the
operator under study is a product of two second-order operators (see above).

Yet, when one attempts to derive the estimate, one realizes that the derivation is possible in the
case ϕ, and thus ψ, only depend on the normal variable to the boundary. Yet, for the interpolation
inequality we wish to derive at the boundary (α, S 0 − α) × ∂Ω, some convexity of the level sets
of the weight function ϕ is needed: ϕ cannot be constant along the boundary. This is illustrated
in Figure 1 (in the neighborhood V3). We thus introduce the function ψε(z) = ψ(εz′, zN), where z′

denotes the tangential variables and zN denotes the normal variable (in local coordinates where the
boundary is given by {zN = 0}), and we set ϕ(z) = eγψε(z). Here, ε is a small parameter, ε ∈ (0, 1).
Keeping track of the dependence of the microlocal estimates in this third parameter too then allows
one to obtain a Carleman estimate, at the boundary, with a weight function with some convexity of
its level sets with respect to the boundary. This is precisely done by extending some of the work
of [Le 15] and introducing a Weyl-Hörmander calculus, with three parameters: the large semi-
classical parameter τ, the second large parameter γ, and this new parameter ε ∈ (0, 1) that controls
the convexity of the level sets of the weight function. Note that even in the case ψ = ψ(zn), the
proof of the Carleman estimate relies on taking the second parameter γ sufficiently large (see the
end of Proposition 4.25 below). The introduction of the parameter ε alone would not be sufficient.
Only the joint introduction of the two parameters allows us to conclude positively to the Carleman
estimate in the microlocal region where a full derivative is lost.
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All the different microlocal estimates need to be derived within the refined semi-classical calcu-
lus with three parameters. Arguments are based on the ellipticity or sub-ellipticity of the different
factors building the fourth-order operator Pϕ, and the position of theirs roots in the complex plane.
This analysis follows in part from the different works [Bel03, LR10, LR11, LL13, CR14].

Eventually, the various microlocal estimates we obtain need to be patched together. This proce-
dure generates commutators of the fourth operator Pϕ and the microlocal cut-offs, leading to some
third-order error terms that can be handled thanks to the better microlocal estimates obtained away
from the least favorable region.

Near a point of the boundary ∂Z = (0, S 0) × ∂Ω locally written in the form {xd = 0} with
Z = (0, S 0) ×Ω = {xd > 0}, the estimate we obtain, for τ and γ large and ε small, is of the form

γ
∑
|α|≤4
‖τ̃3−|α|eτϕDα

s,xu‖L2(Z) +
∑

0≤ j≤3
|eτϕDr

xd
u|∂Z |7/2− j,τ̃ . ‖e

τϕPu‖L2(Z) +
∑

j=0,1
|eτϕD j

xd u|∂Z |7/2− j,τ̃.

On the l.h.s. we find norms of all traces; on the r.h.s. we only have observation with the traces u|∂Z
and Dxd u|∂Z associated with the clamped boundary conditions. Here τ̃ = τγϕ.

1.4. On Carleman estimates for higher-order elliptic operators. If Q is an elliptic operator of
even order m, and ϕ is a weight function such that the couple (P, ϕ) satisfies the sub-ellipticity
condition (as stated above), then a Carleman estimate can be obtained, even at a boundary, for
instance with the results of [BL15]. We use those results in Section 3 for the proof of the Carleman
estimate at the boundary {s = 0}.

If m ≥ 4, it is however quite natural to not have the sub-ellipticity condition, in particular if the
operator Q is in the form of a product of two operators, say Q = Q1Q2. Denote by q, q1, and q2 the
principal symbols of Q, Q1, and Q2 respectively. The conjugated operator Qϕ = eτϕQe−τϕ reads
Qϕ = Q1,ϕQ2,ϕ, with Qk,ϕ = eτϕQke−τϕ, k = 1, 2. If we have char(Q1,ϕ) ∩ char(Q2,ϕ) , ∅ then the
sub-ellipticity condition fails to hold. In fact, if qϕ, q1,ϕ, and q2,ϕ are the semi-classical principal
symbols of Qϕ, Q1,ϕ, and Q2,ϕ, that is, qϕ = q(z, ζ + iτdϕ(z)) and qk,ϕ = qk(z, ζ + iτdϕ(z)), k = 1, 2,
we can write

{qϕ, qϕ} = |q1,ϕ|
2{q2,ϕ, q2,ϕ} + |q2,ϕ|

2{q1,ϕ, q1,ϕ} + f |q1,ϕ| |q2,ϕ|,

for some function f . Thus {qϕ, qϕ} vanishes if q1,ϕ = q2,ϕ = 0. Then, the sub-ellipticity property
of (1.7) cannot hold for Q.

Observe that in the above example we have dz,ζq(z, ζ + iτdϕ(z)) = 0 if q2(z, ζ + iτdϕ(z)) =

q1(z, ζ + iτdϕ(z)) = 0. The following proposition (that applies to operators that need not be
elliptic) shows that in such case of symbol “flatness”, the Carleman estimate we can derive for Q
exhibits at least a loss of one full derivative.

Proposition 1.6. Let Q = Q(z,Dz) be a smooth operator of order m ≥ 1 in Z, an open subset of
RN . Assume further that there exist a smooth weight function ϕ(z), C > 0, τ1 > 0, a multi-index α
with 0 ≤ |α| ≤ m, and δ ≥ 0 such that

τm−1−|α|+δ‖eτϕDα
z u‖L2 ≤ C‖eτϕQu‖L2 ,(1.14)

for τ ≥ τ1 and for u ∈ C∞(RN) with supp(u) ⊂ Z. Let q(z, ζ) be the principal symbol of Q. If there
exist z0 ∈ Z, ζ0 ∈ R

N and τ0 > 0 such that θα0 , 0, with θ0 = ζ0 + iτ0dϕ(z0), and

q(z0, θ0) = qϕ(z0, ζ0, τ0) = 0, dz,ζq(z0, θ0) = 0,

then δ = 0.

In other words, if there is a point (x0, ξ0, τ0) where the symbol qϕ vanishes at second order, then
if a Carleman estimate holds it exhibits at least the loss of a full derivative.

We refer to Section A.1 for a proof.
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Remark 1.7. This loss of at least one full derivative shows that the analysis of [Ler88] cannot be
applied here, as it concerns Carleman estimate with losses of less that one derivative. In particular,
one can check that iterated Poisson brackets used in [Ler88] all vanish at points where qϕ vanishes
at second order.

In dimension greater than 1, this proposition applies to the bi-Laplace operator B introduced
above on the manifold Ω. If a(x, ξ) is the principal symbol of the Laplace operator in a local chart
V , for all x0 ∈ V , there exists ξ0 and τ0 > 0 such that a(x0, ξ0 + iτ0dxϕ(x0)) = 0. Then, the symbol
b = a2 vanishes at second order at (x0, ξ0 + iτ0dxϕ(x0). Hence, we cannot hope for a Carleman
estimate for B with a loss of less than one full derivative. In fact, such an estimate can be obtained
by using twice in cascade the Carleman estimate for the Laplace operator. This is consistent, as
the estimate for the Laplace operator exhibits a loss a half derivative in dimension greater than 1
(if ϕ is chosen such that sub-ellipticity holds – see [LL12]).

In dimension one, however, B = D4
x and the conjugated operator (Dx + iτdϕ(x))4 is elliptic (in

the sense of semi-classical operators) if dϕ(x) , 0 in Ω. Then, the resulting Carleman estimate is
characterized by no derivative loss.

Concerning the operator P = D4
s + B in Z = (0, S 0)×Ω, that is central in the present article, we

write P = P1P2 with Pk = (−1)kiD2
s + A. Setting Pk,ϕ = eτϕPke−τϕ, with semi-classical principal

symbols given by

pk,ϕ(z, ζ, τ) = (−1)ki(σ + iτ∂sϕ(z))2 + a(x, ξ + iτdxϕ(z)), k = 1, 2,

where z = (s, x) ∈ Z and ζ = (σ, ξ) ∈ R1+d = RN . Let d ≥ 2. If, for some z0 ∈ Z, we have
∂sϕ(z0) = 0, if we choose ξ0 ∈ R

d and τ0 > 0 such that a(x0, ξ0 + iτ0dxϕ(z0)) = 0, then for σ0 = 0,
we have ζ0 = (0, ξ0) ∈ RN and θ0 = (0, ξ0) + iτ0(0, dxϕ(z0)) and pk,ϕ(z0, ζ0, τ0) = pk(z0, θ0) = 0
and dz,ζ p(z0, θ0) = 0, where p and pk are the principal symbols of P and Pk, k = 1, 2. Hence, in a
neighborhood of z0, Proposition 1.6 applies.

This situation occurs in Cases (i) and (iii) described in Section 1.3 and Figure 1. In the neigh-
borhoods V1 and V3 introduced there, we have points where ∂sϕ vanishes (as can observed by the
shapes of the level sets of ϕ in Figure 1). This explains why we can only obtain estimates with a
loss of one full derivative for those cases. In case (ii), however, this does not occur, and there we
obtain an estimation with only a loss of a half derivative.

1.5. Some perspectives. The present article deals with the natural “clamped” boundary condi-
tions, that is, homogeneous Dirichlet and Neumann conditions simultaneously. In the light of
the results obtained here and those that can be obtained for very general boundary conditions of
Lopatinskii type in [Tat96, BL15], for instance for unique continuation through the derivation
of Carleman estimates at the boundary for general elliptic operators with complex coefficient in
cases where the sub-ellipticity property hold, one is inclined to attempt to prove estimates similar
to those proven in the present article, in the case of an operator, such as the operator P = D4

s + B
studied here, for which the sub-ellipticity condition cannot hold everywhere and for general bound-
ary conditions of Lopatinskii type.

Here, we considerer the bi-Laplace operator B = ∆2. It would be of interest to consider more
general polyharmonic operators such as ∆k, k ∈ N, on Ω along with natural boundary conditions,
e.g.,

u|∂Ω = 0, . . . , ∂k−1
ν u|∂Ω = 0,

or more general Lopatinskii type conditions.
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1.6. Notation. We shall use some spaces of smooth functions in the closed half space. We set

S (RN
+ ) =

{
u
|RN

+

; u ∈ S (RN)
}
.

The reader needs to be warned that in some sections z ∈ RN will denote (x, s), with x ∈ Rd =

RN−1 and s ∈ R, and thus, there, zN = s. This is the case in Section 3. In other sections, z will
denote (s, x), and thus there zN = xd. This is the case of Section 4 and Appendices A.2 and B.

Some specific notation for semi-classical tangential operators will be introduced in Section 3.1,
and they allow us to derive the Carleman estimate for D4

s + B at the boundary {0} × Ω (Cases
(i) above). Semi-classical calculus is characterized by the presence of a large parameter denoted
by τ here, that is precisely the large parameter that appears in the Carleman estimates (for readers
familiar with semi-classical analysis this is done by taking τ = 1/h where h is the Planck constant.)

A special class of semi-classical calculus is also introduced in Section 4.1 and is characterized
by three parameters. This calculus is essential in the proof of the Carleman estimate for D4

s + B at
the boundary (0, S 0) × ∂Ω (Case (iii) above).

In this article, when the constant C is used, it refers to a constant that is independent of the
semi-classical parameters, e.g. τ, γ, ε. Its value may however change from one line to another. If
we want to keep track of the value of a constant we shall use another letter.

For concision, we use the notation . for ≤ C, with a constant C > 0. We also write a � b to
denote a . b . a. As done above, we shall use the notation ‖.‖ for functions in the interior of the
domain and |.| for functions on the boundaries.

We finish this introductory section by stating some basic properties of the “clamped” bi-Laplace
operator that will be used at places in this article (some were implicitly used above).

1.7. Some basic properties of the bi-Laplace operator. We recall here some facts on the “clamped”
bi-Laplace operator. We define the operator B = ∆2 on L2(Ω) with domain D(B) = H4(Ω)∩H2

0(Ω).

Proposition 1.8. The operator (B,D(B)) is selfadjoint on L2(Ω) and maximal monotone.

In particular, if µ ≥ 0, there exists C > 0 such that, for any f ∈ L2(Ω), there exists a unique
u ∈ D(B) such that

∆2u + µu = f , and ‖u‖H4(Ω) ≤ C‖ f ‖L2(Ω).(1.15)

This can be proven by first finding a unique solution in H2
0(Ω) with the Lax-Milgram theorem

and then applying Theorem 20.1.2 in [Hör85b, Section 20.1]. Note in particular that ‖∆2u‖L2 is a
equivalent norm on H4(Ω) ∩ H2

0(Ω) by (1.15).
As a consequence of Proposition 1.8 we have the existence of a Hilbert basis for L2(Ω) made

of eigenfunctions.

Corollary 1.9. There exist (µ j) j∈N ⊂ R, and (ϕ j) j∈N ⊂ D(B) such that

0 < µ1 ≤ µ2 ≤ · · · ≤ µ j ≤ · · · , lim
j→∞

µ j = +∞, Bϕ j = µ jϕ j,

and the family (ϕ j) j forms a Hilbert basis for L2(Ω).

Corollary 1.10. The operator (B,D(B)) generates an analytic C0-semigroup S (t) on L2(Ω).
For T > 0, y0 ∈ L2(Ω), and f ∈ L2(0,T ; H−2(Ω)), there exists a unique

y ∈ L2([0,T ]; H2
0(Ω)) ∩ C ([0,T ]; L2(Ω)) ∩ H1(0,T ; H−2(Ω)),

given by y(t) = S (t)y0 + ∫
t

0 S (t − s) f (s)ds, such that

∂ty + ∆2y = f for t ∈ (0,T ) a.e., y|t=0 = y0
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For semigroup theory we refer the reader to [Paz83].
For the operator B defined in (1.4) we have the following property.

Proposition 1.11. The spectrum of B is contained in {z ∈ C; Re(z) > 0}. Moreover, for z ∈ C such
that Re z < 0, we have

‖(z IdH −B)U‖H ≥ |Re z| ‖U‖H , U ∈ D(B),

with H = H2
0(Ω) × L2(Ω).

With the Hille-Yoshida theorem [Paz83, Theorem 3.1, Chapter 1] we then have the following
results.

Corollary 1.12. The unbounded operator (B,D(B)) generates a C0-semigroup of contraction Σ(t)
on H .

Corollary 1.13. For (y0, y1) ∈ D(B) there exists a unique

y ∈ C 2([0,+∞); L2(Ω)) ∩ C 1([0,+∞); H2
0(Ω)) ∩ C 0([0,+∞); D(B)),

such that

∂2
t y + ∆2y + α∂ty = 0 in L∞((0,+∞); L2(Ω)), y|t=0 = y0, ∂ty|t=0 = y1.

The solution is given by the first component of Σ(t)Y0 with Y0 = (y0, y1). The energy t 7→ E(y)(t)
with

E(y)(t) =
1
2
‖∂ty(t)‖2L2(Ω) +

1
2
‖∆y(t)‖2L2(Ω),(1.16)

is nonincreasing: for 0 ≤ t1 ≤ t2 we have E(y)(t2) − E(y)(t1) = − ∫
t2

t1 ‖α
1/2∂ty(t)‖2

L2(Ω) dt.

2. Estimate away from boundaries

For operators exhibiting at most double (complex) roots, estimates can be found in the proof of
Theorem 28.1.8 in [Hör85a]. Here, the structure of the operator P is explicit which allows one to
expose the argumentation in a self contained yet short presentation.

2.1. Simple-characteristic property of second-order factors. We consider the augmented op-
erator P = D4

s + B in Z = (0, S 0) ×Ω, remaining away from boundaries here. We write

P = P1P2, with Pk = (−1)kiD2
s + A.(2.1)

Here, we show that P1 and P2 both satisfy the so-called simple characteristic property in the case
of a weight function whose differential does not vanish.

Let `(z, ζ), with (z, ζ) ∈ RN × RN , be polynomial of degree m in ζ, with smooth coefficient in z.
For z 7→ M(z) ∈ RN \ {0}, we introduce the map

ρz,ζ,M : R+ → C,
θ 7→ `(z, ζ + iθM(z)).(2.2)

Definition 2.1. Let W be an open set of RN . We say that ` satisfies the simple-characteristic
property in direction M in W if, for all z ∈ W, we have ζ = 0 and θ = 0 when the map ρz,ζ,M has a
double root.

We can formulate this condition as follows

`(z, ζ + iθM(z)) = dζ`(z, ζ + iθM(z))(M(z)) = 0 ⇒ ζ = 0, θ = 0.(2.3)
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Lemma 2.2. Let W be an open set of RN . If N ≥ 3 and `(z, ζ) is of order two (with complex
coefficients) and elliptic for z ∈ W, then for any map z 7→ M(z) ∈ RN \ {0}, ` satisfies the simple-
characteristic property in direction M in W.

Proof. The proof can be adapted from classical ideas (see [LM68, proof of Proposition 1.1, Chap-
ter 2] or [Hör83]). We consider the polynomial fz,ζ,M(t) = `(z, ζ + tM(z)) where t is a complex
variable, for z ∈ W, ζ ∈ RN .

If ζ is colinear to M(z), e.g. ζ = αM(z) then fz,ζ,M(t) = (α + t)2`(z,M(z)). Because of the
ellipticity of `, `(z,M(z)) , 0, and we only have t = −α as a double real root for f .

We set J = RN \ Span(M(z)). Note that z is fixed here and Span(M(z)) is a vector line. The set
J is connected as N ≥ 3. Let now ζ ∈ J, that is, ζ is not colinear to M(z). As ` is elliptic, the roots
of fz,ζ,M cannot be real numbers. We denote by m+(ζ) and m−(ζ) the number of roots with positive
and negative imaginary parts, respectively. We have 2 = m+(ζ)+m−(ζ). Since roots are continuous
w.r.t. ζ and cannot be real, they remain in the upper- or lower-half complex plane as ζ varies in J,
as J is connected, meaning that m+ and m− are then invariant. In particular, m+(ζ) = m+(−ζ) and
m−(ζ) = m−(−ζ). Observing however, that if t0 is a root of t 7→ `(z, ζ + tM(z)) then −t0 is a root
of t 7→ `(z,−ζ + tM(z)), we find that m+(ζ) = m−(−ζ). This gives m+(ζ) = m−(ζ) = 1. Hence,
complex roots are simple.

In any case, we see that if the map θ 7→ ρz,ζ,M = fz,ζ,M(iθ) has a double real root θ0 then θ0 = 0
and ζ = 0. The simple-characteristic property is thus fulfilled. �

If we consider a weight function ψ = ψ(s, x), for the operators Pk, k = 1, 2, introduced in (2.1),
we have the following proposition.

Proposition 2.3. Let k = 1 or 2. Assume that dψ , 0 in (0, S 0) ×Ω. Then, Pk satisfies the
simple-characteristic property in direction dψ in (0, S 0) ×Ω.

Proof. Here, the dimension is N = d + 1. The case d ≥ 2 is treated in Lemma 2.2. It only remains
to treat the case of dimension d = 1. Then, the principal symbol of A reads a(x, ξ) = α(x)ξ2, with
α(x) ≥ C > 0. We set M(z) = (Mσ(z),Mξ(z)) = dψ(z) ∈ RN \ {0}. We write ρ in place of ρ(z0,ζ0,M)
for concision.

With ζ = (σ, ξ), we have

ρ(θ) = pk
(
z0, ζ + iθM

)
= (−1)ki

(
σ + iθMσ

)2
+ α(x0)

(
ξ + iθMξ

)2

= α(x0)ξ2 − α(x0)(θMξ)2 − 2(−1)kθσMσ + i
(
(−1)kσ2 − (−1)k(θMσ)2 + 2θα(x0)ξMξ

)
.

We thus have 1
2∂θρ(θ) = −α(x0)θM2

ξ − (−1)kσMσ + i
(
α(x0)ξMξ − (−1)kθM2

σ

)
. Assuming that

Mσ , 0, if ∂θρ = 0 we find

θ = (−1)kα(x0)ξMξ

M2
σ

, and σ = −α(x0)2ξ
M3
ξ

M3
σ

.

This yields ρ = α(x0)ξ2
(
1 + (−1)kiα(x0)M2

ξ/M
2
σ

)(
1 + α(x0)2M4

ξ/M
4
σ

)
. In this case, we thus have

ρ = ∂θρ = 0 if and only if θ = 0 and ζ = (σ, ξ) = (0, 0).
We assume now that Mσ = 0. Since M , 0, we find that ∂θρ = 0 implies θ = 0 and ξ = 0. Then

ρ = 0 gives σ = 0. Hence, in any case, the simple characteristic property is fulfilled. �

2.2. Local Carleman estimates away from boundaries. Let V be an open subset of Z = (0, S 0)×
Ω. We set z = (s, x). Let L = L(z,Dz) be a differential operator of order m, with smooth principal
symbol, `(z, ζ).
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Definition 2.4. Let ϕ(z) be defined and smooth in V and such that |dϕ| ≥ C > 0. We say that the
couple (L, ϕ) satisfies the sub-ellipticity condition in V if we have

`(z, ζ + iτϕ(z)) = 0 ⇒

1
2i
{`(z, ζ + iτdϕ(z)), `(z, ζ + iτdϕ(z))} = {Re `(z, ζ + iτdϕ(z)), Im `(z, ζ + iτdϕ(z))} > 0,

for all z ∈ V and ζ ∈ RN and τ > 0.

Let ψ(z) be smooth in V and such that |dψ| ≥ C > 0 in V . We define ϕ(z) = exp(γψ(z)).
Sub-ellipticity for the couple (Pk, ϕ) can be easily achieved by the following lemma.

Lemma 2.5. The couple (Pk, ϕ) satisfies the sub-ellipticity condition in V for γ > 0 chosen suffi-
ciently large.

Proof. By Proposition 2.3 we see that Pk satisfies the simple-characteristic property in direction
dψ in V . This implies that ψ is strongly pseudo-convex with respect to Pk in the sense given in
[Hör85a, Section 28.3] at every point in V . We then obtain that the couple (Pk, ϕ) satisfies the sub-
ellipticity condition in V for γ > 0 chosen sufficiently large by Proposition 28.3.3 in [Hör85a]. �

A consequence of the sub-ellipticity property is the following Carleman estimate for Pk in V ,
that is, away from boundaries.

Proposition 2.6. Let k = 1 or 2. Let ϕ = exp(γψ) with |dψ| ≥ C > 0 in V. For γ > 0 chosen
sufficiently large, there exist C > 0 and τ0 such that∑

|α|≤2
τ3/2−|α|‖eτϕDα

z u‖L2(Z) ≤ C‖eτϕPku‖L2(Z),

for τ ≥ τ0 and u ∈ C∞c (V).

We refer to [Hör85a, Theorem 28.2.3] for a proof. In fact, to incorporate the term associated
with |α| = 2 see [Hör63]. This estimate is characterized by the loss of a half derivative.

From this estimate for Pk, k = 1, 2, we deduce the following estimate for the operator P = P1P2.

Proposition 2.7. Let ϕ = exp(γψ) with |dψ| ≥ C > 0 in V. For γ > 0 chosen sufficiently large,
there exist C > 0 and τ0 such that∑

|α|≤4
τ3−|α|‖eτϕDα

z u‖L2(Z) ≤ C‖eτϕPu‖L2(Z),

for τ ≥ τ0 and u ∈ C∞c (V).

This estimate is characterized by the loss of a full derivative.

Proof. With the estimate of Proposition 2.6 for the operator P1 applied to P2u ∈ C∞(V) we have∑
|α|≤2

τ3/2−|α|‖eτϕDα
z P2u‖L2(Z) . ‖e

τϕPu‖L2(Z).

Observing that [Dα
z , P2] is a differential operator of order 1 + |α| we obtain∑

|α|≤2
τ3/2−|α|‖eτϕP2Dα

z u‖L2(Z) . ‖e
τϕPu‖L2(Z) +

∑
|β|≤3

τ5/2−|β|‖eτϕDβ
z u‖L2(Z).(2.4)

Applying now the estimate of Proposition 2.6 for the operator P2 to Dα
z u ∈ C∞(V) we obtain∑

|δ|≤2
τ3/2−|δ|‖eτϕDδ+α

z u‖L2(Z) . ‖e
τϕP2Dα

z u‖L2(Z).
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With (2.4) we then obtain∑
|α|≤4

τ3−|α|‖eτϕDα
z u‖L2(Z) �

∑
|δ|≤2

∑
|α|≤2

τ3−|δ|−|α|‖eτϕDδ+α
z u‖L2(Z)

. ‖eτϕPu‖L2(Z) +
∑
|β|≤3

τ5/2−|β|‖eτϕDβ
z u‖L2(Z).

We then conclude by choosing τ > 0 sufficiently large. �

3. Estimate at the boundary {s = 0}

3.1. Tangential semi-classical calculus and associated Sobolev norms. Considering boundary
problems, we shall locally use coordinates so that the geometry is that of the half space

RN
+ = {z ∈ RN , zN > 0}, z = (z′, zN) with z′ ∈ RN−1, zN ∈ R.

We shall use the notation % = (z, ζ, τ) and %′ = (z, ζ′, τ) in this section. (This notation is not to
be confused with that introduced and used in Section 4 and Appendix B.)

Let a(%′) ∈ C∞(RN
+ × R

N−1), with τ as a parameter in [1,+∞) and m ∈ R, be such that, for all
multi-indices α, β, we have

|∂αz ∂
β
ζ′a(%′)| ≤ Cα,βλ

m−|β|
T,τ , z ∈ RN

+ , ζ
′ ∈ RN−1, τ ∈ [1,+∞),

where λ2
T,τ = |ζ′|2 + τ2. We write a ∈ S m

T,τ. We also define S −∞T,τ = ∩r∈RS r
T,τ. For a ∈ S m

T,τ we call
principal symbol, σ(a), the equivalence class of a in S m

T,τ/S
m−1
T,τ . Note that we have λm

T,τ ∈ S m
T,τ.

If a(%′) ∈ S m
T,τ, we set

OpT(a)u(z) := (2π)−(N−1)
∫
RN−1

ei(z′,ζ′)a(%′) û(ζ′, zN) dζ′,

for u ∈ S (RN
+ ), where û is the partial Fourier transform of u with respect to the tangential variables

z′. We denote by Ψm
T,τ the set of these pseudo-differential operators. For A ∈ Ψm

T,τ, σ(A) = σ(a)
will be its principal symbol in S m

T,τ/S
m−1
T,τ . We also set Λm

T,τ = OpT(λm
T,τ), m ∈ R.

Let m ∈ N and m′ ∈ R. If we consider a of the form

a(%) =
m∑

j=0
a j(%′)ζ

j
N , a j ∈ S m+m′− j

T,τ ,

we define Op(a) :=
∑m

j=0 OpT(a j)D
j
zN . We write a ∈ S m,m′

τ and Op(a) ∈ Ψ
m,m′
τ .

We define the following norm, for m ∈ N and m′ ∈ R,

‖u‖m,m′,τ �
m∑

j=0
‖Λ

m+m′− j
T,τ D j

zN u‖+

‖u‖m,τ = ‖u‖m,0,τ �
m∑

j=0
‖Λ

m− j
T,τ D j

zN u‖+, u ∈ S (RN
+ ),

where ‖.‖+ := ‖.‖L2(RN
+ ). We have

‖u‖m,τ �
∑
|α|≤m
α∈NN

τm−|α|‖Dαu‖+,

and in the case m′ ∈ N we have

‖u‖m,m′,τ �
∑

αN≤m

∑
|α|≤m+m′

α=(α′ ,αN )∈NN

τm+m′−|α|‖Dαu‖+.
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If m,m′ ∈ N and m′′,m′′′ ∈ R, and if a ∈ S m′′
T,τ, then we have

‖OpT(a)u‖m′,m′′′,τ ≤ C‖u‖m′,m′′+m′′′,τ, u ∈ S (RN
+ ).

If a ∈ S m,m′′
T,τ , then we have

‖OpT(a)u‖m′,m′′′,τ ≤ C‖u‖m+m′,m′′+m′′′,τ, u ∈ S (RN
+ ).

The following argument will be used on many occasions in what follows, for m ∈ N, m′, ` ∈ R,
with ` > 0,

‖w‖m,m′,τ � ‖w‖m,m′+`,τ.(3.1)

At the boundary {zN = 0} we define the following norms, for m ∈ N and m′ ∈ R,

| tr(u)|2m,m′,τ =
m∑

j=0
|Λ

m− j+m′

T,τ D j
zN u|zN=0+ |

2

L2(RN−1)
, u ∈ S (RN

+ ).

3.2. Statement of the Carleman estimate. In this section, we consider z = (x, s) ∈ RN with
x ∈ Rd and s ∈ R. We also set Z = Ω × (0, S 0). We write x = z′ and s = zN , in connexion with the
notation introduced for the tangential calculus in Section 3.1.

Let z0 = (x0, 0) with x0 ∈ Ω. We consider a function ψ ∈ C∞(RN) such that ∂sψ(z) ≤ −C < 0
in a bounded open neighborhood V of z0 in R ×Ω. We then set ϕ(z) = eγψ(z).

Using the notation introduced in Section 3.1 for semi-classical norms, we have the following
Carleman estimate at the boundary Ω × {0} for functions defined in {s ≥ 0} ∩ V .

Theorem 3.1. Let P = D4
s + B = D4

s + ∆2 on Z = Ω × (0, S 0). Let W be an open set of RN such
that W b V. For γ > 0 chosen sufficiently large, there exist τ0 ≥ 1 and C > 0 such that∑

|α|≤4
τ7/2−|α|‖eτϕDα

s,xu‖L2(Z) ≤ C
(
‖eτϕPu‖L2(Z) +

3∑
j=0
| tr(eτϕD j

su)|0,7/2− j,τ

)
,

for τ ≥ τ0 and for u = w|Z , with w ∈ C∞c (Rd × R) and supp(w) ⊂ W.

This Carleman estimate is characterized by the loss of a half derivative.

Corollary 3.2. Let P = D4
s + B = D4

s + ∆2 on Z = Ω × (0, S 0). Let W be an open set of RN such
that W b V. For γ > 0 chosen sufficiently large, there exist τ0 ≥ 1 and C > 0 such that∑

|α|≤3
τ7/2−|α|‖eτϕDα

s,xu‖L2(Z) ≤ C
(
‖eτϕPu‖L2(Z) + τ1/2

3∑
j=0
| tr(eτϕD j

su)|0,3− j,τ

)
,

for τ ≥ τ0 and for u = w|Z , with w ∈ C∞c (Rd × R) and supp(w) ⊂ W.

Proofs are given below.

3.3. Sub-ellipticity property. As in Section 2.1, we write P = P1P2 with Pk = (−1)kiD2
s + A,

and Pϕ = eτϕPe−τϕ = Q1Q2 with Qk = eτϕPke−τϕ. The principal symbol of qk, in the sense of
semi-classical operators, is given by

qk(z, ζ, τ) = (−1)ki(σ + iτ̂σ)2 + a(x, ξ + iτ̂ξ), τ̂(z, τ) = (τ̂ξ, τ̂σ) = τdϕ ∈ RN ,

where a(x, ξ) denotes the principal symbol of the Laplace operator A.
Recalling the definition of the semi-classical characteristic set of a (pseudo-)differential opera-

tor A, with principal symbol a(%),

char(A) = {% = (z, ζ, τ) ∈ V × RN × R+; (ζ, τ) , (0, 0), and a(%) = 0},

we have the following results for the characteristic sets of Qk, k = 1, 2.
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Lemma 3.3. In V, we have char(Q1) ∩ char(Q2) = ∅.

Proof. Let % = (z, ζ, τ) ∈ V × RN × R+, with (ζ, τ) , (0, 0), be such that q1(%) = q2(%) = 0, which
reads (−1)ki(σ + iτ̂σ)2 + a(x, ξ + iτ̂ξ) = 0, for both k = 1 and k = 2, meaning that we have

(σ + iτ̂σ)2 = 0, a(x, ξ + iτ̂ξ) = 0.

In particular this implies σ = 0 and τ̂σ = τ∂sϕ = 0. As here ∂sϕ , 0 we thus have σ = τ = 0. With
τ = 0, we have τ̂ξ = 0, and we thus obtain a(x, ξ) = 0, implying ξ = 0 because of the ellipticity of
a(x, ξ). �

Lemma 3.4. Let L1 and L2 be differential operators in V. Let ϕ ∈ C∞(Z) and set Lk,ϕ = eτϕLke−τϕ,
k = 1, 2. Assume that char(L1,ϕ) ∩ char(L2,ϕ) = ∅. Then the couple (L1L2, ϕ) satisfies the sub-
ellipticity condition of Definition 2.4 in V if and only if both (Lk, ϕ), k = 1, 2, satisfy this property.

Proof. We denote by `k, the principal symbols of Lk,ϕ, k = 1, 2, and ` = `1`2 the principal symbol
of eτϕL1L2e−τϕ. We observe that

{`, `} = |`1|
2{`2, `2} + |`2|

2{`1, `1} + f |`1| |`2|,

for some function f . If (`, ϕ) satisfies the sub-ellipticity condition and if `1(%) = 0, with % =

(z, ζ, τ) ∈ V × RN × R+, then `2(%) , 0 and 0 < {`, `}(%)/i = |`2|
2{`1, `1}/i, thus yielding the

sub-ellipticity condition at % for `1. The same argument applies for `2.
Let us now assume that `1 and `2 both satisfy the sub-ellipticity condition. If `(%) = 0 then

either `1(%) = 0 or `2(%) = 0. Let us assume that `1(%) = 0. Then `2(%) , 0 and {`1, `1}(%)/i > 0 .
We then have {`, `}(%)/i = |`2(%)|2{`1, `1}(%)/i > 0. �

By Lemma 2.5, the couples (Pk, ϕ) satisfy the sub-ellipticity condition in V . From Lemmata 3.3
and 3.4 we deduce the following result.

Corollary 3.5. The couple (P, ϕ) satisfies the sub-ellipticity condition of Definition 2.4 in V.

3.4. Proof of the estimate at {s = 0}. The proof of Theorem 3.1 uses Lemma 4.3 in [BL15].

Proof of Theorem 3.1. We denote by a(%) the principal symbol of (Pϕ + P∗ϕ)/2 and by b(%) that of
(Pϕ − P∗ϕ)/(2i). We have a ∈ S 4,0

τ and b ∈ S 3,1
τ . We set A = Op(a) and B = Op(b) and

Qa,b(w) = 2 Re(Aw, Bw)+.

The sub-ellipticity of (P, ϕ) given by Corollary 3.5 reads

a(%) = b(%) = 0 ⇒ {a, b} > 0, % ∈ V × RN × R+.

With Lemma 4.3 in [BL15], we obtain, for some C > 0 and C′ > 0, for τ ≥ 1 chosen sufficiently
large,

C‖v‖24,τ ≤ C′
(
‖Av‖2+ + ‖Bv‖2+ + | tr(v)|23,1/2,τ

)
+ τ

(
Qa,b(v) − Re Ba,b(v)

)
,

where |Ba,b(v)| . | tr(v)|23,1/2,τ, for v = w|Z , with w ∈ C∞c (Rd × R) and supp(w) ⊂ W. We thus
obtain

τ−1‖v‖24,τ . ‖(A + iB)v‖2+ + | tr(v)|23,1/2,τ.

As we have Pϕ = A + iB mod Ψ
3,0
τ , by taking τ sufficiently large, with the usual semi-classical

argument (3.1) we obtain

(3.2) τ−1/2‖v‖4,τ . ‖Pϕv‖+ + | tr(v)|3,1/2,τ.

The conclusion of the proof is then classical. �
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Proof of Corollary 3.2. Let W′ be an open set of RN such that W b W′ b V and let χ, χ̃ ∈ C∞c (W′)
be such that χ ≡ 1 in a neighborhood of W and χ̃ ≡ 1 in a neighborhood of supp(χ).

We may apply estimate (3.2), an equivalent form of the estimate of Theorem 3.1, to the function
τ1/2χ(z)Λ−1/2

T,τ v, for v = w|Z , with w ∈ C∞c (Rd × R) and supp(w) ⊂ W. Observe that we have

χ(z)Λ−1/2
T,τ v = Λ

−1/2
T,τ v + R0,−Mv, Pϕχ(z)Λ−1/2

T,τ v = χ̃(z)PϕΛ
−1/2
T,τ v + R4,−Mv,

because of the support of v, with R0,−M ∈ Ψ
0,−M
τ , and R4,−M ∈ Ψ

4,−M
τ , for any M ∈ N.

Setting ṽ = τ1/2Λ
−1/2
T,τ v ∈ S (RN

+ ), we thus obtain, with (3.2),

(3.3) τ−1/2‖ṽ‖4,τ . ‖χ̃Pϕṽ‖+ + | tr(ṽ)|3,1/2,τ + ‖v‖4,−M,τ.

We then observe that we have

τ−1/2‖ṽ‖4,τ = ‖Λ
−1/2
T,τ v‖4,τ = ‖v‖4,−1/2,τ.

We also have | tr(ṽ)|3,1/2,τ = τ1/2| tr(v)|3,0,τ, as [Ds,Λ
r
T,τ] = 0, r ∈ R. Next, as [χ̃Pϕ,Λ

−1/2
T,τ ] ∈

Ψ
4,−3/2
τ , we have

‖χ̃Pϕṽ‖+ . τ1/2‖Λ
−1/2
T,τ χ̃Pϕv‖+ + τ1/2‖v‖4,−3/2,τ . ‖Pϕv‖+ + τ1/2‖v‖4,−3/2,τ.

From (3.3), we thus obtain

‖v‖4,−1/2,τ . ‖Pϕv‖+ + τ1/2| tr(ṽ)|3,0,τ + τ1/2‖v‖4,−3/2,τ.

With the usual semi-classical argument (3.1) we conclude the proof, as ‖v‖4,−1/2,τ & τ
1/2‖v‖3,τ. �

4. Estimate at the boundary (0, S 0) × ∂Ω

4.1. A semi-classical calculus with three parameters. We setW = RN × RN , N = d + 1, often
referred to as phase-space. A typical element ofW will be X = (s, x, σ, ξ), with s ∈ R, x ∈ Rd,
σ ∈ R, and ξ ∈ Rd. We also write x = (x′, xd), x′ ∈ Rd−1, xd ∈ R, and accordingly ξ = (ξ′, ξd).

With s and x playing very similar rôle in the definition of the calculus, we set z = (s, x) ∈ RN ,
z′ = (s, x′) ∈ RN−1, and zN = xd. We also set ζ = (σ, ξ) ∈ RN , ζ′ = (σ, ξ′) ∈ RN−1, and ζN = ξd.

In this section, we shall consider a weight function of the form

(4.1) ϕγ,ε(z) = eγψε(z), ψε(z) = ψ(εz′, zN),

with γ and ε as parameters, satisfying γ ≥ 1, ε ∈ [0, 1], and ψ ∈ C∞(RN). To define a proper
pseudo-differential calculus, we assume the following properties of ψ:

(4.2) ψ ≥ C > 0, ‖ψ(k)‖L∞ < ∞, k ∈ N.

In particular, there exists k > 0 such that

(4.3) sup
RN

ψ ≤ (k + 1) inf
RN
ψ.

4.1.1. A class of semi-classical symbols. We introduce the following class of tangential symbols
depending on the variables z ∈ RN , ζ′ ∈ RN−1 and t̂ ∈ RN . We set λ̂2

T = |ζ′|2 + |t̂|2.

Definition 4.1. Let m ∈ R. We say that a(z, ζ′, t̂) ∈ C∞(RN
+ × R

N−1 × RN) belong to the class S m
T,t̂

if, for all multi-indices α ∈ NN , β ∈ NN−1, δ ∈ NN , there exists Cα,β,δ > 0 such that

|∂αz ∂
β
ζ′∂

δ
t̂ a(z, ζ′, t̂)| ≤ Cα,β,δλ̂

m−|β|−|δ|
T , (z, ζ′, t̂) ∈ RN

+ × R
N−1 × RN , |t̂| ≥ 1.

If Γ is a conic open set of RN
+ × R

N−1 × RN , we say that a ∈ S m
T,t̂ in Γ if the above property holds

for (z, ζ′, t̂) ∈ Γ.
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Note that, as opposed to usual semi-classical symbols, we ask for some regularity with respect
to the semi-classical parameter that is a vector of RN here.

This class of symbols will not be used as such to define a class of pseudo-differential operators
but rather to generate other classes of symbols and associated operators in a more refined semi-
classical calculus that we present now.

4.1.2. Metrics. For τ∗ ≥ 2, we set

M = RN × RN × [τ∗,+∞) × [1,+∞) × [0, 1],

MT = RN
+ × R

N−1 × [τ∗,+∞) × [1,+∞) × [0, 1].

We denote by % = (z, ζ, τ, γ, ε) a point inM and by %′ = (z, ζ′, τ, γ, ε) a point inMT.
We set τ̃ = τγϕγ,ε(z) ∈ R+. For simplicity, even though τ̃ is independent of ζ′, we shall write

τ̃ = τ̃(%′), when we wish to keep in mind that τ̃ is not a simple parameter but rather a function. As
ψ > 0, τ ≥ τ∗, and γ ≥ 1,we note that we have τ̃ ≥ τ∗. We then set

λ2
τ̃ = λ2

τ̃(%) = |ζ |2 + τ̃(%′)2, λ2
T,τ̃ = λ2

T,τ̃(%
′) = |ζ′|2 + τ̃(%′)2.

The explicit dependences of λτ̃ and λT,τ̃ upon % and %′ are now dropped to ease notation in this
section. Similarly, we shall write ϕ(z), or simply ϕ, in place of ϕγ,ε(z).

We consider the following metric on phase-spaceW = RN × RN

g = (1 + γε)2|dz′|2 + γ2|dzN |
2 + λ−2

τ̃ |dζ |
2,(4.4)

for τ ≥ τ∗, γ ≥ 1, and ε ∈ [0, 1]. (Note that this metric is not to be confused with the Riemannian
metric g on Ω.)

On the phase-spaceW′ = RN×RN−1 adapted to a tangential calculus, we consider the following
metric:

gT = (1 + γε)2|dz′|2 + γ2|dzN |
2 + λ−2

T,τ̃|dζ
′|2,

for τ ≥ τ∗, γ ≥ 1, and ε ∈ [0, 1].

The first result of this section shows that the metric g onW defines a Weyl-Hörmander pseudo-
differential calculus, and that both ϕ and λτ̃ have the properties to be used as proper order functions.
For a presentation of the Weyl-Hörmander calculus we refer to [Ler10], [Hör85b, Sections 18.4–6]
and [Hör79].

Proposition 4.2. The metric g and the order functions ϕγ,ε, λτ̃ are admissible, in the sense that,
the following properties hold (uniformly with respect to the parameters τ, γ, and ε):

(1) g satisfies the uncertainty principle, that is h−1
g = γ−1λτ̃ ≥ 1.

(2) ϕγ,ε, λτ̃ and g are slowly varying;
(3) ϕγ,ε, λτ̃ and g are temperate.

We refer to Appendix A.2.1 for a proof. Similarly, we have the following proposition.

Proposition 4.3. The metric gT and the order functions ϕγ,ε, λT,τ̃ are admissible. For the tangential
calculus we have h−1

gT
= (1 + εγ)−1λT,τ̃ ≥ 1.

Note that the proof of the uncertainty principle uses that τ∗ ≥ 2. The condition τ∗ ≥ 1 would
suffice if we chose ψ ≥ ln(2). We preferred not to add this technical condition on the weight
function ψ.

Consequently, τ̃(%′) is also an admissible order function for both calculi.
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4.1.3. Symbols. Let a(%) ∈ C∞(RN × RN), with τ, γ, and ε acting as parameters, and m, r ∈ R, be
such that for all multi-indices α, β ∈ NN , with α = (α′, αN), we have

(4.5) |∂αz ∂
β
ζa(%)| ≤ Cα,β γ

|αN |(1 + εγ)|α
′ |τ̃rλ

m−|β|
τ̃ , % ∈ M.

With the notation of [Hör85b, Sections 18.4-18.6] we then have a(%) ∈ S (τ̃rλm
τ̃ , g).

Similarly, let a(%′) ∈ C∞(RN
+ × R

N−1), with τ, γ, and ε acting as parameters, and m ∈ R. If for
all multi-indices α = (α′, αN) ∈ NN , β′ ∈ NN−1, we have

(4.6) |∂αz ∂
β′

ζ′a(%′)| ≤ Cα,β′ γ
|αN |(1 + εγ)|α

′ |τ̃rλ
m−|β′ |
T,τ̃ , %′ ∈ MT,

we then write a(%′) ∈ S (τ̃rλm
T,τ̃, gT). Observe that S (τ̃rλm

T,τ̃, gT) ⊂ S (λr+m
T,τ̃ , gT).

The principal symbol associated with a(%′) ∈ S (τ̃rλm
T,τ̃, gT) is given by its equivalence class in

S (τ̃rλm
T,τ̃, gT)/S ((1+εγ)τ̃rλm−1

T,τ̃ , gT). We denote this principal part byσ(a). Often, an homogeneous
representative can be selected and the principal part is then identified with this particular repre-
sentative of the equivalence class. (Conic sets and homogeneous symbols are precisely defined in
Section 4.1.5 below.)

We define the following class of symbols, that are polynomial with respect to ξN ,

S m,m′
τ̃ =

m∑
j=0

S (λm+m′− j
T,τ̃ , gT)ζ j

N .

For a(%) ∈ S m,m′
τ̃ , with a(%) =

∑m
j=0 a j(%′)ζ

j
N , with a j(%′) ∈ S (λm+m′− j

T,τ̃ , gT), we denote its principal

part by σ(a)(%) =
∑m

j=0 σ(a j)(%′)ζ
j
N .

For this calculus with parameters to make sense, it is important to check that λτ̃ ∈ S (λτ̃, g) and
λT,τ̃ ∈ S (λT,τ̃, gT) and τ̃ ∈ S (τ̃, g) ∩ S (τ̃, gT). In fact, the latter property implies the first two.

Lemma 4.4. We have τ̃ = τγϕγ,ε ∈ S (τ̃, g) ∩ S (τ̃, gT).

We refer to Section A.2.2 for a proof.

4.1.4. A semi-classical cotangent vector. We set τ̂ = τdzϕγ,ε(z) = τγϕγ,ε(z)dzψε(z) = τ̃(%′)dzψε(z) ∈
RN . As for τ̃, we shall write τ̂ = τ̂(%′), when we wish to keep in mind that τ̂ is not a constant cotan-
gent vector. Note that τ̂ = (τ̂′, τ̂N) with

τ̂′(%′) = τ̃(y′)dz′ψε(z) = ετ̃(y′)dz′ψ(εz′, zN), τ̂N(%′) = τ̃(y′)∂zNψ(εz′, zN).

As dz′ψε ∈ S (ε, gT) and ∂zNψε ∈ S (1, gT), we have the following result.

Lemma 4.5. We have τ̂′ ∈ S (ετ̃, g)N−1 ∩ S (ετ̃, gT)N−1 and τ̂N ∈ S (τ̃, g) ∩ S (τ̃, gT).

For later use, we also introduce the following notation:

τ̂σ = τ̂σ(%′) = τ∂sϕγ,ε(z) ∈ R, τ̂ξ = τ̂ξ(%′) = τdxϕγ,ε(z) ∈ RN−1 = Rd,(4.7)

τ̂ξd = τ̂ξd (%′) = τ∂xdϕγ,ε(z) ∈ R, τ̂ξ′ = τ̂ξ′(%′) = τdx′ϕγ,ε(z) ∈ RN−2 = Rd−1.

We then have

τ̂ = (τ̂σ, τ̂ξ) = (τ̂σ, τ̂ξ′ , τ̂ξd ), τ̂′ = (τ̂σ, τ̂ξ′), τ̂N = τ̂ξd .(4.8)

Even thought the following lemma is very elementary, we state it for futur reference.

Lemma 4.6. Let V be an open set of RN such that ∂xdψ(z) ≥ C > 0 for z ∈ V. Then, we have

|τ̂| � τ̂ξd � τ̃, z ∈ V.(4.9)

Proof. As ‖ψ′‖∞ ≤ C, if ∂xdψ ≥ C > 0 for z ∈ V ⊂ RN , then we have |τ̂| . τ̃ . τ̂ξd and thus the
result. �
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4.1.5. Conic sets and homogeneity. We recall that a set Γ ⊂ RN
+ × R

N−1 × RN is said to be conic
if (z, ζ′, t̂) ∈ Γ implies that (z, νζ′, νt̂) ∈ Γ for all ν > 0.

We introduce the map

κ :MT → R
N
+ × R

N−1 × RN ,

%′ = (z, ζ′, τ, γ, ε) 7→ (z, ζ′, τ̂(%′)).

Throughout Section 4 and Appendix B, we shall use the following terminology.

Definition 4.7. An open subset U ofMT is said to be conic if Γ = κ(U ) is conic inRN
+×R

N−1×RN .
A function f : U → E, E a vector space, is said to be homogeneous of degree m if f takes the

form f = g ◦ κ with g : RN
+ × R

N−1 × RN → E such that g(z, νζ, νt̂) = νmg(z, ζ, t̂), for ν > 0.

In other words, conic sets and homogeneity are to be understood with respect to the variables
(z, ζ, τ̂) instead of the variables (z, ζ, τ, γ, ε), where, as above, τ̂ = τdzϕγ,ε(z) = τγϕγ,ε(z)dzψε(z).

If U is a conic open subset of MT we shall say that a ∈ S (τ̃rλm
T,τ̃, gT) in U if property (4.6)

holds in U , with a similar terminology for symbols that satisfy the defining property of S m,m′
τ̃ in

U .

In what follows, the following lemma will be used for instance, to generate cutoff functions. It
will also be used to obtain symbols with the adapted homogeneity with respect to ζ′ and τ̂. We
refer to Section A.2.3 for a proof.

Lemma 4.8. Let U be a conic open subset ofMT and set Γ = κ(U ). Assume also that |τ̂| � τ̃
in U . Let m ∈ R and â(z, ζ′, t̂) ∈ S m

T,t̂ in Γ (as given in Definition 4.1). We then have a(%′) =

â ◦ κ(%′) ∈ S (λm
T,τ̃, gT) in U . In fact, if â is polynomial in (ζ′, t̂) the assumption |τ̂| � τ̃ in U is not

needed.

The following lemma is elementary.

Lemma 4.9. Let U be a conic open subset ofMT and let a ∈ S (τ̃rλm
T,τ̃, gT) in U . Let χ ∈ S (1, gT)

inMT, with supp(χ) ⊂ U . Then, χa ∈ S (τ̃rλm
T,τ̃, gT) inMT.

4.1.6. Operators and Sobolev bounds. For a ∈ S (τ̃rλm
τ̃ , g) we define the following pseudo-differential

operator in RN :

Op(a)u(z) = (2π)−N
∫
RN

eiz·ζa(z, ζ, τ, γ, ε)û(ζ) dζ, u ∈ S (RN),(4.10)

where û is the Fourier transform of u. In the sense of oscillatory integrals, we have

Op(a)u(z) = (2π)−N
∫∫
R2N

ei(z−y)·ζa(z, ζ, τ, γ, ε)u(y) dζ dy.

The associated class of pseudo-differential operators is denoted by Ψ(τ̃rλm
τ̃ , g). If a is polynomial

in the variables ζ and τ̂(%′) = τ̃dzψε(z), we then write Op(a) ∈ D(τ̃rλm
τ̃ , g).

Tangential operators are defined similarly. For a ∈ S (τ̃rλm
T,τ̃, gT) we set

OpT(a)u(z) = (2π)−(N−1)
∫∫
R2N−2

ei(z′−y′)·ζ′a(z, ζ′, τ, γ, ε) u(y′, zN) dζ′ dy′,(4.11)

for u ∈ S (RN
+ ), where z ∈ RN

+ . We write A = OpT(a) ∈ Ψ(τ̃rλm
T,τ̃, gT). We set Λm

T,τ̃ = OpT(λm
T,τ̃).
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We also introduce the following class of operators that act as differential operators in the zN
variable and as tangential pseudo-differential operators in the z′ variables:

Ψ
m,r
τ̃ =

m∑
j=0

Ψ(λm+r− j
T,τ̃ , gT)D j

zN , m ∈ N, r ∈ R,(4.12)

that is, Op(a) ∈ Ψ
m,r
τ̃ if a ∈ S m,r

τ̃ . Operators of this class can be applied to functions that are only
defined on the half-space {zN ≥ 0}.

At places, it will be handy to use the Weyl quantization for tangential operators, namely with
a ∈ S (τ̃rλm

T,τ̃, gT) we define

OpT
w(a)u(z) = (2π)−(N−1)

∫∫
R2N−2

ei(z′−y′)·ζ′a
(
(z′ + y′)/2, zN , ζ

′, τ, γ, ε)u(y′, zN) dζ′ dy′.(4.13)

This quantification is often advantageous as OpT
w(a)∗ = OpT

w(a), and thus, for the symbol a real,
the operator OpT

w(a) is (formally) selfadjoint. Note that OpT(a)−OpT
w(a) ∈ (1+εγ)Ψ(τ̃rλm−1

T,τ̃ , gT).

We now present some Sobolev-bound type result that we shall use in what follows. We use the
following notation

‖.‖+ = ‖.‖
L2(RN

+ )
, (., .)+ = (., .)

L2(RN
+ )
,

for the L2-norm on the half space RN
+ and the associated scalar product.

We have the following lemma whose proof is similar to that of Lemma 2.7 in [Le 15].

Lemma 4.10. Let r,m ∈ R and a ∈ S (τ̃rλm
T,τ̃, gT). There exists C > 0 such that, for τ sufficiently

large,

|(OpT(a)u, v)+| ≤ C‖OpT(τ̃r′λm′
T,τ̃)u‖+‖OpT(τ̃r′′λm′′

T,τ̃)v‖+, u, v ∈ S (RN
+ ).

for r = r′ + r′′, m = m′ + m′′, with r′, r′′ ∈ R, m′,m′′ ∈ R.

This contains the estimate

‖OpT(τ̃r′λm′
T,τ̃) OpT(a)u‖+ ≤ C‖OpT(τ̃r+r′λm+m′

T,τ̃ )u‖+, u ∈ S (RN
+ ),(4.14)

for r,m′ ∈ R. The proof of Lemma 4.10 relies in the fact that, for r,m ∈ R,

OpT(τ̃rλm
T,τ̃) OpT(τ̃−rλ−m

T,τ̃) = Id +R1,

with R1 ∈ (1 + εγ)Ψ(λ−1
T,τ̃, gT) and ‖R1‖L2→L2 � 1 for τ large.

Note also that we have the following result (see Section A.2.4 for a proof).

Lemma 4.11. We have

‖OpT(τ̃rλm
T,τ̃)u‖+ � ‖OpT(λm

T,τ̃)τ̃
ru‖+, u ∈ S (RN

+ ),(4.15)

and

|OpT(τ̃rλm
T,τ̃)u|zN=0+ |

L2(RN−1)
� |OpT(λm

T,τ̃)τ̃
ru|zN=0+ |

L2(RN−1)
, u ∈ S (RN−1),(4.16)

for τ chosen sufficiently large.

We define the following semi-classical Sobolev norms

|u|m,τ̃ = |Λm
T,τ̃u|zN=0+ |

L2(RN−1)
, m ∈ R, u ∈ S (RN−1),

‖u‖m,τ̃ �
m∑

j=0
‖Λ

m− j
T,τ̃ D j

zN u‖+, m ∈ N, u ∈ S (RN
+ ).
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We also set, for m ∈ N and m′ ∈ R,

‖u‖m,m′,τ̃ �
m∑

j=0
‖Λ

m− j+m′

T,τ̃ D j
zN u‖+, u ∈ S (RN

+ ).

At the boundary {zN = 0} we define the following norms, for m ∈ N and m′ ∈ R,

| tr(u)|m,m′,τ̃ �
m∑

j=0
|Λ

m− j+m′

T,τ̃ D j
zN u|zN=0+)|

L2(RN−1)
, u ∈ S (RN

+ ).

The following argument will be used on many occasions in what follows, for r, r′,m ∈ R, and
` > 0,

γr‖τ̃r′w‖m,τ̃ � ‖τ̃r′+`w‖m,τ̃ . ‖τ̃r′w‖m+`,τ̃,(4.17)

for τ chosen sufficiently large, as γr . ϕγ,ε = exp(γψε) since ψε ≥ C > 0. We have similar such
inequalities for the other norms introduced above.

With the above results we deduce the following two propositions.

Proposition 4.12. Let r,m ∈ R, and a ∈ S (τ̃rλm
T,τ̃, gT). Then, for r′,m′ ∈ R, there exists C > 0

such that

|τ̃r′ OpT(a)u|zN=0+ |m′,τ̃ ≤ C|τ̃r+r′u|zN=0+ |m+m′,τ̃, u ∈ S (RN
+ ),

for τ sufficiently large.

Proposition 4.13. Let r,m′ ∈ R, m ∈ N, and a ∈ τ̃rS m,m′
τ̃ . Then, for r′,m′′′ ∈ R and m′′ ∈ N, there

exists C > 0 such that

‖τ̃r′ Op(a)u‖m′′,m′′′,τ̃ ≤ C‖τ̃r+r′u‖m+m′′,m′+m′′′,τ̃, u ∈ S (RN
+ ),

for τ sufficiently large.

Similarly to Lemma 4.11, we have the following equivalences for norms.

Lemma 4.14. Let m ∈ N and r,m′ ∈ R. We have, for τ chosen sufficiently large,

‖τ̃rw‖m,m′,τ̃ �
m∑

j=0
‖D j

zN (τ̃rw)‖0,m+m′− j,τ̃ �
m∑

j=0
‖τ̃r′jΛ

m′′j
T,τ̃D

j
zN (τ̃r′′j Λ

m′′′j
T,τ̃ w)‖+,

where r = r′j + r′′j , and m + m′ − j = m′′j + m′′′j , with r′j, r
′′
j ∈ R and m′′j ,m

′′′
j ∈ R, j = 1, . . . ,m.

Similarly, we have

| tr(τ̃rw)|m,m′,τ̃ �
m∑

j=0
|D j

zN (τ̃rw)|zN=0+ |m+m′− j,τ̃ �
m∑

j=0
|τ̃r′jΛ

m′′j
T,τ̃

(
D j

zN (τ̃r′′j Λ
m′′′j
T,τ̃ w)

)
|zN=0+ |L2(Rn−1)

.

See Section A.2.5 for a proof.

Proposition 4.15 (local tangential Gårding inequality). Let W0,W1 be two open sets of RN , with
W0 b W1. Let a(%′) ∈ S (τ̃rλm

T,τ̃, gT), with principal part ar,m. If there exist C > 0 and R > 0 such
that

Re ar,m(%′) ≥ Cτ̃rλm
T,τ̃, z ∈ W1, ζ′ ∈ RN−1, τ ≥ τ∗, λT,τ̃ ≥ R,

then for any 0 < C′ < C there exists τ1 ≥ τ∗ such that

Re(OpT(a)u, u)+ ≥ C′‖τ̃r/2u‖20,m/2,τ̃, τ ≥ τ1.

for u = w|Z , with w ∈ C∞c ((0, S 0) × Rd) and supp(w) ⊂ W0.

In many occurrences, we shall use the following microlocal version of the Gårding inequality.
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Proposition 4.16 (microlocal tangential Gårding inequality). Let U ⊂ MT be a conic open set.
Let also χ(%′) ∈ S (1, gT) be homogeneous of degree zero and such that supp(χ) ⊂ U . Let r,m ∈ R
and a(%′) ∈ S (τ̃rλm

T,τ̃, gT), with principal part ar,m. If there exist C > 0 and R > 0 such that

Re ar,m(%′) ≥ Cτ̃rλm
T,τ̃, %′ ∈ U , τ ≥ τ∗, λT,τ̃ ≥ R,

then for any 0 < C′ < C, M ∈ N, there exist CM and τ0 ≥ τ∗ such that

Re(OpT(a) OpT(χ)u,OpT(χ)u)+ ≥ C′‖τ̃r/2 OpT(χ)u‖20,m/2,τ̃ −CM‖u‖20,−M,τ̃,

for u ∈ S (RN
+ ) and τ ≥ τ0.

4.2. Local setting and statement of the Carleman estimate. To explain the construction of the
phase function, it is useful to use a particular set of coordinates. We set Z = (0, S 0) × Ω and
∂Z = (0, S 0) × ∂Ω.

Let z0 = (s0, x0) ∈ ∂Z. In a neighborhood V of z0 in RN , using normal geodesic coordinates for
the x variable, we can express the principal part of the Laplace operator A in the following form

A = D2
xd

+ R(x,Dx′),(4.18)

where R(x,Dx′) is a tangential differential operator of order 2 with principal symbol r(x, ξ′),

r(x, ξ′) ≥ C|ξ′|2,(4.19)

where C > 0. We denote by r̃(x, ξ′, η′) the associated real symmetric bilinear form. The boundary
(0, S 0) × ∂Ω is locally given by {zN = 0} = {xd = 0}.

Without any loss of generality we shall assume that V is a bounded open set.
We then let ψ(z) be defined in RN and fulfilling the properties listed in (4.2) with moreover,

∂xdψ(z) = ∂zNψ(z) ≥ C > 0, z ∈ V,(4.20)

and we set ϕγ,ε(z) = exp(γψε(z)) with ψε(z) = ψ(εs, εx′, xd), for γ ≥ 1 and ε ∈ [0, 1]. As
mentioned above, we shall often write ϕ in place if ϕγ,ε for the sake of concision.

The main result of this section is the following Carleman estimate.

Theorem 4.17. Let P = D4
s + A2. Let z0 = (s0, x0) ∈ (0, S 0) × ∂Ω. Let ϕ(z) = ϕγ,ε(z) be defined as

above. There exists an open neighborhood W of z0 in (0, S 0)×Rd, W ⊂ V, and there exist τ0 ≥ τ∗,
γ0 ≥ 1, ε0 ∈ (0, 1], and C > 0 such that

(4.21) γ
∑
|α|≤4
‖τ̃3−|α|eτϕDα

s,xu‖+ +
∑

0≤ j≤3
|eτϕDr

xd
u|∂Z |7/2− j,τ̃

≤ C
(
‖eτϕPu‖+ +

∑
j=0,1
|eτϕD j

xd u|∂Z |7/2− j,τ̃

)
,

for τ ≥ τ0, γ ≥ γ0, ε ∈ [0, ε0], and for u = w|Z , with w ∈ C∞c ((0, S 0) × Rd) and supp(w) ⊂ W.

As written in Case (iii) of Section 1.3, the proof we provide of this theorem is based on a
decomposition of phase-space in three microlocal regions and the derivation of an adapted estimate
in each one of these regions. The definition of these three regions is based on the properties of the
roots of the principal symbol of P viewed as a polynomial function of degree four in the variable
ξd. We start with the analysis of those properties in the next section and define the microlocal
regions in Section 4.4 below. In section 4.5 we provide a proof scheme for a microlocal Carleman
estimate in each of the three regions. Then, in Sections 4.6–4.8 we precisely state and prove the
microlocal estimate associated with each region. Finally, in Section 4.9 the various microlocal
estimates are patched together, to yield the estimate of Theorem 4.17.
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4.3. Root properties. Here, z will be assumed to be an element of V so that all the symbols are
well defined. We write, as in Sections 2 and 3,

P = P2P1, with Pk = (−1)kiD2
s + A.

Setting Pϕ = eτϕPe−τϕ we have

Pϕ = Q2Q1, with Qk = eτϕPke−τϕ = (−1)ki(Ds + iτ∂sϕ(z))2 + Aϕ,(4.22)

with, in the selected normal geodesic coordinates,

Aϕ = eτϕAe−τϕ = (Dxd + iτ∂xdϕ(z))2 + R(x,Dx′ + iτdx′ϕ(z)), z = (s, x).

In fact, we shall write Qk in the following form

Qk = (Dxd + iτ∂xdϕ(z))2 + Mk, Mk = (−1)ki(Ds + iτ∂sϕ(z))2 + R(x,Dx′ + iτdx′ϕ(z)).(4.23)

This form will allow us, when a smooth square root Hk of Mk is available in the tangential calculus
associated with gT, to write, up to lower order terms,

Qk = (Dxd + iτ∂xdϕ + iHk)(Dxd + iτ∂xdϕ − iHk),

and, then, we shall base our derivation of a Carleman estimate for P on estimates for first-order
factors. This approach was introduced in the seminal work of A.-P. Calderón [Cal58]. It has
been used recently to address boundary and interface problems in the derivation of Carleman
estimates [LL13, CR14]. Of course, the two smooth square roots, H1 and H2, may not always
be available. Still, on the occurrence of such a case, we shall find that the operators Q1 and Q2
will be characterized by perfectly elliptic estimates at the boundary, that is, one can estimate the
semi-classical Sobolev norm of the solution in Ω as well as the counterpart norms for the traces
of normal derivatives of the solution on ∂Ω (with the natural 1/2 derivative shift for the traces)
–see Section B.1. As a preliminary to this analysis, we shall study the properties of the principal
symbols of Q1 and Q2 and the properties of their roots.

We denote the principal parts of Qk and Mk by qk and mk, which gives, with % = (z, ζ, τ, γ, ε)
and ζ = (σ, ξ),

qk(%) =
(
ξd + iτ∂xdϕ(z)

)2
+ mk(%′) =

(
ξd + iτ̂ξd (%′)

)2
+ mk(%′),(4.24)

with

mk(%′) = (−1)ki
(
σ + iτ̂σ(%′)

)2
+ r

(
x, ξ′ + iτ̂ξ′(%′)

)
,(4.25)

recalling the definition of τ̂(%′) introduced in Section 4.1.4 and using the notation (4.7)–(4.8).
For t̂ = (t̂σ, t̂ξ) ∈ R × Rd, with t̂ξ = (t̂ξ′ , t̂ξd ) ∈ Rd−1 × R, we set

q̂k(z, ζ, t̂) =
(
ξd + it̂ξd

)2
+ m̂k(z, ζ′, t̂), m̂k(z, ζ′, t̂) := (−1)ki(σ + it̂σ)2 + r(x, ξ′ + it̂ξ′).(4.26)

We have qk(%) = q̂k(z, ζ, τ̂) and mk(%′) = m̂k(z, ζ′, τ̂).
We now study the roots of q̂k(z, ζ′, ξd, t̂), with ζ′ = (σ, ξ′), when viewed as a polynomial in

the variable ξd, with the other variables, z, ζ′, and t̂ acting as parameters. To that purpose, we
introduce the following quantity

µ̂k(z, ζ′, t̂) := 4t̂2
ξd

Re m̂k(z, ζ′, t̂) − 4t̂4
ξd

+
(

Im m̂k(z, ζ′, t̂)
)2.(4.27)

We choose ĥk(z, ζ′, t̂) ∈ C such that

Re ĥk(z, ζ′, t̂) ≥ 0 and ĥk(z, ζ′, t̂)2 = m̂k(z, ζ′, t̂).(4.28)

We may then write

(4.29) q̂k(z, ζ, t̂) = (ξd + it̂ξd )2 + ĥ2
k(z, ζ′, t̂) =

(
ξd − ρ̂k,+(z, ζ′, t̂)

)(
ξd − ρ̂k,−(z, ζ′, t̂)

)
,
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with

(4.30) ρ̂k,±(z, ζ′, t̂) = −it̂ξd ± iĥk(z, ζ′, t̂).

The choice of ĥk is unique if m̂k < R−. The results of this section are yet valid in the case m̂k ∈ R−;
however, in the following sections, those results based on the factorization (4.29) will only be used
in settings where m̂k ∈ R− does not occur.

We give some properties of the roots ρ̂k,±(z, ζ′, t̂).

Lemma 4.18. We assume that t̂ξd ≥ 0. Let k = 1 or 2. The roots ρ̂k,+(z, ζ′, t̂) and ρ̂k,−(z, ζ′, t̂) are
both homogeneous of degree one in (ζ′, t̂), and such that

(4.31) Im ρ̂k,− ≤ −t̂ξd ≤ Im ρ̂k,+.

We also have

(4.32) ρ̂k,− = ρ̂k,+ ⇔ ρ̂k,− = ρ̂k,+ = −it̂ξd ⇔ m̂k = 0.

Moreover, if t̂ξd > 0, we have

(4.33) Im ρ̂k,+ S 0 ⇔ µ̂k S 0.

In particular, if t̂ξd > 0, observe that the root ρ̂k,− remains in the lower half complex plane,
independently of the values of z, ζ′, and t̂, while the root ρ̂k,+ may cross the real line.

Proof. The roots can be chosen continuous with respect to ζ and t̂ and homogeneity comes nat-
urally. Observe that Im ρ̂k,± = −t̂ξd ± Re ĥk. As Re ĥk ≥ 0 then (4.31) is clear. The form of ρ̂k,±
above yields the equivalences in (4.32).

Finally, as Im ρ̂k,+ S 0 is equivalent to Re ĥk S t̂ξd , Lemma 4.19 below implies (4.33), since
Re ĥk ≥ 0 and t̂ξd > 0. �

Lemma 4.19. Let t ∈ C and m = t2. We then have, for x0 ∈ R such that x0 , 0,

|Re t| S |x0| ⇔ 4x2
0 Re m − 4x4

0 + (Im m)2 S 0.

Proof. Let t = x + iy. We have Re m = x2 − y2 and Im m = 2xy and we observe that

4x2
0 Re m − 4x4

0 + (Im m)2 = 4(x2
0 + y2)(x2 − x2

0),

which gives the result. �

Corollary 4.20. We assume that t̂ξd > 0. Let k = 1 or 2. If C > 0, there exists C′ > 0 such that

µ̂k(z, ζ′, t̂) ≥ C(|t̂|2 + |ζ′|2)2 ⇒ Im ρ̂k,+(z, ζ′, t̂) ≥ C′λ̂T, λ̂T = (|t̂|2 + |ζ′|2)1/2,

for (z, ζ′, t̂) ∈ V ∩ RN
+ × R

N−1 × RN .

Proof. We consider the compact set (recall that V is bounded)

C = {(z, ζ′, t̂) ∈ V ∩ RN
+ × R

N−1 × RN ; λ̂T = 1}.

The inequality µ̂k ≥ C yields a compact set K of C . By (4.33) in Lemma 4.18, we have Im ρ̂k,+ ≥

C′ > 0 on K, and we conclude by homogeneity. �

Proposition 4.21. We assume that t̂ξd ≥ 0. Let k = 1 or 2, we have the following properties:
(1) There exist θ0 ∈ (0, 1) and C > 0 such that if

z ∈ V and |t̂| ≤ θ0 λ̂T,

then the roots ρ̂k,± are simple and non real, and moreover

Im ρ̂k,+ ≥ Cλ̂T, Im ρ̂k,− ≤ −Cλ̂T (z, ζ′, t̂) ∈ V × RN−1 × RN ,(4.34)

with λ̂T = (|t̂|2 + |ζ′|2)1/2.
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(2) There exists C > 0 such that

0 ≤ t̂ξd ≤ C
(
|t̂′| + |ζ′|

)
, and |ζ′| ≤ C|t̂|,

if ρ̂k,+ ∈ R, where t̂′ = (t̂σ, t̂ξ′). In such case, the value of the imaginary part of the second
root is prescribed and nonpositive: Im ρ̂k,− = −2t̂ξd .

(3) There exists C > 0 such that |t̂′|/C ≤ |ζ′| ≤ C|t̂′|, if q̂k has a double root.

Finally, if t̂ξd > 0 and if |t̂′|/t̂ξd is sufficiently small, and if the polynomial q̂k, k = 1 or 2, has a
double root, then both roots of the second symbol, q̂k′ with k′ , k, are in the lower half complex
plane. More precisely, there exist C0,C1 > 0 such that if |t̂′| ≤ C0 t̂ξd then

(4.35) ρ̂k,+ = ρ̂k,− ⇒ Im ρ̂k′,± ≤ −C1 t̂ξd .

Proof. Proof of point (1). Because of homogeneity it is sufficient to assume that (ζ′, t̂) is on the
sphere S =

{
λ̂T = 1

}
. If t̂ = 0, then we have m̂k = ĥ2

k = r(x, ξ′) + (−1)kiσ2. Observe that m̂k , 0
here. Otherwise σ = 0 and ξ′ = 0, which cannot hold as |ζ′| = 1. Moreover Re m̂k ≥ 0. Hence, we
have Re ĥk > 0. Then we write

q̂k = ξ2
d + ĥ2

k = (ξd + iĥk)(ξd − iĥk),

yielding ρ̂k,− = −iĥk and ρ̂k,+ = iĥk, which gives Im ρ̂k,− < 0 and Im ρ̂k,+ > 0. As S ∩ {t̂ = 0} is
compact we find that Im ρ̂k,− ≤ −C < 0 and Im ρ̂k,+ ≥ C > 0, for some C > 0, for |ζ′| = 1 and
t̂ = 0. Then, using a compactness argument once more, using the continuity of the roots, there
exist θ0 ∈ (0, 1) such that

Im ρ̂k,−(z, ζ′, t̂) ≤ −C′ < 0, Im ρ̂k,+(z, ζ′, t̂) ≥ C′ > 0,

if z ∈ V and |t̂| ≤ θ0, recalling that V is bounded. We then obtain (4.34) in V by homogeneity. In
particular this excludes having double roots and real roots.

Proof of point (2). Observe that the inequality |ζ′| ≤ C|t̂|, in the case of a real root is simply another
formulation of part of point (1). Next, we observe that |m̂k| . |t̂′|2 + |ζ′|2 implies |Re ĥk| . |t̂′|+ |ζ′|.
Since having ρ̂k,+ ∈ R is equivalent to Re ĥk = t̂ξd by (4.30), we thus obtain t̂ξd . |t̂

′| + |ζ′|. As
Im ρ̂k,− = −t̂ξd − Re ĥk, we then have Im ρ̂k,− = −2t̂ξd .

Proof of point (3) The equation m̂k = 0, which is equivalent to having a double root, reads

r(x, ξ′) − r(x, t̂ξ′) − (−1)k2σt̂σ = 0, σ2 − t̂2
σ + (−1)k2r̃(x, ξ′, t̂ξ′) = 0,(4.36)

with r̃(x, ξ′, η′) defined below (4.19). From (4.36), using that r(x, .) is uniformly positive definite,
we obtain

|ξ′|2 . |t̂ξ′ |2 + |σ||t̂σ|, |σ|2 . |t̂σ|2 + |ξ′||t̂ξ′ |.

The sum of the two estimates gives |ζ′|2 . |t̂′|2 + |σ||t̂σ|+ |ξ′||t̂ξ′ |, and with the Young inequality we
obtain |ζ′| . |t̂′|. Similarly, from (4.36) we obtain

|t̂ξ′ |2 . |ξ′|2 + |σ||t̂σ|, |t̂σ|2 . |σ|2 + |ξ′||t̂ξ′ |,

and the sum of the two estimates gives |t̂′|2 . |ζ′|2 + |σ||t̂σ|+ |ξ′||t̂ξ′ |, and with the Young inequality
we obtain |t̂′| . |ζ′|.

Note that we could deduce that |ζ′| . |t̂| from point (1). Here, we have obtained a sharper
estimate.

Proof of (4.35). If q̂k has a double root, then |t̂′| � |ζ′| by point (3). Let δ ∈ (0, 1), and set
C1 = 1 − δ. To have Im ρ̂k′,± ≤ −C1 t̂ξd it suffices to have Im ρ̂k′,+ ≤ −C1 t̂ξd by Lemma 4.18. With
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the notation of the proof of that lemma, this reads −t̂ξd + Re ĥk′ ≤ −C1 t̂ξd , that is 0 ≤ Re ĥk′ ≤ δt̂ξd .
Now as we have |Re ĥk′ | ≤ |ĥk′ | ≤ |m̂k′ |

1/2 . |t̂′|+ |ζ′|, we find that 0 ≤ Re ĥk′ . |t̂′| here. The result
thus follows if we assume that |t̂′|/t̂ξd is chosen sufficiently small. �

Lemma 4.22. Assume that |t̂′| ≤ C0 t̂ξd for some C0 > 0. There exists δ0 > 0 such that if δ ∈ (0, δ0)
and µ̂k(z, ζ′, t̂) ≥ −δλ̂4

T, with λ̂2
T = |t̂|2 + |ζ′|2, then the roots of q̂k are simple.

Proof. Because of homogeneity it is sufficient to work on the sphere S =
{
λ̂T = 1

}
. Writing

m̂k = ĥ2
k with Re ĥk ≥ 0 as in (4.28), we observe that µ̂k ≥ −δ reads

4
(
t̂2
ξd

+ (Im ĥk)2)((Re ĥk)2 − t̂2
ξd

)
≥ −δ,

using the computation of the proof of Lemma 4.19 with x0 = t̂ξd . Assume that we have a double
root. In such case m̂k = 0 by Lemma 4.18 and |t̂′| � |ζ′| by point (3) of Proposition 4.21. We then
have ĥk = 0, yielding 4t̂4

ξd
≤ δ = δλ̂4

T . δt̂
4
ξd

, using that |t̂′| ≤ C0 t̂ξd . Thus, for δ chosen sufficiently
small we reach a contradiction. �

Lemma 4.23. Let k = 1 or 2. If both δ > 0 and |t̂′|/t̂ξd are sufficiently small, there exists C > 0

such that for (z, ζ′, t̂) ∈ V ∩ RN
+ × R

N−1 × RN

µ̂k(z, ζ′, t̂) ≥ −δλ̂4
T ⇒ |t̂| ≤ C|ζ′|,

with λ̂2
T = |t̂|2 + |ζ′|2.

Proof. Because of homogeneity it is sufficient to work on the sphere S =
{
λ̂T = 1

}
.

Let us now assume that the implication does not hold. Then there exists (z(n), ζ′(n), t̂(n)) ∈
V ∩ RN

+×S, such that µ̂k(z(n), ζ′(n), t̂(n)) ≥ −δ and |t̂(n)| > n|ζ′(n)|. As (z(n), ζ′(n), t̂(n)) lays in a compact
set (recall that V is bounded), it converges, up to a subsequence, to (z(∞), ζ′(∞), t̂(∞)) ∈ V ∩ RN

+ ×S.
We find that ζ′(∞) = 0 and m̂k(z(∞), 0, t̂(∞)) = (−1)k−1i(t̂(∞)

σ )2 − r(x, t̂(∞)
ξ′ ) , yielding

µ̂k(z(∞), 0, t̂(∞)) = −4(t̂(∞)
ξd

)2r(x, t̂(∞)
ξ′ ) − 4(t̂(∞)

ξd
)4 + (t̂(∞)

σ )4 ≤ −3,

for |t̂(∞)′|/t̂(∞)
ξd

sufficiently small, as we have |t̂(∞)| = 1. For δ sufficiently small, we hence reach a
contradiction. �

4.4. Microlocal regions. With the functions µ̂k, k = 1, 2, introduced in (4.27) we shall define
several microlocal regions. Observe first that µ̂k is an homogeneous polynomial function of degree
four in (ζ′, t̂). We thus have µ̂k ∈ S 4

T,t̂ in the sense given by Definition 4.1. From Lemma 4.8, we
find that we have µ̂k(z, ζ′, τ̂(%′)) ∈ S (λ4

T,τ̃, gT). We thus define

µk(%′) := λ−4
T,τ̃(%

′) µ̂k(z, ζ′, τ̂(%′)) ∈ S (1, gT), k = 1, 2, %′ = (z, ζ′, τ, γ, ε).(4.37)

We recall that τ̂ = τdzϕγ,ε(z) = τ̃(%′)dzψε(z) and ψε(z) = ψ(εz′, zN) with 0 < ε < 1. Observe that
we have |τ̂(%′)| = τ̃(%′)‖dzψε‖L∞ ≤ τ̃(%′)‖dzψ‖L∞ . Thus, having 0 ≤ τ̃ ≤ δθ0λT,τ̃(%′)/‖dzψ‖L∞ , for
δ ∈ (0, 1], implies |τ̂(%′)| ≤ θ0λT,τ̃(%′). The value θ0 is as introduced in Proposition 4.21. We set
θ1 = 1

32θ0/‖dzψ‖L∞ .
Let δ ∈ (0, 1] and let V be the bounded open neighborhood in RN of z0 ∈ ∂Z, introduced in

Section 4.2. We set MT,V = V × RN−1 × [τ∗,+∞) × [1,+∞) × [0, 1]. We define the following
microlocal regions, for k = 1, 2,

F(V, δ) = {%′ ∈ MT,V ; z ∈ V, τ̃(%′) ≤ δθ1λT,τ̃(%′)},

E(k)
− (V, δ) = {%′ ∈ MT,V ; z ∈ V, µk(%′) ≤ −δ},

E(k)
0 (V, δ) = {%′ ∈ MT,V ; z ∈ V, µk(%′) ≥ −δ}.
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δ/2
δ

µ1

µ2

Figure 2. Microlocal region E−. In dark color is the region where χ(1)
δ,− ≡

1. In light color is the support of χ(1)
δ,−. The boundaries of the associated

regions for χ(2)
δ,− are marked dashed.

Evidently, we haveMT,V = E(k)
− (V, δ) ∪ E(k)

0 (V, δ). We now set

E−(V, δ) = E(1)
− (V, δ) ∪ E(2)

− (V, δ), E0(V, δ) = E(1)
0 (V, δ) ∩ E(2)

0 (V, δ),

and we haveMT,V = E−(V, δ)∪E0(V, δ). Below, in the text, when no precision is needed, we shall
use the “vague” terminology F, E−, or E0, to refer to microlocal regions that take the forms of
F(V, δ), E−(V, δ), E0(V, δ).

We let χ−, χ0 ∈ C∞(R), with values in [0, 1], be such that

χ− ≡ 1 on (−∞,−1], and supp(χ−) ⊂ (−∞,−1/2],
χ0 ≡ 1 on [−2,+∞), and supp(χ0) ⊂ [−3,∞).

Let V0 b V be an open neighborhood of z0 in RN and let χV0 ∈ C∞(RN) be such that supp(χV0) ⊂ V
and χV0 ≡ 1 in an open neighborhood of V0. With η ∈ C∞c (−θ1, θ1), with values in [0, 1] such that
η ≡ 1 in [−θ1/2, θ1/2], we set

χδ,F(%′) = η
(
τ̃(%′)/(δλT,τ̃(%′))

)
∈ S (1, gT).

and

χF(%′) = χV0(z) χ1,F(%′) ∈ S (1, gT).

We set

χ(k)
δ,−(%′) = χV0(z) (1 − χ1/4,F(%′)) χ−(µk(%′)/δ) ∈ S (1, gT).

Observe that we have

χ(k)
δ,− ≡ 1 on E(k)

− (V0, δ) \ F(V, 1/4), supp(χ(k)
δ,−) ⊂ E(k)

− (V, δ/2) \ F(V, 1/8),

and thus

χ(1)
δ,− + χ(2)

δ,− ≥ 1 on E−(V0, δ) \ F(V, 1/4), supp(χ(1)
δ,− + χ(2)

δ,−) ⊂ E−(V, δ/2) \ F(V, 1/8).

We finally set

χδ,0(%′) = χV0(z) (1 − χ1/4,F(%′)) χ0(µ1(%′)/δ) χ0(µ2(%′)/δ) ∈ S (1, gT).
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µ1

µ2

−3δ

−2δ

Figure 3. Microlocal region E0. In dark color is the region where χδ,0 ≡ 1.
In light color is the support of χδ,0.

Observe that we have

χδ,0 ≡ 1 on E0(V0, 2δ) \ F(V, 1/4) supp(χδ,0) ⊂ E0(V, 3δ) \ F(V, 1/8),

and

χF + χ(1)
δ,− + χ(2)

δ,− + χδ,0 ≥ 1 on a conic neighborhood ofMT,V0 .(4.38)

With the microlocal cutoff functions we have just introduced we associate tangential pseudo-
differential operators, all in Ψ(1, gT),

ΞF = OpT
(
χF

)
, Ξ

(k)
δ,− = OpT

(
χ(k)
δ,−

)
, k = 1, 2, and Ξδ,0 = OpT

(
χδ,0

)
.(4.39)

4.5. Proof strategies in the three microlocal regions. Derivations in all three microlocal regions
require first the proof of estimates for various factors and second the concatenation of those es-
timates. For this second part, to avoid redundancies, we describe in Appendix B.4, along with
proofs, how various type of estimates can be concatenated.

The estimate associated with region E− is proven in Section 4.6. In region E−, we have Pϕ =

Q1Q2 where at least one of the factors is characterized by a principal symbol with two roots in
the lower half complex plane. This yields for this factor, say Q1, a perfectly elliptic estimate at
the boundary {xd = 0}, as given by Lemma B.1 (see Appendix B.1). For the second operator
Q2, one can derive an estimate whose form is classical and exhibits a loss of a half derivative, as
given in Proposition B.10. A proof is provided in Appendix B.5, in particular since the estimate
needs to hold uniformly with respect to all parameters introduced. Finally, the two estimates are
concatenated to obtain an estimate for Pϕ in E−.

The estimate associated with region E0 is proven in Section 4.7. The treatment this region
requires the most delicate argument and justifies the development of the Weyl-Hörmander calculus
of Section 4.1. Microlocally, in this region we write Pϕ = Q1Q2 and we manage to write each Qk,
k = 1, 2, in the form

Qk = Qk,−Qk,+ + (1 + γε)R1,

where Qk,−, Qk,+ and R1 are all first-order operators. The operator Qk,− is characterized by
a principal symbol with a root in the lower half complex plane. Setting Q− = Q1,−Q2,− and
Q+ = Q1,+Q2,+, with delicate commutator arguments we obtain Pϕ = Q−Q+ + (1 + γε)R3 where
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R3 ∈ Ψ
2,1
τ̃ . We thus manage gather togethers factors with similar root locations without generat-

ing a remainder in γΨ
2,1
τ̃ . Observe that this latter class for the remainder is obtained if operator

commutations within the Weyl-Hörmander calculus are carried invoking usual arguments. Here,
to obtain the sharper class (1 + γε)Ψ2,1

τ̃ , we use the precise forms of the involved operators and
symbols.

For Q− we have a perfectly elliptic estimate at the boundary {xd = 0}, as given by Lemma B.1
(see Appendix B.1). For each operator Qk,+ a sub-elliptic estimate can be obtained with a trace
term used as an observation as given by Lemma B.6 in Appendix B.3.3. Concatenated together,
two such estimates yield an estimate for Q+ with a loss of a full derivative and observation terms
that involve both the Dirichlet trace and the Neumann trace of the solution. Concatenating now
the estimates for Q− and Q+ one obtains microlocally an estimate of the form

γ‖τ̃−1v‖4,0,τ̃ + | tr(v)|3,1/2,τ̃ . ‖Q
−Q+v‖+ + | tr(v)|1,5/2,τ̃.

With the form of the remainder term (1 + γε)R3 that appeared above in the decomposition of Pϕ
one then sees that a similar estimate can be obtained for Pϕ in place of Q−Q+ by choosing γ > 0
sufficiently large and ε > 0 sufficiently small. Observe that if the remainder term had been in
γΨ

2,1
τ̃ we would not have been able to transform the estimate obtained for Q−Q+ into an estimate

for Pϕ.
Some technical aspects of the proof in the region E0 described above require to have τ̃(%′) of

the same order as λT,τ̃(%′). This is however not true in that region. One thus rather considers a
region of the form E0 \ F, since region F is characterized by τ̃(%′) ≤ CλT,τ̃(%′) for a well chosen
constant (see above). A last microlocal region, namely F, thus needs to be considered.

The treatment of region F is given in Section 4.8 and has some similarities with what is done
in the region E0 \ F. Yet, the treatment of remainder terms needs not be as refined. The operator
Pϕ is written in the form Pϕ = Q−Q+ + γR3 with R3 ∈ Ψ

2,1
τ̃ and again Q− = Q1,−Q2,− and

Q+ = Q1,+Q2,+. Here also, for Q− we have a perfectly elliptic estimate at the boundary {xd = 0}.
For Q+, the estimate we obtain is very different from what is done in E0 \ F. The region F
is designed so that the roots associated with the factors Q1,+ and Q2,+ are both located in the
upper half complex plane. For each of these operators one can thus obtain a microlocal elliptic
estimate at the boundary {xd = 0} with one trace used as an observation term yet without any
loss of derivative as given in Lemma B.4 in Appendix B.3.1. Put together, with a concatenation
argument, an estimate for Q+ is obtained with observation terms that involve both the Dirichlet
trace and the Neumann trace of the solution. This estimate for Q+ does not exhibit any loss of
derivative: it is an elliptic estimate. Concatenated together the estimates for Q+ and Q− yield also
an elliptic estimate for Q−Q+ with the above two traces as observation terms. The elliptic strength
of this estimate then allows one to handle the remainder term in γΨ

2,1
τ̃ yielding a similar result for

Pϕ in the microlocal region F.
As a final step of the proof of Theorem 4.17, we patch together the estimates obtained in the

above three microlocal regions. This is done in Section 4.9.

4.6. Microlocal estimate in the region E−. We prove the following estimate.

Proposition 4.24. Let M ∈ N. Let k = 1 or 2. For δ ∈ (0, 1), there exist τ0 ≥ τ∗, γ0 ≥ 1, and
C > 0 such that

γ
1
2 ‖τ̃−1/2Ξ

(k)
δ,−v‖4,0,τ̃ + | tr(Ξ(k)

δ,−v)|
3,1/2,τ̃

≤ C
(
‖PϕΞ

(k)
δ,−v‖+ + | tr(Ξ(k)

δ,−v)|
0,7/2,τ̃

+ ‖v‖4,−M,τ̃
)
,(4.40)

for τ ≥ τ0, γ ≥ γ0, ε ∈ [0, 1], and for v ∈ S (RN
+ ).

The term ‖v‖4,−M,τ̃ in the r.h.s. stands as a remainder that will be ’absorbed’ once the estimations
in the different microlocal regions are patched together. In fact, observe that this term is much
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weaker than that in the l.h.s. in the Carleman estimate (4.21) of Theorem 4.17. The meaningful
observation term in the r.h.s. of (4.40) is | tr(v)|0,7/2,τ̃, which is of the strength as the terms in the
l.h.s. of (4.21), and can be found in the r.h.s. of that latter estimate.

Proof. We have Pϕ = Q1Q2. We consider the case k = 1. The same proof can be written in the
case k = 2. To ease notation we write χ in place of χδ,− and Ξ in place of Ξδ,−.

In a conic neighborhood of supp(χ) ⊂ MT,V , with V introduced in Section 4.2, we have µ1 ≤

−Cδ. As (4.20) holds in V we have τ̂ξd ≥ Cτ̃ and thus |τ̂ξ | � τ̃. By Lemma 4.18, both roots of the
symbol q1 of the operator Q1 are in the lower half complex plane. Thus,

(4.41) the operator Q1 fulfills the requirements of Lemma B.1.

Also, for the operator Q2, without any assumption on the position of the roots in the complex
plane, we have the following estimate, characterized by the loss of a half derivative and a boundary
observation term, by Proposition B.10, for ` ∈ R,

γ1/2‖τ̃−1/2Ξv‖2,`,τ̃ + | tr(Ξv)|1,`+1/2,τ̃ . ‖Q2Ξv‖0,`,τ̃ + | tr(Ξv)|0,`+3/2,τ̃,(4.42)

for v ∈ S (RN
+ ), for τ ≥ τ∗ and γ ≥ 1 chosen sufficiently large, and ε ∈ [0, 1] (recall that

supp(χ) ⊂ MT,V which gives supp(Ξv) ⊂ V ′ b V , for some open set V ′, thus permitting the
application of Proposition B.10).

With (4.41), (4.42), and Proposition B.8, applied with Q− = Q1 and Q+ = Q2 here, and with
α1 = 0 and α2 = 1 and δ1 = 1 and δ2 = 0, we obtain the result of the proposition, by choosing
τ ≥ τ∗ and γ ≥ 1 sufficiently large. �

4.7. Microlocal estimate in the region E0 \ F. We prove the following estimate.

Proposition 4.25. Let M ∈ N. For δ0 ∈ (0, 1) chosen sufficiently small and δ ∈ (0, δ0], there exist
τ0 ≥ τ∗, γ0 ≥ 1, ε0 ∈ (0, 1], and C > 0 such that

γ‖τ̃−1Ξδ,0v‖4,0,τ̃ + | tr(Ξδ,0v)|3,1/2,τ̃ ≤ C
(
‖PϕΞδ,0v‖+ + | tr(Ξδ,0v)|1,5/2,τ̃ + ‖v‖4,−M,τ̃

)
,

for τ ≥ τ0, γ ≥ γ0, ε ∈ [0, ε0], and for v ∈ S (RN
+ ).

Before giving the proof of this microlocal estimate we need to provide some additional proper-
ties of the symbols mk introduced in Section 4.3 and its square root, hk. Note that the region F is
introduced to isolate the case where τ̃ ≤ C|ζ′| and this permits to exploit the relation |ζ′| ≤ Cτ̃ in
the region E0 \ F. This is used to obtain some symbol properties of hk.

We recall the form of the tangential differential operator Mk, as introduced in (4.23),

Mk := (−1)ki(Ds + iτ∂sϕ(z))2 + R(x,Dx′ + iτdx′ϕ(z)),

whose principal symbol is given by mk(%′) := (−1)ki(σ + iτ∂sϕ(z))2 + r(x, ξ′ + iτdx′ϕ(z)) ∈
S (λ2

T,τ̃, gT). Observe that we have the following symbol estimation.

Lemma 4.26. We have ∂xd mk ∈ S ((1 + εγ)λ2
T,τ̃, gT).

Proof. We write mk(%′) = (−1)ki
(
σ + iτ̂σ(%′)

)2
+ r

(
x, ξ′ + iτ̂ξ′(%′)

)
, with the notation of (4.7). We

then have

∂xd mk = −2(−1)k(∂xd τ̂σ)(σ + iτ̂σ) + 2ir̃(x, ξ′ + iτ̂ξ′ , ∂xd τ̂ξ′) + ∂xd r(x, ξ′ + iτ̂ξ′),

with r̃(x, ξ′, η′) defined below (4.19). By Lemma 4.5, we have τ̂′ = (τ̂σ, τ̂ξ′) ∈ S (ετ̃, gT)N−1

yielding ∂xd τ̂
′ ∈ S (εγτ̃, gT)N−1, and as ∂xd r(x, ξ′ + iτ̂ξ′) ∈ S (λ2

T,τ̃, gT), the result follows. �
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Let k = 1, 2. If µk(%′) ≥ −Cδ, and for δ > 0 sufficiently small then mk , 0 and, equivalently,
the roots of qk(%) are simple, by Lemma 4.22 since |τ̂′| . τ̂ξd for z ∈ V; recall the definition of the
operator Qk, Qk = (Dxd + iτ∂xdϕ(x))2 + Mk, and its principal symbol qk in (4.22)–(4.24).

Lemma 4.27. Let C,C′ > 0 and let Uδ be a conic open set ofMT,V such that µk(%′) ≥ −Cδ and
λT,τ̃ ≤ C′|τ̂(x)| in Uδ. For δ0 ∈ (0, 1) and ε0 > 0 chosen sufficiently small, if 0 < δ ≤ δ0 and
0 ≤ ε ≤ ε0, the symbol mk is elliptic and there exists hk ∈ S (λT,τ̃, gT) in Uδ that is elliptic and that
satisfies

h2
k = mk and Re hk ≥ 0.

Moreover, we have ∂xd hk ∈ S ((1 + εγ)λT,τ̃, gT) in Uδ.

The second part of Lemma 4.27 improves, for hk, upon the natural behavior of an arbitrary
element of f ∈ S (λT,τ̃, gT) for which we have ∂xd f ∈ S (γλT,τ̃, gT). This is a key aspect of our
proof strategy of the Carleman estimate. In fact, if one chooses ε = 0, that is, a weight function
ψ = ψ(xd), then one finds directly that ∂xd mk ∈ S (λ2

T,τ̃, gT) and ∂xd hk ∈ S (λT,τ̃, gT), as confirmed
by Lemmata 4.26 and 4.27. However, such a weight function is not convex with respect to the
boundary {xd = 0}, which turns out to be an obstruction for the applications of the Carleman
estimate we consider here. If we simply let ψ be of the form ψ(s, x′, xd) we then obtain ∂xd hk ∈

S (γλT,τ̃, gT) and the proof scheme for the Carleman estimate collapses: the parameter γ needs to
be set large, which yields uncontrolled terms in the derivation. The introduction of the parameter
ε, writing ψε(z) = ψ(εs, εx′, xd) is thus designed to control this behavior and to bring the analysis
as “close” as we wish to the case ε = 0 for the derivation of the estimate and yet preserving some
convexity with respect to the boundary {xd = 0}.

Proof. In V , we have ∂xdψ ≥ C > 0 yielding |τ̂| � τ̂ξd � τ̃ by Lemma 4.6. Next, |τ̂′|/τ̂ξd can
be made as small as needed by choosing ε > 0 small. Thus, if we choose δ ∈ (0, δ0] and ε > 0
sufficiently small, by Lemma 4.23 we have |τ̂(x)| . |ζ′| and with the additional assumption made
here we obtain

(4.43) |ζ′| � τ̃ � τ̃ξd in Uδ.

If mk(%′) remains away from a neighborhood of the negative real axis in the complex plane for
%′ ∈ Uδ, we can then define hk(%′) as the principal square root of mk(%′). Then, it is straightforward
to obtain hk ∈ S (λT,τ̃, gT) in Uδ. In fact, if we assume | Im mk(%′)| ≤ αλ2

T,τ̃, as we have, recalling
the definition of µk in (4.37),

µk(%′)λ4
T,τ̃(%

′) = 4τ̂2
ξd

Re mk(%′) − 4τ̂4
ξd

+
(

Im mk(%′)
)2

it yields, using (4.43), Re mk(%′) ≥ τ̂2
ξd

(1 + O(δ + α)). By choosing α and δ sufficiently small, we

obtain Re mk(%′) & τ̂2
ξd

in Uδ.

As mk(%′) is homogeneous of degree two, we find that hk is homogeneous of degree one in Uδ.
Recalling that z = (x, s) remains in a compact domain here, we thus find

(4.44) |hk(%′)| & λT,τ̃ in Uδ.

Next, as h2
k = mk , 0 in Uδ we may write, with Lemma 4.26,

2hk∂xd hk = ∂xd mk ∈ S ((1 + εγ)λ2
T,τ̃, gT).

which yields the result using the ellipticity estimate (4.44). �
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W

∂Q

xd = zN ∈ R

z′ = (s, x′) ∈ R × Rd−1 = RN−1

V0

V1

z0

V

Figure 4. Open neighborhoods of z0 ∈ ∂Z introduced in the course of the
proof of Theorem 4.17.

We let χ
δ
, χδ,1 ∈ S (1, gT) be supported inMT,V , homogeneous of degree zero, and be such that

µk ≥ −Cδ for both k = 1, 2 on their supports and χδ,1 ≡ 1 in a conic neighborhood of supp(χδ,0)
and χ

δ
≡ 1 in a conic neighborhood of supp(χδ,1). Recalling the notation of Section 4.4 and

the microlocalization symbols constructed there, this can be done as follows, for instance for the
construction of χδ,1. Let χ̂1 ∈ C∞(R) be such that

supp(χ̂1) ⊂ [−4,+∞), χ̂1 ≡ 1 on a neighborhood of [−3,+∞).

We also introduce V1 ⊂ V an open neighborhood of supp(χV0) in RN
+ , in particular V0 b V1 (the

local geometry is illustrated in Figure 4) and we choose χV1 ∈ C∞(RN
+ ) such that

χV1 ≡ 1 on a neighborhood of V1, supp(χV1) ⊂ V.

We set

χδ,1(%′) = χV1(z) (1 − χ1/16,F(%′)) χ̂1(µ1(%′)/δ)χ̂1(µ2(%′)/δ) ∈ S (1, gT).

we have χδ,1 ≡ 1 in a conic neighborhood of supp(χδ,0).

We choose δ0 > 0 sufficiently small so that the results of Lemmata 4.22 and 4.23 apply, that is,
on supp(χ

δ
) the roots of qk are simple and |τ̂(%′)| . |ζ′|, and also the result of Lemma 4.27 holds

for Uδ a conic neighborhood of supp(χ
δ
), for δ ∈ (0, δ0) and for ε > 0 chosen sufficiently small.

With the value of δ fixed now, to ease notation we now write χ, χ0, χ1 in place of χ
δ
, χδ,0, χδ,1 and

Ξ0,Ξ1 in place of OpT(χδ,0),OpT(χδ,1).

Lemma 4.28. Let χ = χ0 or χ1 and, accordingly, Ξ = Ξ0 or Ξ1. We have

QkΞ = Qk,+Qk,−Ξ + (1 + γε)R1Ξ + R−M

= Qk,−Qk,+Ξ + (1 + γε)R′1Ξ + R′−M,

where Qk,a =
(
Dxd + iτ̂ξd − i a OpT

w(hkχ)
)
, a ∈ {+,−}, and R1,R′1 ∈ Ψ(λT,τ̃, gT) and R−M,R′−M ∈

Ψ(λ−M
T,τ̃ , gT), for arbitrary large M ∈ N.
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Proof. In the proof we shall denote by R j a generic operator in Ψ(λ j
T,τ̃, gT), j ∈ R, whose expres-

sion may change from one line to the other.
Observe that we have, for any M ∈ N,

MkΞ = Mk OpT(χ)2Ξ + R−M = OpT(mkχ
2)Ξ + (1 + γε)R1Ξ + R−M.

With Lemma 4.27 applied with Uδ, a conic neighborhood of supp(χ), we have

OpT(mkχ
2) = OpT(hkχ)2 mod Ψ((1 + γε)λT,τ̃, gT),

using the properties of the tangential calculus (see Proposition 4.3). This yields

MkΞ = OpT(hkχ)2Ξ + (1 + γε)R1Ξ + R−M

= OpT
w(hkχ)2Ξ + (1 + γε)R1Ξ + R−M.

We then find

QkΞ = (Dxd + iτ̂ξd )2Ξ + MkΞ

=
(
Dxd + iτ̂ξd + i OpT

w(hkχ)
)(

Dxd + iτ̂ξd − i OpT
w(hkχ)

)
Ξ

+ i[Dxd + iτ̂ξd ,OpT
w(hkχ)]Ξ + (1 + γε)R1Ξ + R−M,

In fact, the order of the operators can be changed and we find

QkΞ =
(
Dxd + iτ̂ξd − i OpT

w(hkχ)
)(

Dxd + iτ̂ξd + i OpT
w(hkχ)

)
Ξ

− i[Dxd + iτ̂ξd ,OpT
w(hkχ)]Ξ + (1 + γε)R1Ξ + R−M.

The following lemma then yields the result. �

Lemma 4.29. Let χ = χ0 or χ1 and, accordingly, Ξ = Ξ0 or Ξ1. We have, for a ∈ {+,−},
[Dxd + iτ̂ξd ,Qk,a]Ξ = −i a[Dxd + iτ̂ξd ,OpT

w(hkχ)]Ξ = (1 +γε)R1Ξ + R−M with R1 ∈ Ψ(λT,τ̃, gT) and
R−M ∈ Ψ(λ−M

T,τ̃ , gT).

Proof. We have [τ̂ξd ,OpT
w(hkχ)] ∈ Ψ((1 +γε)λT,τ̃, gT) as a consequence of the tangential calculus

we have introduced. We have [Dxd ,OpT
w(hkχ)] = OpT

w (
Dxd (hkχ)

)
. We then write

Dxd (hkχ) = Dxd (hk)χ + hkDxd (χ).

Because of the definition of χ we have Dxdχ(%′) ≡ 0 in supp(χ(%′)). Thus OpT
w (

(Dxdχ)hk
)
Ξ ∈

Ψ(λ−M
T,τ̃ , gT), for any M ∈ N. Next, by Lemma 4.27 we have χDxd hk ∈ S ((1 + εγ)λT,τ̃, gT), which

concludes the proof. �

Lemma 4.30. Let χ = χ0 or χ1 and, accordingly, Ξ = Ξ0 or Ξ1. Let k, ` ∈ {1, 2} and a, b ∈ {+,−}.
We have, for any M ∈ N,

[Qk,a,Q`,b]Ξ = (1 + γε)R1Ξ + R−M, [Dxd + iτ̂ξd ,Qk,aQ`,b]Ξ = (1 + γε)R1,1Ξ + R1,−M,

with R1 ∈ Ψ(λT,τ̃, gT), R1,1 ∈ Ψ
1,1
τ̃ , R−M ∈ Ψ

0,−M
τ̃ , and R1,−M ∈ Ψ

1,−M
τ̃ .

Proof. Since [OpT
w(hkχ),OpT

w(hlχ)] ∈ Ψ((1 + γε)λT,τ̃, gT), using the properties of the tangential
calculus (see Proposition 4.3), the result follows from Lemma 4.29. �

We may now provide a proof of the microlocal estimate for the region E0.

Proof of Proposition 4.25. In the proof, we shall denote by R j,k a generic operator in Ψ
j,k
τ̃ , j ∈ N,

k ∈ R, whose expression may change from one line to the other. We denote by M an arbitrarily
large integer whose value may change from one line to the other.
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With the previous lemmata we write, using that χ1 ≡ 1 on supp(χ0),

PϕΞ0 = Q1Q2Ξ0 = Q1Ξ1Q2Ξ0 + R4,−M(4.45)
= Q1,−Q1,+Ξ1Q2,−Q2,+Ξ0 + (1 + γε)R2,1Ξ0 + R4,−M

= Q1,−Q1,+Q2,−Q2,+Ξ0 + (1 + γε)R2,1Ξ0 + R4,−M

= Q1,−Q1,+Q2,−Ξ1Q2,+Ξ0 + (1 + γε)R2,1Ξ0 + R4,−M

= Q1,−Q2,−Q1,+Ξ1Q2,+Ξ0 + (1 + γε)R2,1Ξ0 + R4,−M

= Q−Q+Ξ0 + (1 + γε)R2,1Ξ0 + R4,−M,

with Q− = Q1,−Q2,− and Q+ = Q1,+Q2,+.

The principal symbol of Q− is q− = q1−q2,− ∈ S 2,0
τ̃ in a conic neighborhood of supp(χ0), where

all the roots of q− have negative imaginary parts. Thus,

(4.46) the operator Q− fulfills the requirements of Lemma B.1.

For both Q1,+ and Q2,+ we have the following estimate, characterized by the loss of a half
derivative and a trace observation, as given by Lemma B.6, for `,m ∈ R,

γ1/2‖τ̃m−1/2Ξ0v‖1,`,τ̃ . ‖τ̃mQk,+Ξ0v‖0,`,τ̃ + | tr(τ̃mΞ0v)|0,`+1/2,τ̃ + ‖v‖0,−M,τ̃, k = 1, 2,

for v ∈ S (RN
+ ), and for τ ≥ τ∗ and γ ≥ 1 chosen sufficiently large, and ε ∈ [0, 1]. Then, according

to Proposition B.7, applied with α1 = α2 = 1, we have the following estimate for the operator Q+,
for M > 0 and ` ∈ R,

γ‖τ̃−1Ξ0v‖2,`,τ̃ + | tr(Ξ0v)|1,`+1/2,τ̃ . ‖Q
+Ξ0v‖0,`,τ̃ + | tr(Ξ0v)|1,`+1/2,τ̃ + ‖v‖2,−M,τ̃,(4.47)

for v ∈ S (RN
+ ), and for τ and γ chosen sufficiently large.

With (4.46) and (4.47), applying now Proposition B.8, and using that, for any M ∈ N, [Dxd +

iτ̂ξd ,Q
+]Ξ1 = (1 + γε)R1,1Ξ1 + R1,−M by Lemma 4.30, we obtain

γ‖τ̃−1Ξ0v‖4,0,τ̃ + | tr(Ξ0v)|3,1/2,τ̃ . ‖Q
−Q+Ξ0v‖+ + | tr(Ξ0v)|1,5/2,τ̃ + ‖v‖4,−M,τ̃,

for v ∈ S (RN
+ ), and for τ ≥ τ∗ and γ ≥ 1 chosen sufficiently large, for ε ∈ [0, ε1] with ε1 > 0

chosen sufficiently small. Finally, with (4.45), we conclude the proof of Proposition 4.25 by
choosing γ large and ε ∈ [0, ε2] with ε2 > 0 chosen sufficiently small. �

Remark 4.31. Note that the end of the proof of Proposition 4.25 is a point where the introduction
of the second large parameter γ is crucial. Even in the case ε = 0, that is for a weight function that
only depend on the variable zN , taking γ large is needed to conclude.

4.8. Microlocal estimate in the region F. In the region F we have τ̃ . λT,τ̃ and the symbols
of the operators Qk are characterized by two simple roots that are separated (see the first item of
Proposition 4.21). We prove the following estimate.

Proposition 4.32. Let M ∈ N. There exist τ0 ≥ τ∗, γ0 ≥ 1, and C > 0 such that

‖ΞFv‖4,0,τ̃ + | tr(ΞFv)|3,1/2,τ̃ ≤ C
(
‖PϕΞFv‖+ + | tr(ΞFv)|1,5/2,τ̃ + ‖v‖4,−M,τ̃

)
,

for τ ≥ τ0, γ ≥ γ0, ε ∈ [0, 1], and for v ∈ S (RN
+ ).

Proof. We write χ0 = χF and Ξ0 = ΞF , to ease the reading of the proof.
We also let χ1, χ ∈ S (1, gT) be supported inMT,V , homogeneous of degree zero, and be such

that |τ̂(%′)| ≤ 1
2θ0λT,τ̃(%′) in their support (using the notation of Section 4.4) and such that χ1 ≡ 1

on a conic neighborhood of supp(χ0) and χ ≡ 1 on a conic neighborhood of supp(χ1). This can be
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done as follows, for instance for the construction of χ1. We introduce V1 ⊂ V an open set of RN

that is a neighborhood of supp(χV0) in RN
+ , in particular V0 b V1 (the local geometry is illustrated

in Figure 4) and we choose χV1 ∈ C∞(RN
+ ) such that

χV1 ≡ 1 on a neighborhood of V1, supp(χV1) ⊂ V.

We set

χ1(%′) = χV1(z)χ4,F ∈ S (1, gT),

with the function χδ,F as introduced in Section 4.4. We have |τ̂(%′)| ≤ 1
8θ0λT,τ̃(%′), which leaves

“enough room” for a similar construction for χ. We set Ξ1 = OpT(χ1).
With Proposition 4.21, in a conic neighborhood of supp(χ) the roots of qk, k = 1, 2, are simple,

and we may write

qk(%) = qk,+(%)qk,−(%), qk,±(%) = ξd − ρk,±(%′),

where ρk,± ∈ S (λT,τ̃, gT) in a conic neighborhood of supp(χ) and there we have

Im ρk,+ ≥ CλT,τ̃, Im ρk,− ≤ −CλT,τ̃.

We set Qk,± = Dxd − OpT
w(χρk,±).

In the proof we shall denote by R j,k as a generic operator in Ψ
j,k
τ̃ , j ∈ N, k ∈ R, whose expression

may change from one line to the other.

Lemma 4.33. Let Ξ = Ξ0 or Ξ1. We have, for arbitrary large M ∈ N,

QkΞ = Qk,+Qk,−Ξ + γR1,0Ξ + R2,−M

= Qk,−Qk,+Ξ + γR1,0Ξ + R2,−M.

Proof. We have

Qk,+Qk,− = D2
xd
−

(
OpT

w(χρk,+) + OpT
w(χρk,−)

)
Dxd + OpT

w(χρk,+) OpT
w(χρk,−) + γR0,1.

We thus find, for any M ∈ N,

Qk,+Qk,−Ξ =
(

OpT
w(χ)D2

xd
−

(
OpT

w(χρk,+) + OpT
w(χρk,−)

)
Dxd + OpT

w(χρk,+) OpT
w(χρk,−)

)
Ξ

+ γR1,0Ξ + R2,−M

= Opw(χqk)Ξ + γR1,0Ξ + R2,−M

= QkΞ + γR1,0Ξ + R2,−M.

�

This result yields, for any M ∈ N,

PϕΞ0 = Q1Q2Ξ0 = Q1Ξ1Q2Ξ0 + R4,−M(4.48)
= Q1,−Q1,+Ξ1Q2,−Q2,+Ξ0 + γR3,0Ξ0 + R4,−M

= Q1,−Q1,+Q2,−Q2,+Ξ0 + γR3,0Ξ0 + R4,−M

= Q−Q+ + γR3,0Ξ0 + R4,−M,

where Q− = Q1,−Q2,− and Q+ = Q1,+Q2,+.
Both roots of the symbol q− of the operator Q− are in the lower half complex plane in a conic

neighborhood of supp(χ0). Then, with Lemma B.1 we have the following perfect elliptic estimate,
for any M > 0,

(4.49) ‖Ξ0v‖2,0,τ̃ + | tr(Ξ0v)|1,1/2,τ̃ . ‖Q
−Ξ0v‖+ + ‖v‖2,−M,τ̃,

for v ∈ S (RN
+ ), for τ ≥ τ∗ and γ ≥ 1 chosen sufficiently large, and ε ∈ [0, 1].
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The roots of the first-order factor Qk,+, k = 1 or 2, are in upper half complex plane. Then, with
Lemma B.4, we have the following elliptic estimate, yet with a trace observation term in the r.h.s.,
for M > 0 and ` ∈ R,

‖|Ξ0v‖1,`,τ̃ ≤ C
(
‖Qk,+Ξ0v‖0,`,τ̃ + | tr(Ξ0v)|0,`+1/2,τ̃ + ‖v‖0,−M,τ̃

)
,

for v ∈ S (RN
+ ), for τ ≥ τ∗ and γ ≥ 1 chosen sufficiently large, and ε ∈ [0, 1]. Then, according to

Proposition B.7, applied with α1 = α2 = 0 and δ1 = δ2 = 0, we have the following estimates for
the operator Q+, for M > 0 and ` ∈ R,

‖Ξ0v‖2,`,τ̃ + | tr(Ξ0v)|1,`+1/2,τ̃ . ‖Q
+Ξ0v‖0,`,τ̃ + | tr(Ξ0v)|1,`+1/2,τ̃ + ‖v‖2,−M,τ̃,(4.50)

for v ∈ S (RN
+ ), and for τ ≥ τ∗ and γ ≥ 1 chosen sufficiently large.

Applying now Proposition B.8, with (4.49) and (4.50), we obtain

‖Ξ0v‖4,0,τ̃ + | tr(Ξ0v)|3,1/2,τ̃ . ‖Q
−Q+Ξ0v‖+ + | tr(Ξ0v)|1,5/2,τ̃ + ‖v‖4,−M,τ̃,

for v ∈ S (RN
+ ), and for τ ≥ τ∗ and γ ≥ 1 chosen sufficiently large, for ε ∈ [0, 1]. Finally, with

(4.48), we conclude the proof of Proposition 4.32 by choosing τ and γ large. �

4.9. Proof of the Carleman estimate of Theorem 4.17. We choose W an open neighborhood
of z0 in RN such that W b V0 (see Figure 4). Let u = w|Z , with w ∈ C∞c ((0, S 0) × Rd) and
supp(w) ⊂ W. We set v = eτϕu.

We collect the different estimations that we have obtained in Propositions 4.24, 4.25, and 4.32.
For some δ = δ0 ∈ (0, 1) to be kept fixed, for τ0 ≥ τ∗, γ0 ≥ 1, and ε0 ∈ (0, 1] we have

γ
1
2 ‖τ̃−1/2Ξ

(k)
δ,−v‖4,0,τ̃ + | tr(Ξ(k)

δ,−v)|
3,1/2,τ̃

. ‖PϕΞ
(k)
δ,−v‖+ + | tr(Ξ(k)

δ,−v)|
0,7/2,τ̃

+ ‖v‖4,−M,τ̃,(4.51)

for k = 1, 2, and

γ‖τ̃−1Ξδ,0v‖4,0,τ̃ + | tr(Ξδ,0v)|3,1/2,τ̃ . ‖PϕΞδ,0v‖+ + | tr(Ξδ,0v)|1,5/2,τ̃ + ‖v‖4,−M,τ̃,(4.52)

and

‖ΞFv‖4,0,τ̃ + | tr(ΞFv)|3,1/2,τ̃ . ‖PϕΞFv‖+ + | tr(ΞFv)|1,5/2,τ̃ + ‖v‖4,−M,τ̃,(4.53)

for τ ≥ τ0, γ ≥ γ0, ε ∈ [0, ε0].
We then pick α > 0 meant to be chosen small in what follows, and we shall consider α

(
(4.51) +

(4.53)
)

+ (4.52). We will choose τ sufficiently large so that ατ1/2 ≥ 1.
We first note that we have the following lemma whose proof is provided below.

Lemma 4.34. There exists C > 0 such that

αγ
1
2

∑
k=1,2
‖τ̃−1/2Ξ

(k)
δ,−v‖4,0,τ̃ + γ‖τ̃−1Ξδ,0v‖4,0,τ̃ + α‖ΞFv‖4,0,τ̃ ≥ Cγ‖τ̃−1v‖4,0,τ̃,

for τ chosen sufficiently large.

With a similar, yet simpler, proof, we have the following lemma.

Lemma 4.35. We have

α
∑

k=1,2
| tr(Ξ(k)

δ,−v)|
3,1/2,τ̃

+ | tr(Ξδ,0v)|3,1/2,τ̃ + α| tr(ΞFv)|3,1/2,τ̃ & α| tr(v)|3,1/2,τ̃,

for τ chosen sufficiently large.
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With these two lemmata we obtain

(4.54) γ‖τ̃−1v‖4,0,τ̃ + α
(
‖ΞFv‖4,0,τ̃ + γ

1
2

∑
k=1,2
‖τ̃−1/2Ξ

(k)
δ,−v‖4,0,τ̃

)
+ α| tr(v)|3,1/2,τ̃ . α

(
r.h.s.(4.51) + r.h.s.(4.53)

)
+ r.h.s.(4.52).

The next lemma is crucial in the computation of the commutator [Pϕ,Ξδ,0]. A proof is given
below.

Lemma 4.36. We have [Pϕ,Ξδ,0] = Op(g)+Op(h)+γ2R3,−1, where g, h ∈ γΨ
3,0
τ̃ and R3,−1 ∈ Ψ

3,−1
τ̃ ,

with

• g(%) = 0 for z in a neighborhood of V0

• h(%) =
∑3

j=0 h j(%′)ξ
j
d, h j ∈ γΨ(λ3− j

T,τ̃ , gT), homogeneous of degree 3 − j, and χ(1)
δ,− + χ(2)

δ,− +

χF ≥ 1 in a conic neighborhood of supp(h j) in the variables (ζ, τ, γ, ε), for z ∈ V0,
j = 0, . . . , 3.

We have [Pϕ,Ξ] ∈ γR3,0, for Ξ = Ξ
(1)
δ,−, Ξ

(2)
δ,− or ΞF . Lemma 4.36 gives, for any M ∈ N,

‖Op(g)v‖+ . ‖v‖3,−M,τ̃, and we obtain

α
∑

k=1,2
‖PϕΞ

(k)
δ,−v‖+ + ‖PϕΞδ,0v‖+ + α‖PϕΞFv‖+ . ‖Pϕv‖+ + ‖Op(h)v‖+ + αγ‖v‖3,0,τ̃ + γ2‖v‖3,−1,τ̃.

From (4.54) and (4.51)–(4.53) we thus obtain, for α chosen sufficiently small (and kept fixed for
the remainder of the proof) and τ chosen sufficiently large

(4.55) γ‖τ̃−1v‖4,0,τ̃ + ‖ΞFv‖4,0,τ̃ + γ
1
2

∑
k=1,2
‖τ̃−1/2Ξ

(k)
δ,−v‖4,0,τ̃

+ | tr(v)|3,1/2,τ̃ . ‖Pϕv‖+ + | tr(v)|1,5/2,τ̃ + ‖Op(h)v‖+.

We set χ = χ(1)
δ,− + χ(2)

δ,− + χF . We have the following lemma whose proof is given below.

Lemma 4.37. Let W be an open set of RN with W b V0. There exist C > 0 and τ1 ≥ τ∗ such that
‖OpT(h j)w‖+ ≤ Cγ

(
‖OpT(χ)w‖0,3− j,τ̃ + γ(1 + εγ)‖w‖0,2− j,τ̃

)
, for w ∈ S (RN

+ ), supp(w) ⊂ W and
τ ≥ τ1.

Thus, we obtain

‖Op(h)v‖+ ≤
3∑

j=0
‖Op(h j)D

j
xd v‖+ .

3∑
j=0
γ‖OpT(χ)D j

xd v‖0,3− j,τ̃ + γ(1 + εγ)‖v‖3,−1,τ̃.

As [OpT(χ),D j
xd ] ∈ γΨ

j−1,0
τ̃ we obtain

‖Op(h)v‖+ . γ‖OpT(χ)v‖3,0,τ̃ + γ2‖v‖3,−1,τ̃

. γ
( ∑

k=1,2
‖Ξ

(k)
δ,−v‖3,0,τ̃ + ‖ΞFv‖3,0,τ̃

)
+ γ2‖v‖3,−1,τ̃.

Using this estimate in (4.55), for τ chosen sufficiently large, we thus obtain

γ‖τ̃−1v‖4,0,τ̃ + ‖ΞFv‖4,0,τ̃ + γ
1
2

∑
k=1,2
‖τ̃−1/2Ξ

(k)
δ,−v‖4,0,τ̃ + | tr(v)|3,1/2,τ̃ . ‖Pϕv‖+ + | tr(v)|1,5/2,τ̃.

The end of the proof of Theorem 4.17 is then classical. �



42 JÉRÔME LE ROUSSEAU AND LUC ROBBIANO

Proof of Lemma 4.34. With Lemma 4.14 we may write

X = αγ
1
2

∑
k=1,2
‖τ̃−1/2Ξ

(k)
δ,−v‖4,0,τ̃ + γ‖τ̃−1Ξδ,0v‖4,0,τ̃ + α‖ΞFv‖4,0,τ̃

&
4∑

j=0

(
αγ

1
2

∑
k=1,2
‖τ̃−1/2Λ

4− j
T,τ̃ D j

xd Ξ
(k)
δ,−v‖+ + γ‖τ̃−1Λ

4− j
T,τ̃ D j

xd Ξδ,0v‖+ + α‖Λ
4− j
T,τ̃ D j

xd ΞFv‖+
)

yielding

X & γ
4∑

j=0

( ∑
k=1,2
‖τ̃−1Λ

4− j
T,τ̃ D j

xd Ξ
(k)
δ,−v‖+ + ‖τ̃−1Λ

4− j
T,τ̃ D j

xd Ξδ,0v‖+ + ‖τ̃−1Λ
4− j
T,τ̃ D j

xd ΞFv‖+
)
,

as α ≥ αγ
1
2 τ̃−1/2 ≥ γτ̃−1 using, on the one hand, that (τϕ)−1/2 = γ

1
2 τ̃−1/2 ≤ 1 since τ ≥ τ∗ ≥ 1

and ϕ ≥ 1, and, on the other hand, that ατ1/2 ≥ 1 implies ατ̃1/2 = α(τγϕ)1/2 ≥ γ1/2 since ϕ ≥ 1.
We then find, with h = χ(1)

δ,− + χ(2)
δ,− + χδ,0 + χF ∈ S (1, gT), X & γ

∑4
j=0 ‖τ̃

−1Λ
4− j
T,τ̃ D j

xd OpT(h)v‖+. As

[D j
xd ,OpT(h)] ∈ γΨ

j−1,0
τ̃ , we obtain

X + γ2‖τ̃−1v‖3,0,τ̃ & γ
4∑

j=0
‖τ̃−1Λ

4− j
T,τ̃ OpT(h)D j

xd v‖+.

By the (local) Gårding inequality of Proposition 4.15, as h(%′) ≥ 1 in a neighborhood of V0 ∩ R
N
+

that contains supp(v), we obtain

X + γ2‖τ̃−1v‖3,0,τ̃ & γ
4∑

j=0
‖τ̃−1D j

xd v‖0,4− j,τ̃ � γ‖τ̃
−1v‖4,0,τ̃,

We conclude by taking τ sufficiently large with the usual semi-classical inequality (4.17). �

Proof of Lemma 4.36. Up to γ2S 3,−1
τ̃ , the principal symbol of [Pϕ,Ξδ,0] is given by −i{pϕ, χδ,0},

and thus involves derivatives of χδ,0. We recall the form of χδ,0, as introduced in Section 4.4,

χδ,0(%′) = χV0(z) (1 − χ1/4,F(%′)) χ0(µ1(%′)/δ) χ0(µ2(%′)/δ).

Computing −i{pϕ, χδ,0}, we obtain the following list of terms.
Terms involving derivatives of χV0(z): Those terms contribute to the symbol g that van-

ishes in a neighborhood of V0.
Terms involving derivatives of χ1/4,F(%′): Those terms are supported in {θ1λT,τ̃/8 ≤ τ̃ ≤
θ1λT,τ̃/4}, using the notation of Section 4.4. As χ1,F = 1 for τ̃ ≤ θ1λT,τ̃/2, we see that
χF(%′) = χV0(z)χ1,F(%′) = 1 in a neighborhood of the support of those terms for z ∈ V0.
Those terms contribute to the symbol h.

Terms involving derivatives of χ0(µk(%′)/δ), k = 1, 2: From the definition of χ0 we see
that those terms are supported in {−3 ≤ µk(%′)/δ ≤ −2}. We have χ−(µk(%′)/δ) = 1
in a conic neighborhood of this set. As χ1,F(%′) + (1 − χ1/4,F(%′)) ≥ 1 we find that
χF(%′) +χ(k)

δ,−(%′) ≥ 1 in the support of those terms if z ∈ V0. Those terms contribute to the
symbol h. �

Proof of Lemma 4.37. Let χW(z) ∈ C∞c (V0) be such that χW ≡ 1 in a neighborhood of W. The
microlocal version of the Gårding inequality of Proposition 4.16 gives, by Lemma 4.36,

Re(OpT(χ) OpT(χWh j)w,OpT(χWh j)w)+ + ‖w‖20,−M,τ̃ & ‖OpT(χWh j)w‖2+.

Then, with the Young inequality, we obtain

‖OpT(χ) OpT(χWh j)w‖+ + ‖w‖0,−M,τ̃,& ‖OpT(χWh j)w‖+.
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Since OpT(χWh j)w = OpT(h j)w + R0,−Mw, with R0,−M ∈ Ψ
0,−M
τ̃ , for any M ∈ N, we obtain

‖OpT(χ) OpT(h j)w‖+ + ‖w‖0,−M,τ̃,& ‖OpT(h j)w‖+.

As [OpT(χ),OpT(h j)] ∈ γ(1 + εγ)Ψ(λ2− j
T,τ̃ , gT), we obtain the sought estimate. �

5. Spectral inequality and application

We start this section by stating and proving an interpolation type inequality. Next, we prove the
spectral inequality of Theorem 1.3. Finally, as an application, we state a null-controllability result
that follows from it.

5.1. An interpolation inequality. Let S 0 > 0 and α ∈ (0, S 0/2). We recall the notation Z =

(0, S 0) × Ω and we introduce Y = (α, S 0 − α) × Ω for some α > 0. As is done in other sections,
we denote by z = (s, x) ∈ Z, with s ∈ (0, S 0) and x ∈ Ω. We recall that P denotes the augmented
elliptic operator P := D4

s + B, where B = ∆2
x.

Theorem 5.1 (Interpolation inequality). Let O be a nonempty open subset of Ω. There exist C > 0
and δ ∈ (0, 1) such that for u ∈ H4(Z) that satisfies

u(s, x)|x∈∂Ω = 0, ∂νu(s, x)|x∈∂Ω = 0, s ∈ (0, S 0),

we have

‖u‖H3(Y) ≤ C‖u‖1−δH3(Z)

(
‖Pu‖L2(Z) +

∑
0≤ j≤3

‖∂
j
su|s=0‖H3− j(O)

)δ
.(5.1)

First, we provide a local interpolation estimate in a neighborhood of a point of {0} × O .

Lemma 5.2 (local interpolation near s = 0). Let x0 ∈ O , there exist V a neighborhood of (0, x0)
in R × Rd, C > 0, and δ ∈ (0, 1) such that for u ∈ H4(Z) we have

‖u‖H3(V∩Z) ≤ C‖u‖1−δH3(Z)

(
‖Pu‖L2(Z) +

∑
0≤ j≤3

‖∂
j
su|s=0‖H3− j(O)

)δ
.(5.2)

Second, we provide an interpolation estimate with an interior observation, that is, we have an
estimate away from the boundary 0 ×Ω.

Proposition 5.3 (Interpolation with an interior observation). Let Z be a nonempty open set in Z.
There exist C > 0 and δ ∈ (0, 1) such that for u ∈ H4(Z) that satisfies

u(s, x)|x∈∂Ω = 0, ∂νu(s, x)|x∈∂Ω = 0, s ∈ (0, S 0),

we have

‖u‖H3(Y) ≤ C‖u‖1−δH3(Z)

(
‖Pu‖L2(Z) + ‖u‖L2(Z )

)δ
.(5.3)

With these two local interpolation results, whose proofs are given below, we can then write a
proof of Theorem 5.1.

Proof of Theorem 5.1. Introducing V as given in Lemma 5.2, we let Z be an open subset of V∩Z.
With Lemma 5.2 we then have

‖Pu‖L2(Z) + ‖u‖H3(Z ) ≤ C‖u‖1−δH3(Z)

(
‖Pu‖L2(Z) +

∑
0≤ j≤3

‖∂
j
su|s=0‖H3− j(O)

)δ
,(5.4)

as we can assume that ‖Pu‖L2(Z) ≤ ‖u‖H3(Z) otherwise estimate (5.1) is trivial. Applying Proposi-
tion 5.3 we have, for some δ′ ∈ (0, 1),

‖u‖H3(Y) ≤ C‖u‖1−δ
′

H3(Z)

(
‖Pu‖L2(Z) + ‖u‖L2(Z )

)δ′
.

This, with (5.4), gives (5.1) with δ′δ in place of δ. �



44 JÉRÔME LE ROUSSEAU AND LUC ROBBIANO

For the proofs of Lemma 5.2 and Proposition 5.3. We shall need the following lemma whose
proof can be found in [Rob95].

Lemma 5.4. Let A ≥ 0, B ≥ 0, and C ≥ 0. We assume that A ≤ B and that there exist τ0 > 0,
µ > 0 and ν > 0 such that

A ≤ e−ντB + eµτC, for τ ≥ τ0.(5.5)

Then A ≤ KB1−δCδ, where K = max(2, eµτ0) and δ = ν/(ν + µ) ∈ (0, 1).

Proof of Lemma 5.2. Let r > 0 and z0 = (−r, x0), where r is chosen sufficiently small to have
B ∩ {s = 0} ⊂ O with B = B(z0, 4r). Let ψ = −|z − z0|

2, with z = (s, x). We have ∂sψ(z) ≤ −C < 0
in B. We set ϕ(z) = eγψ(z). Let χ ∈ C∞0 (Rd+1) be such that χ(z) = 1 if |z− z0| ≤ 7r/2 and χ(z) = 0 if
|z − z0| ≥ 15r/4. We apply the local Carleman estimate of Corollary 3.2 to v = χu, and we obtain,
for γ ≥ 1 chosen sufficiently large (to be kept fixed in what follows),∑

|α|≤3
τ7/2−|α|‖eτϕDα

z v‖L2(B∩Z) . ‖e
τϕPv‖L2(Z) + τ1/2

3∑
j=0
| tr(eτϕD j

sv|s=0+)|0,3− j,τ.(5.6)

Note that if γ is fixed we have τ � τ̃. In {0} × O , we have ϕ ≤ e−γr2
then

τ1/2
3∑

j=0
| tr(eτϕD j

sv|s=0+)|0,3− j,τ . eC3τ
3∑

j=0
|D j

su|s=0+ |H3− j(O), C3 = (1 + a)e−γr2
,(5.7)

for any a > 0. We have Pv = χPu + [P, χ]u. The term [P, χ] is a differential operator of order 3
and it is supported in {z ∈ Rd+1; 7r/2 ≤ |z − z0| ≤ 15r/4}. On this set, we have ϕ ≤ e−γ(7r/2)2

. We
thus find

‖eτϕ[P, χ]u‖L2(Z) . eC1τ‖u‖H3(Z), C1 = e−γ(7r/2)2
.(5.8)

In Z, we have ϕ ≤ e−γr2
< C3; this implies

‖eτϕχPu‖L2(Z) . eC3τ‖Pu‖L2(Z).(5.9)

In {z ∈ Rd+1; |z − z0| ≤ 3r}, χ ≡ 1 thus u = v, and on this set ϕ ≥ e−γ(3r)2
then we have

eC2τ‖u‖H3(B(z0,3r)∩Z) .
∑
|α|≤3

τ7/2−|α|‖eτϕD|α|z v‖L2(B∩Z), C2 = e−γ(3r)2
.(5.10)

Remark that C1 < C2 < C3, for a > 0 chosen sufficiently small. Following (5.6)–(5.10) we obtain

‖u‖H3(B(z0,3r)∩Z) . e(C3−C2)τ
(
‖Pu‖L2(Z) +

3∑
j=0
|D j

su|s=0+ |H3− j(O)

)
+ e−(C2−C1)τ‖u‖H3(Z).

Applying Lemma 5.4, we obtain the result with V = B(z0, 3r). �

We prove Proposition 5.3 by means of two lemmata. For α′ ∈ (0, α) and a ∈ (0, 1), we set

(5.11) Yα′,a = (α′, S 0 − α
′) ×Ωa,

where Ωa = {x ∈ Ω, dist(x, ∂Ω) > a > 0}.

Lemma 5.5. Let Z be a nonempty open set in Z. Let α′ ∈ (0, α) and a ∈ (0, 1). There exist C > 0
and δ ∈ (0, 1) such that for u ∈ H4(Z),

‖u‖H3(Yα′ ,a) ≤ C‖u‖1−δH3(Z)

(
‖Pu‖L2(Z) + ‖u‖L2(Z )

)δ
.(5.12)
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Lemma 5.6. Let (s0, x0) ∈ (0, S 0) × ∂Ω. There exist δ ∈ (0, 1), C > 0, V0 a neighborhood of
(s0, x0), α′ ∈ (0, α), and a ∈ (0, 1) such that we have

‖u‖H3(V0∩Z) ≤ C‖u‖1−δH3(Z)

(
‖Pu‖L2(Z) + ‖u‖H1(Yα′ ,a)

)δ
,(5.13)

for u ∈ H4(Z) satisfying

u(s, x)|x∈∂Ω = 0, ∂νu(s, x)|x∈∂Ω = 0, s ∈ (0, S 0).

Proof of Proposition 5.3. We can assume that ‖Pu‖L2(Z) ≤ ‖u‖H3(Z), otherwise inequality (5.3) is
obvious. In particular, if (5.3) holds for a value δ = δ0 > 0 the estimate also holds for all δ ∈ [0, δ0]
possibly with a larger constant C = Cδ. The same observation can be made for the estimations
(5.12) and (5.13).

With a compactness argument we can find a finite number of open sets V j, j ∈ J, where esti-
mate (5.13) holds for some values δ = δ j ∈ (0, 1), α′j ∈ (0, α), and a j ∈ (0, 1), and such that

(α, S 0 − α) × ∂Ω ⊂ ∪ j∈JV j.

For a ∈ (0, 1) and α′ ∈ (0, α), set Ỹα′,a = (α′, S 0 − α
′) × Ω̃a, where Ω̃a = {x ∈ Ω, dist(x, ∂Ω) < a}.

There exists a1 ∈ (0, 1) and α1 ∈ (0, α) such that Ỹα1,a1 ⊂ Z ∩ (∪ j∈JV j). Applying the local
interpolation estimate (5.13) for each V j, using now

δ1 = min
j∈J

δ j ∈ (0, 1), α2 = min
j∈J

α′j ∈ (0, α), and a2 = min
j∈J

a j ∈ (0, 1)

(note that the set Yα′,a increases as α′ and a decrease) we obtain

(5.14) ‖u‖H3(Ỹα1 ,a1 ) . ‖u‖
1−δ1
H3(Z)

(
‖Pu‖L2(Z) + ‖u‖H3(Yα2 ,a2 )

)δ1
.

Let Z be a nonempty open set in Z. By Lemma 5.5 we obtain, for some δ2 ∈ (0, 1),

(5.15) ‖Pu‖L2(Z) + ‖u‖H3(Yα2 ,a2 ) . ‖u‖
1−δ2
H3(Z)

(
‖Pu‖L2(Z) + ‖u‖L2(Z )

)δ2
,

as the estimate of ‖Pu‖L2(Z) is clear here. Then, estimates (5.14) and (5.15) give

‖u‖H3(Ỹα1 ,a1 ) . ‖u‖
1−δ1δ2
H3(Z)

(
‖Pu‖L2(Z) + ‖u‖L2(Z )

)δ1δ2
.(5.16)

Taking a ∈ (0, a1) and α′ ∈ (0, α), we have Y ⊂ Yα′,a ∪ Ỹα1,a1 , and, by (5.12) in Lemma 5.5 and
(5.16), we obtain (5.3). �

Proof of Lemma 5.5. By a compactness argument, it suffices to prove (5.12) with B(z,R) in place
of Yα′,a where z ∈ Yα′,a and 0 < R ≤ min(α′, a)/2, implying B(z,R) ⊂ Z. Let z(0) be in Z
and r0 > 0 such that B(z(0), r0) b Z . As Yα′,a is connected, there exists a path Γ ⊂ Yα′,a from
z(0) = Γ(0) to z = Γ(1). Set r1 = dist(Γ, ∂Z). We have r1 > 0 by compactness.

Setting now r = inf(R, r0, r1/4), we define a sequence (z( j)) j, for j ≥ 0, by z( j) = Γ(t j) where
t0 = 0 and

t j =

inf A j if A j , ∅,

1 if A j = ∅,
A j = {σ ∈ (t j−1, 1]; Γ(σ) < B(z j−1, r)}.

The sequence (z( j)) j is finite by a compactness argument. The construction of the sequence is
illustrated in Figure 5.
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3r

z(1)

z( j−1)

r

z( j)

z( j+1)

z(N−2)
z(N−1)

Z∂Z

Γ

r1 = dist(Γ, ∂Z) ≥ 4r

z(2)

z(N)

= y

z(0)

r

Figure 5. Construction of the sequence (z( j)) j, j ∈ J, along the path Γ.

Let (z(0), · · · , z(N)) be such a sequence with z(N) = z. Note that we have B(z( j+1), r) ⊂ B(z( j), 3r) ⊂
Z, for j = 0, · · · ,N−1, because of the choice we made for r above. Now we claim that there exists
C > 0 and δ ∈ (0, 1) such that

‖u‖H3(B(z( j+1),r)) ≤ ‖u‖H3(B(z( j),3r)) ≤ C‖u‖1−δH3(Z)

(
‖Pu‖L2(Z) + ‖u‖H3(B(z( j),r))

)δ
,(5.17)

for j = 0, . . . ,N − 1. This claim is proven below.

We assume that ‖Pu‖L2(Z) ≤ ‖u‖H3(Z), since otherwise the estimate we wish to prove is obvious.
We then have

‖Pu‖L2(Z) + ‖u‖H3(B(z( j+1),r)) . ‖u‖
1−δ
H3(Z)

(
‖Pu‖L2(Z) + ‖u‖H3(B(z( j),r))

)δ
.

By induction on j, we find

‖Pu‖L2(Z) + ‖u‖H3(B(z,r)) . ‖u‖
1−µ
H3(Z)

(
‖Pu‖L2(Z) + ‖u‖H3(B(z(0),r))

)µ
,(5.18)

where µ = δN .

As P is elliptic, and B(z(0), r) b Z we have ‖u‖H3(B(z(0),r)) . ‖Pu‖L2(Z) + ‖u‖L2(Z ). This estimate
and (5.18) give (5.12).

To prove estimation (5.17) we apply the local Carleman estimate of Proposition 2.7. We set
ψ(z) = −|z − z( j)|2 and ϕ(z) = eγψ(z) and χ ∈ C∞c (B(z( j), 4r)) to be such that

χ(z) =

1 if 3r/4 < |z − z( j)| < 7r/2,
0 if |z − z( j)| < 5r/8 or 15r/4 < |z − z( j)|.
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The function v = χu is supported in the open set B(z( j), 4r) \ B(z( j), r/2) ⊂ Z where dψ does not
vanish. For γ ≥ 1 chosen sufficiently large, by Proposition 2.7, we have∑

|α|≤4
τ3−|α|‖eτϕDα

z v‖L2(Z) . ‖e
τϕPv‖L2(Z).(5.19)

We have Pv = χPu + [P, χ]u and [P, χ] is a differential operator of order 3 supported in A1 ∪ A2
with

A1 = {z; 5r/8 ≤ |z − z( j)| ≤ 3r/4}, A2 = {z; 7r/2 ≤ |z − z( j)| ≤ 15r/4}.
We write

‖eτϕPv‖L2(Z) ≤ ‖e
τϕPu‖L2(B(z( j),4r)) + ‖eτϕ[P, χ]u‖L2(A1∪A2).

Since ϕ decreases as |z − z( j)| increases, we find

‖eτϕPv‖L2(Z) . eτC3‖Pu‖L2(Z) + eτC3‖u‖H3(B(z( j),r)) + eτC1‖u‖H3(Z),(5.20)

where C1 = e−γ(7r/2)2
and C3 = e−γ(5r/8)2

.
As we have χ ≡ 1 on B(z( j), 3r) \ B(z( j), r) we have

eτC2‖u‖H3(B(z( j),3r)\B(z( j),r)) ≤
∑
|α|≤4

τ3−|α|‖eτϕDα
z v‖L2(Z),(5.21)

where C2 = e−γ(3r)2
. Remark that C1 < C2 < C3.

Inequalities (5.19), (5.20), and (5.21) give

‖u‖H3(B(z( j),3r)) . eτ(C3−C2)(‖Pu‖L2(Z) + ‖u‖H3(B(z( j),r))) + e−τ(C2−C1)‖u‖H3(Z).

as the estimate on B(z( j), r) is clear with such a r.h.s. if τ ≥ τ∗ ≥ 1. We can optimize this last
estimate applying Lemma 5.4, which yields (5.17), and concludes the proof of Lemma 5.5. �

Proof of Lemma 5.6. The proof follows the same ideas as that of estimate (5.17) applying the
boundary-type local Carleman estimate of Theorem 4.17. We use local coordinates in a bounded
neighborhood V in RN of the point z0 = (s0, x0) of (0, S 0) × ∂Ω as introduced in Section 4.2, such
that this part of the boundary is locally given by {zN = xd = 0} and Z is locally given by {zN > 0};
coordinates can be chosen to have moreover z0 = (z′0, 0), with z′0 = 0. We set z(1) = (0, 2r) where
r > 0.

We let ψ ∈ C∞(RN) be such that

ψ(z) =

12r2 − |z − z(1)|2 if |z − z(1)| ≤ 3r,
r2 if 4r ≤ |z − z(1)|.

We have ψ(z) ≥ r2 > 0, ‖ψ(k)‖L∞ < ∞, k ∈ N, and

∂νψ(z) = −∂zNψ(z) = 2(zN − 2r) ≤ −C < 0,

for |z − z(1)| ≤ 3r and zN = 0. Upon reducing the open neighborhood V , the weight function ψ
fulfills the requirements listed in (4.2) and (4.20).

We set ϕ(z) = eγψε(z), where ψε(z) = ψ(εz′, zN). According to Theorem 4.17, there exist a neigh-
borhood W b V in RN of z0, τ0 ≥ τ∗, γ0 ≥ 1, and ε0 ∈ (0, 1] so that the Carleman estimate (4.21)
holds for τ ≥ τ0, γ ≥ γ0, ε ∈ (0, ε0] and smooth functions supported in W. We set γ = γ0 and
ε = ε0. The geometry of the level sets of the weight function is illustrated in Figure 6.

In connection with the weight function ψε, we introduce the following anisotropic norm in RN ,
that depends on the (now fixed) parameter ε,

|z − y|ε =
(
ε2|z′ − y′|2 + (zN − yN)2

)1/2
.

Note that with γ and ε fixed we have τ � τ̃.
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z(1)

zN = xd

V

W

(0
,S

0)
×
∂
Ω

ψε = Cst

z′ = (s, x′) ∈ RN−1

2r
z0

Figure 6. Geometry near the boundary for the application of the local Car-
leman estimate of Theorem 4.17.

We denote by Bε(z, r) the ball of radius r centered at z associated with this norm. We have

ψε(z) =

12r2 − |z − z(1)|
2
ε if |z − z(1)|ε ≤ 3r,

r2 if 4r ≤ |z − z(1)|ε.

Let χ0 ∈ C∞c (R) be such that

χ0(zN) =

1 if |zN | < r0,

0 if 2r0 < |zN |,

where r0 < r/4. Let also χ1 ∈ C∞c (Bε(z(1), 3r)) be such that

χ1(z) =

1 |z − z(1)|ε < r1,

0 if r′1 < |z − z(1)|ε,

where r1, r′1 are such that 2r < r1 < r′1 < 3r. Observe that if we choose the values of r′1 − 2r > 0
and r0 > 0 sufficiently small, then the open set {z ∈ Z; zN ∈ (0, 2r0)} ∩ {z ∈ Z; |z − z(1)|ε < r′1} is
contained in W. We now set χ(z) = χ1(z)χ0(zN). Figure 7 shows, near z0, the region where χ ≡ 1
and where it varies, that is supp(χ′) ∩ Z ⊂ A1 ∪ A2 with

A1 = {z ∈ Z; zN ∈ (r0, 2r0) and |z − z(1)|ε < r′1},

A2 = {z ∈ Z; zN ∈ (0, 2r0) and r1 < |z − z(1)|ε < r′1}.
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zN = xd

W

r/
4

r/
2

(s, x′) ∈ RN−1

r 0 2r
0

z0

|z − z(1)|ε = 2r

|z − z(1)|ε = r1

|z − z(1)|ε = r′1

A1

A2

(0
,S

0)
×
∂
Ω

z(1)

Figure 7. Geometry near the boundary for the derivation of the local in-
terpolation inequality. The light color region shows where χ ≡ 1; the dark
color region shows where χ varies. Note that the relative scale of the two
axes has been modified, if compared to Figure 6, for a better display of the
regions A1 and A2 near z0.

The Carleman estimate (4.17) applies to v = χu, by a density argument. As u|zN=0+ = 0 and
∂νu|zN=0+ = 0 we obtain (the values of γ and ε were fixed above)∑

|α|≤3
τ3−|α|‖eτϕDα

s,xv‖L2(W∩Z) . ‖e
τϕPv‖L2(W∩Z), τ ≥ τ0.(5.22)

We have Pv = χPu + [P, χ]u, where [P, χ] is a differential operator of order 3 that is supported
in A1 ∪ A2. On A1, we have ϕ ≤ eγ(12r2−(2r−2r0)2). On A2 we have ϕ ≤ eγ(12r2−r2

1). We thus obtain

‖eτϕPv‖L2(W∩Z) . eτC3
(
‖Pu‖L2(Z) + ‖u‖H3(Yα′ ,a)

)
+ eτC1‖u‖H3(Z),(5.23)

where C1 = eγ(12r2−r2
1), C3 = eγ(12r2−(2r−2r0)2) and 0 < a < r0 and some α′ ∈ (0, α) (recalling the

definition of the set Yα′,a in (5.11)).
We restrict the l.h.s. of (5.22) to V0 = {z ∈ Z; zN ∈ (0, r0)} ∩ {z ∈ Z; |z − z(1)| < r2}, with

r2 = r + r1/2, whose closure is a neighborhood of z0 in Z. Note that 2r < r2 < r1. As on this set
we have ϕ ≥ eγ(12r2−r2

2) and u ≡ v, we obtain

eτC2‖u‖H3(V0) ≤
∑
|α|≤3

τ3−|α|‖eτϕDα
s,xv‖L2(W∩Z),(5.24)
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where C2 = eγ(12r2−(r+r1/2)2). Then (5.22), (5.23) and (5.24) give

‖u‖H3(V0) . eτ(C3−C2)(‖Pu‖L2(Z) + ‖u‖H3(Yα′ ,a)
)

+ e−τ(C2−C1)‖u‖H3(Z).(5.25)

Observe that we have C1 < C2 < C3. By Lemma 5.4, we obtain the sought local interpolation
inequality at the boundary. �

5.2. Spectral inequality. Let φ j and µ j be eigenfunctions and associated eigenvalues of the bi-
Laplace operator B with the clamped boundary conditions, that form a Hilbert basis for L2(Ω),
viz.,

Bφ j = µ jφ j, φ j |∂Ω
= ∂νφ j |∂Ω

= 0, (φ j, φk)L2(Ω) = δ jk,

with 0 < µ0 ≤ µ1 ≤ · · · ≤ µ j ≤ · · · . We now prove the spectral inequality of Theorem 1.3, namely,
for some C > 0,

‖u‖L2(Ω) ≤ CeCµ1/4
‖u‖L2(O), µ > 0, u ∈ Span{φ j; µ j ≤ µ}.(5.26)

Proof. We let µ > 0 and we pick α0, . . . , αn ∈ C with n ∈ N such that µn ≤ µ < µn+1. We set

u(x) =
∑
µ j≤µ

α jφ j(x), w(s, x) =
∑
µ j≤µ

α jµ
−3/4
j f (µ1/4

j s)φ j(x),

where f (s) = γ sin(γs) cosh(γs) − γ cos(γs) sinh(γs) where here γ =
√

2/2. As D4
s f = − f , we

have Pv = 0, with P = D4
s + B. We also have

f (0) = f ′(0) = f (2)(0) = 0, f (3)(0) = 1,

and

f (s) = g(γs), g(s) =
1
2

(e−s cos(s − π/4) − es cos(s + π/4)).

Since w(s, x)|x∈∂Ω = ∂νw(s, x)|x∈∂Ω = 0, the interpolation inequality of Theorem 5.1 yields

‖w‖H3(Y) ≤ C‖w‖1−δH3(Z)‖∂
3
sw|s=0‖

δ
L2(O).

Observe that we have ∂3
sw|s=0 = u and ‖w‖H3(Y) & ‖w‖L2(Y) with

‖w‖2L2(Y) =
∑
µ j≤µ

µ−3/2
j |α j|

2
S 0−α

∫
α

f (µ1/4
j s)2ds =

∑
µ j≤µ
|α j|

2γ−1µ−7/4
j

(S 0−α)γµ1/4
j

∫
αγµ1/4

j

g(s)2ds

& µ−7/4 ∑
µ j≤µ
|α j|

2 = µ−7/4‖u‖2L2(Ω),

using the following lemma, whose proof is given below.

Lemma 5.7. Let 0 < a < b and t0 > 0. There exists C0 such that ∫ bt
at g(s)2ds ≥ C0 for t ≥ t0.

We thus obtain

‖u‖L2(Ω) . µ
7/8‖w‖1−δH3(Z)‖u‖

δ
L2(O).(5.27)

Next, we estimate ‖w‖H3(Z), with the following lemma, which, from (5.27), allows one to conclude
the proof of Theorem 1.3. �

Lemma 5.8. There exists C > 0 such that ‖w‖H3(Z) ≤ CeCµ1/4
‖u‖L2(Ω).
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Proof. We have

‖w‖2H3(Z) �
3∑

k=0

S 0

∫
0
‖∂k

sw(s, .)‖2H3−k(Ω)ds .
3∑

k=0

S 0

∫
0
‖∂k

sw(s, .)‖2H4(Ω)ds,

where Hs(Ω) denotes the classical Sobolev spaces in Ω. Recalling from (1.15) that, if v|∂Ω =

∂νv|∂Ω = 0, we have ‖v‖H4(Ω) . ‖∆
2v‖L2(Ω), we find

‖∂k
sw(s, .)‖2H4(Ω) . ‖∆

2 ∑
µ j≤µ

α jµ
(k−3)/4
j f (k)(µ1/4

j s)φ j‖
2
L2(Ω) = ‖

∑
µ j≤µ

α jµ
(k+1)/4
j f (k)(µ1/4

j s)φ j‖
2
L2(Ω)

=
∑
µ j≤µ
|α j|

2µ(k+1)/2
j ( f (k)(µ1/4

j s))2 . µ2eS 0µ
1/4 ∑

µ j≤µ
|α j|

2.

Integrating this estimate over (0, S 0) and summing over k yields the result. �

Proof of Lemma 5.7. For s ∈ [−π/2 + 2kπ, 2kπ], k ∈ N∗, we have cos(s + π/4) ≥
√

2/2. For t1
chosen sufficiently large, if t ≥ t1, there exists k ∈ N such that [−π/2 + 2kπ, 2kπ] ⊂ [at, bt] and
|g(s)| = 1

2 |e
−s cos(s − π/4) − es cos(s + π/4)| ≥ 1. Then, ∫ bt

at g(s)2ds ≥ π/2. Finally, there exists
C > 0 such that ∫ bt

at g(s)2ds ≥ C for t ∈ [t0, t1], since the function g(s)2 is almost everywhere
positive. �

5.3. A null-controllability result for a higher-order parabolic equation. Let T > 0. We con-
sider here the controlled evolution equation on (0,T ) × Ω with the clamped boundary conditions
(ν denotes the outer unit normal to ∂Ω):

∂ty + ∆2y = χO f , y|(0,T )×∂Ω = 0, ∂νy|(0,T )×∂Ω = 0, y|t=0 = y0 ∈ L2(Ω),(5.28)

where O is an open subset of Ω and χO ∈ L∞(Ω) is such that χO > 0 on O . The function
f ∈ L2((0,T ) × Ω) is the control function here. Well-posedness for this parabolic system is
recalled in Corollary 1.10. One may wonder if one can choose f to drive the solution from its
initial condition y0 to zero at final time T . Thanks to the spectral inequality of Theorem 1.3 one
can answer positively to this null-controllability question.

Theorem 5.9 (Null-controllability). There exists C > 0 such that for any y0 ∈ L2(Ω), there exists
f ∈ L2((0,T )×Ω) such that the solution to (5.28) vanishes at T = 0 and moreover ‖ f ‖L2((0,T )×Ω) ≤

C‖y0‖L2(Ω).

The proof can be adapted in a straight forward manner from the proof scheme of [LR95] de-
veloped for the heat equation and that is presented in a fairly synthetic way in the survey article
[LL12].

6. Resolvent estimate and application

Using one of the interpolation inequalities proven in Section 5 (Proposition 5.3), we prove the
resolvent estimate of Theorem 1.4. Finally, as an application, we state a stabilization result that
follows from it for the plate equation.

6.1. Resolvent estimate. Let U ∈ D(B) = (H4(Ω) ∩ H2
0(Ω)) × H2

0(Ω) and F ∈ H = H2
0(Ω) ×

L2(Ω), be such that

(iσ IdH −B)U = F, U = t (u0, u1
)
, F = t ( f0, f1

)
,(6.1)

for σ , 0. Our goal is to find an estimate of the form ‖U‖H ≤ KeK|σ|1/2‖F‖H . We have

iσu0 + u1 = f0, (−σ2 − iσα + B)u0 = f , with f = (iσ − α) f0 − f1.(6.2)
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Multiplying the second equation by u0 and an integration over Ω give

〈(−σ2 + B)u0, u0〉L2(Ω) − iσ‖α1/2u0‖
2
L2(Ω) = 〈 f , u0〉L2(Ω),

The first term is real and the second term is purely imaginary. We thus have

σ‖α1/2u0‖
2
L2(Ω) = − Im〈 f , u0〉L2(Ω).

Using that α ≥ δ > 0 in O yields

δσ0 ‖u0‖
2
L2(O) ≤ σ‖α

1/2u0‖
2
L2(Ω) ≤ ‖ f ‖L2(Ω)‖u0‖L2(Ω),(6.3)

for σ ≥ σ0.
A key estimate is given by the following lemma. We provide a proof below.

Lemma 6.1. There exists C > 0 such that

‖u0‖H3(Ω) ≤ CeC|σ|1/2(‖ f ‖L2(Ω) + ‖u0‖L2(O)
)
.

Then estimate (6.3) yields

‖u0‖H2(Ω) . eC|σ|1/2(‖ f ‖L2(Ω) + ‖u0‖
1
2
L2(Ω)
‖ f ‖

1
2
L2(Ω)

)
, σ ≥ σ0,

and with the Young inequality we obtain

‖u0‖H2(Ω) . eC|σ|1/2‖ f ‖L2(Ω).

Using the form of f given in (6.2) we then obtain

‖u0‖H2(Ω) . eC|σ|1/2(‖ f0‖L2(Ω) + ‖ f1‖L2(Ω)
)
,

Finally as u1 = f0 − iσu0 we obtain

‖u0‖H2(Ω) + ‖u1‖L2(Ω) . eC|σ|1/2(‖ f0‖L2(Ω) + ‖ f1‖L2(Ω)
)
,(6.4)

yielding the resolvent estimate of Theorem 1.4.

6.2. Proof of Lemma 6.1. Let ρ = exp(i sgn(σ)π/4), yielding ρ2 = sgn(σ)i and ρ4 = −1. We
set u = exp(sρ|σ|1/2)u0 and have Qu = esρ|σ|1/2 f , with Q = D4

s + B + αD2
s , recalling (6.2). Let

S 0 > 0 and β ∈ (0, S 0/2). Let also Z = (0, S 0) × Ω and Y = (β, S 0 − β) × Ω. We then apply the
interpolation inequality of Proposition 5.3: with 0 < β1 < β2 < S 0 we have C > 0 and δ0 > 0 such
that

‖u‖H3(Y) ≤ C‖u‖1−δH3(Z)

(
‖Qu‖L2(Z) + ‖u‖L2((β1,β2)×O)

)δ
.(6.5)

Next, we note that we have

‖u‖H3(Y) ≥ ‖u‖L2((β,S 0−β),H3(Ω)) ≥ e−C|σ|1/2‖u0‖H3(Ω),

‖u‖H3(Z) . eC|σ|1/2‖u0‖H3(Ω),

‖u‖L2((β1,β2)×O) ≤ eC|σ|1/2‖u0‖L2(O),

yielding with (6.5)

‖u0‖H3(Ω) ≤ CeC|σ|1/2(‖ f ‖L2(Z) + ‖u0‖L2(O)
)
.

This concludes the proof of the estimate of Lemma 6.1.
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6.3. A stabilization result for the plate equation. Let now (y0, y1) ∈ D(Bk), k ≥ 1, and y be the
solution of the damped plate equation

(6.6) ∂2
t y + ∆2y + α∂ty = 0, y|t=0 = y0, ∂ty|t=0 = y1, y|[0,+∞)×∂Ω = ∂νy|[0,+∞)×∂Ω = 0,

with α a nonnegative function such that y ≥ δ > 0 on O , an open subset of Ω. If we set Y = (y, ∂ty)
we have (∂t + B)Y = 0. From the resolvent estimate of Theorem 4.17 we obtain the following
energy decay for the damped plate equation, using the results set in an abstract framework in
[BD08].

Theorem 6.2. With the energy function introduced in (1.16) the solution to the damped plate
equation (6.6) satisfies, for some C > 0,

E(y)(t) ≤
C(

log(2 + t)
)4k ‖B

kY0‖
2
H , t > 0, Y0 = (y0, y1) ∈ D(Bk).

Among the existing results available in the literature for plate type equations, many of them con-
cern the “hinged” boundary conditions. We first mention these result. An important result obtained
in [Jaf90] on the controllability of the plate equation on a rectangle domain with an arbitrary small
control domain. The method relies on the generalization of Ingham type inequalities in [Kah62].
An exponential stabilization result, in the same geometry, can be found in [RTT06], using similar
techniques. In [RTT06] the localized damping term involves the time derivative ∂ty as in (6.6).
Interior nonlinear feedbacks can be used for exponential stabilization [Teb09]. There, feedbacks
are localized in a neighborhood of part of the boundary that fulfills multiplier-type conditions. A
general analysis of nonlinear damping that includes the plate equation is provided in [ABA11] un-
der multiplier-type conditions. For “hinged” boundary conditions also, with a boundary damping
term, we cite [ATT07] where, on a square domain, a necessary and sufficient condition is pro-
vided for exponential stabilization. In [Nou09], a polynomial stabilization rate is obtained if the
condition of [ATT07] is relaxed.

For “clamped” boundary conditions, few results are available. We cite [AB06], where a general
analysis of nonlinearly damped systems that includes the plate equation under multiplier-type
conditions is provided. In [ABPT17], the analysis of discretized general nonlinearly damped
system is also carried out, with the plate equation as an application. In [Teb12], a nonlinear
damping involving the p-Laplacian is used also under multiplier-type conditions. In [DS15], an
exponential decay is obtained in the case of “clamped” boundary conditions, yet with a damping
term of the Kelvin-Voigt type, that is of the form ∂t∆y, that acts over the whole domain.

Theorem 6.2 provides a log-type stabilization result. Optimality is a natural question and one
could be interested in seeking geometries that improve this decay rate, yielding polynomial or
exponential rate, in the case of “clamped” boundary conditions, in the spirit of some of the existing
results we cite above.

Appendices

A. Proofs of some technical results

A.1. Proof of the estimate optimality in the case of symbol flatness. Here, we provide a proof
of Proposition 1.6.

We have Q(z,Dz) = q(z,Dz)+ rm−1(z,Dz)+ rm−2(z,Dz) with rm−1(z,Dz) homogeneous of degree
m − 1 and rm−2(z,Dz) of order m − 2 (non necessarily homogeneous).

If there exists (z0, ζ0, τ0) as in the statement of the proposition, then by homogeneity, as τ0 , 0,
there exists ζ1 ∈ R

N , such that

q(z0, θ1) = 0, dz,ζq(z0, θ1) = 0, θα1 , 0, with θ1 = ζ1 + idϕ(z0).(A.1)
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Without any loss of generality we may assume that z0 = 0. Because of the form of (1.14), observe
also that there is no loss of generality if we assume that ϕ(0) = 0.

We then introduce w(z) = 〈z, θ1〉. We note that

ϕ(z) − Im w(z) = G(z) + |z|3O(1), G(z) =
1
2

d2
zϕ(0)(z, z).

We then pick f ∈ C∞c (RN), f . 0, and set uτ(z) = eiτw(z) f (τ1/2z). We have

‖eτϕuτ‖2L2(RN ) = ∫
RN

e2τ
(
G(z)+|z|3O(1)

)
| f (τ1/2z)|2dz = τ−N/2

∫
RN

e2G(y)+τ−1/2 |y|3O(1)| f (y)|2dy(A.2)

∼
τ→∞

τ−N/2
∫
RN

e2G(y)| f (y)|2dy,

with the change of variables y = τ1/2z and the dominated convergence theorem.
As we note that

e−iτw(z)Dα
z uτ = (Dz + τθ1)α f

(
τ1/2z

)
= τ|α|θα1 f

(
τ1/2z

)
+ τ|α|−1/2O(1),

similarly, we find

‖eτϕDα
z uτ‖2L2(RN ) ∼τ→∞

τ2|α|−N/2|θα1 |
2
∫
RN

e2G(y)| f (y)|2dy,(A.3)

as we have θα1 , 0.

We have

e−iτw(z)Qeiτw(z) = q(z,Dz + τθ1) + rm−1(z,Dz + τθ1) + rm−2(z,Dz + τθ1).

With the Taylor formula and homogeneity we observe that

q(z,Dz + τθ1) = τmq(z, θ1) + τm−1dζq(z, θ1)(Dz) +
1
2
τm−2d2

ζq(z, θ1)(Dz,Dz)

+
1
2

1
∫
0

(1 − t)2d3
ζq(z, tDz + τθ1)(Dz,Dz,Dz) dt.

Next, we write

q(z, θ1) = q(0, θ1)︸  ︷︷  ︸
=0

+ dzq(0, θ1)(z)︸        ︷︷        ︸
=0

+
1
2

d2
z q(0, θ1)(z, z) +

1
2

1
∫
0

(1 − t)2d3
z q(tz, θ1)(z, z, z)dt,

dζq(z, θ1)(Dz) = dζq(0, θ1)(Dz)︸           ︷︷           ︸
=0

+dζdzq(0, θ1)(Dz, z) +
1
∫
0

(1 − t)dζd2
z q(tz, θ1)(Dz, z, z)dt,

and

d2
ζq(z, θ1)(Dz,Dz) = d2

ζq(0, θ1)(Dz,Dz) +
1
∫
0

d2
ζdzq(tz, θ1)(Dz,Dz, z)dt,
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which gives

e−iτw(z)Qeiτw(z) = τm−1
(1
2

d2
z q(0, θ1)(τ1/2z, τ1/2z) +

1
2
τ−1/2

1
∫
0

(1 − t)2d3
z q(tz, θ1)(τ1/2z, τ1/2z, τ1/2z)dt

+ τ−1/2dζdzq(0, θ1)(Dz, τ
1/2z) + τ−1

1
∫
0

(1 − t)dζd2
z q(tz, θ1)(Dz, τ

1/2z, τ1/2z)dt

+
1
2
τ−1d2

ζq(0, θ1)(Dz,Dz) +
1
2
τ−3/2

1
∫
0

d2
ζdzq(tz, θ1)(Dz,Dz, τ

1/2z)dt

+ τ1−m(
rm−1(z,Dz + τθ1) + rm−2(z,Dz + τθ1)

))
.

We then find

e−iτw(z)Quτ = τm−1
(1
2

d2
z q(0, θ1)(τ1/2z, τ1/2z) f (τ1/2z) + dζdzq(0, θ1)

(
Dz f (τ1/2z), τ1/2z

)
+

1
2

(
d2
ζq(0, θ1)(Dz,Dz) f

)
(τ1/2z) + rm−1(z, θ1) f (τ1/2z) + τ−1/2O(1)

)
.

Arguing as for (A.2), we obtain, as τ→ ∞,

‖eτϕQuτ‖2L2(RN ) = τ2(m−1)−N/2
∫
RN

e2G(y)
∣∣∣1
2

d2
z q(0, θ1)(y, y) f (y) + dζdzq(0, θ1)

(
Dz f (y), y

)
(A.4)

+
1
2
(
d2
ζq(0, θ1)(Dz,Dz) f

)
(y) + rm−1(0, θ1) f (y)

∣∣∣2dy

+ O(τ2(m−1)−N/2−1/2).

The assumed estimate (1.14) along with (A.2)–(A.4) thus implies that δ = 0 and moreover that the
integral above does not vanish. �

Remark A.1. Observe that if in addition we assume that m ≥ 3 then the partial Carleman estimate
(1.14) with the loss of a full derivative implies that dϕ(z) does not vanish in Ω. In fact, if dϕ(z0) = 0
and if we pick ζ0 = 0 then θ1 = 0 and since m ≥ 3 we have the properties listed in (A.1). The
remainder of the proof then yields a contradiction as the integral term in (A.4) vanishes.

In the case m = 1, it is known that a Carleman estimate with the loss of a half derivative can hold
even if the gradient of the weight function vanishes (see Lemma 8.1.1 in [Hör63]). For instance,
for ϕ(z) = z2

1/2 and for the operator Dz1 , we have

τ1/2‖eτϕu‖L2(RN ) . ‖e
τϕDz1u‖L2(RN ),

for τ > 0 and u ∈ C∞c (RN). Then, for the operator D2
z1

, we have

τ‖eτϕu‖L2(RN ) . ‖e
τϕD2

z1
u‖L2(RN ),

for τ > 0 and u ∈ C∞c (RN). We then have the case of an operator of order m = 1 or 2 in RN such
that an estimate with a loss a full derivative holds and yet dϕ may vanish.

Remark A.2. The reader should observe that the statement of Proposition 1.6 assumes that the
symbol q(z, ζ + iτdϕ(z)) vanishes at second order at a complex root, that is, for τ > 0. Flatness at a
real root may not yield δ = 0. In fact, in RN , N ≥ 2, consider the operator Q = (Dz1 + Dz2)m with
m ≥ 2 and ϕ(z) = z1. Then q(ζ + iτdϕ) = (ζ1 + ζ2 + iτ)m which vanishes (at order m) for τ = 0 and
ζ1 + ζ2 = 0. Yet, we have the following estimate

τm‖eτϕu‖L2(RN ) ≤ ‖e
τϕPu‖L2(RN ),(A.5)

for v ∈ C∞c (R2). This means δ = 1 here.
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The proof of (A.5) is as follows. We write eτϕ(Dz1 + Dz2)u = (Dz1 + iτ + Dz2)v with v = eτϕu.
We then have

‖eτϕ(Dz1 + Dz2)u‖2L2(RN ) = ‖(Dz1 + Dz2)v‖2L2(RN ) + ‖τv‖2L2(RN ) − 2iτRe ∫ v(Dz1 + Dz2)v dz

= ‖(Dz1 + Dz2)v‖2L2(RN ) + ‖τv‖2L2(RN ) − τ ∫ (∂z1 + ∂z2)|v|2dz︸               ︷︷               ︸
=0 as supp(v) compact

≥ τ2‖v‖2L2(RN ) = τ2‖eτϕu‖2L2(RN ).

Multiple applications of this estimate yield (A.5).

Note however that we do not claim to have ‖eτϕDu‖L2(RN ) . ‖eτϕ(Dz1 +Dz2)u‖L2(RN ), as Dz1 +Dz2

is not elliptic.

A.2. Proofs associated with the semi-classical calculus.

A.2.1. Proof of Proposition 4.2. The dual quadratic form of g onW is given by

gσ = λ2
τ̃ |dz|2 +

|dζ′|2

(1 + γε)2 +
|dζN |

2

γ2 .

We then have, for X = (zX , ζX), as γ ≥ 1,(
hg)−1(X) = inf

T∈W
T,0

(
gσX(T )/gX(T )

)1/2
= min

(
γ−1, (1 + γε)−1)λτ̃(X)

≥ (2γ)−1λτ̃(X) ≥ τϕ(zX)/2 ≥ 1,

as τ ≥ τ∗ ≥ 2. The uncertainty principle is thus fulfilled.
For X = (zX , ζX) ∈ W, we write zX = (z′X , (zX)N), with z′X ∈ R

N−1. Similarly, we also write
ζX = (ζ′X , (ζX)N), with ζ′X ∈ R

N−1.
We now prove the slow variations of g and ϕ, λτ̃, namely, there exist K > 0, r > 0, such that

∀X,Y,T ∈ W, gX(Y − X) ≤ r2 ⇒

gY (T ) ≤ KgX(T ),
K−1 ≤

ϕ(zX)
ϕ(zY ) ≤ K, K−1 ≤

λτ̃(X)
λτ̃(Y) ≤ K,

where X = (zX , ζX) and Y = (zY , ζY ). We thus assume that gX(Y − X) ≤ r2, with 0 < r < 1 to be
chosen below. This gives

(1 + γε)(|z′X − z′Y |) + γ|(zX)N − (zY )N | + λτ̃(X)−1(|ζX − ζY |) ≤ Cr.(A.6)

We observe that we have

ϕ(zX) = eγψε(zX) = ϕ(zY )eγ
(
ψε(zX)−ψε(zY )

)
,

where ψε(zX) = ψ(εz′X , (zX)N). Note that

|ψε(zX) − ψε(zY )| ≤
(
ε|z′X − z′Y | + |(zX)N − (zY )N |

)
‖ψ′‖L∞ .

With (A.6), we thus obtain

ϕ(zX) ≤ ϕ(zY )eCr‖ψ′‖L∞ . ϕ(zY ).(A.7)

Similarly, we have

ϕ(zY ) . ϕ(zX).(A.8)

We also have

|ζY | ≤ |ζY − ζX | + |ζX | ≤ Crλτ̃(X) + |ζX | . λτ̃(X).(A.9)
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Next, we write

|ζX | ≤ |ζY − ζX | + |ζY | ≤ Crλτ̃(X) + |ζY | ≤ Cr
(
τγϕ(zX) + |ζX |

)
+ |ζY |.

Hence, for r sufficiently small, with (A.7), we have

|ζX | . τγϕ(zX) + |ζY | . λτ̃(Y).(A.10)

With (A.7) and (A.10), resp. (A.8) and (A.9), we find

λτ̃(X) . λτ̃(Y), resp. λτ̃(Y) . λτ̃(X).

Then, if T = (zT , ζT ) ∈ W we find

|ζT |
2

λτ̃(Y)2 .
|ζT |

2

λτ̃(X)2 .
|ζT |

2

λτ̃(Y)2 ,

and this gives gY (T ) . gX(T ) . gY (T ), concluding the proof of the slow variations of λτ̃ and g.

We now prove the temperance of g, ϕ and λτ̃, namely, there exist K > 0, N > 0, such that

∀X,Y,T ∈ W,
gX(T )
gY (T )

≤ C
(
1 + gσX(X − Y)

)N ,

∀X,Y ∈ W,
ϕ(zX)
ϕ(zY )

≤ C
(
1 + gσX(X − Y)

)N ,
λτ̃(X)
λτ̃(Y)

≤ C
(
1 + gσX(X − Y)

)N ,

where X = (zX , ζX) and Y = (zY , ζY ). We have

gσX(X − Y) = λτ̃(X)2|zX − zY |
2 +
|ζ′X − ζ

′
Y |

2

(1 + γε)2 +
|(ζX)N − (ζY )N |

2

γ2 .

We note that

|ζX | ≤ |ζY | + |ζX − ζY | ≤ |ζY | +
|ζX − ζY |

γ
τγϕ(zY )(A.11)

≤ |ζY | +

(
2
|ζ′X − ζ

′
Y |

1 + γε
+
|(ζX)N − (ζY )N |

γ

)
τγϕ(zY )

.
(
1 + gσX(X − Y)1/2)λτ̃(Y).

First, if (1 + εγ)|z′X − z′Y | + γ|(zX)N − (zY )N | ≤ 1, then, arguing as in (A.7), we find

ϕ(zX) . ϕ(zY ), τγϕ(zX) . λτ̃(Y).

Second, if (1 + εγ)|z′X − z′Y | + γ|(zX)N − (zY )N | ≥ 1, we then have 2|zX − zY | ≥ 1/γ. We write, as
τ ≥ τ∗ ≥ 1,

ϕ(zX) =
τ̃(zX)
γτ
≤
λτ̃(X)
γ
. |zX − zY |λτ̃(X) .

(
1 + gσX(X − Y)1/2) . (

1 + gσX(X − Y)1/2ϕ(zY ),

using that ϕ ≥ 1. We also write

τγϕ(zX) . λτ̃(X) ≤ λτ̃(X)
λτ̃(Y)
γ
. |zX − zY |λτ̃(X)λτ̃(Y) .

(
1 + gσX(X − Y)1/2)λτ̃(Y).

In any case, we have

ϕ(zX) ≤
(
1 + gσX(X − Y)1/2)ϕ(zY ) .

(
1 + gσX(X − Y)

)
ϕ(zY ),

that is, the temperance of ϕ and we have τγϕ(zX) .
(
1 + gσX(X − Y)1/2)λτ̃(Y), which, along with

(A.11), yields the temperance of λτ̃:

λτ̃(X) .
(
1 + gσX(X − Y)1/2)λτ̃(Y) .

(
1 + gσX(X − Y)

)
λτ̃(Y).
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For the temperance of g we need to prove

(1 + εγ)|z′T | + γ|(zT )N | +
|ζT |

λτ̃(X)
.

(
1 + gσX(X − Y)

)N
(
(1 + εγ)|z′T | + γ|(zT )N | +

|ζT |

λτ̃(Y)

)
,

for T = (zT , ζT ) ∈ W. To conclude it suffices to prove

λτ̃(Y) .
(
1 + gσX(X − Y)

)Nλτ̃(X).

We have

|ζY | ≤ |ζX | + |ζX − ζY | ≤ |ζX | +
|ζX − ζY |

γ
τγϕ(zX)(A.12)

≤ |ζX | +

(
2
|ζ′X − ζ

′
Y |

1 + γε
+
|(ζX)N − (ζY )N |

γ

)
τγϕ(zX)

.
(
1 + gσX(X − Y)1/2)λτ̃(X).

It thus remains to prove

τγϕ(zY ) .
(
1 + gσX(X − Y)

)Nλτ̃(X).(A.13)

First, if (1 + γε)|z′X − z′Y | + γ|(zX)N − (zY )N | ≤ 1, then ϕ(zY ) . ϕ(zX), arguing as in (A.8). Es-
timate (A.13) is then clear. Second, if (1 + γε)|z′X − z′Y | + γ|(zX)N − (zY )N | ≥ 1, which implies
2|zX − zY | ≥ 1/γ, with (4.3) we write

τγϕ(zY ) ≤ τγϕ(zX)k+1 .
λτ̃(X)k+1

(τγ)k .
(λτ̃(X)
τγ

)k
λτ̃(X) .

(
|zX − zY |

λτ̃(X)
τ

)k
λτ̃(X)

.
(
1 + gσX(X − Y)1/2)kλτ̃(X),

since τ ≥ τ∗ ≥ 1. In any case, we thus have

τγϕ(zY ) .
(
1 + gσX(X − Y)1/2)kλτ̃(X),

which concludes the proof. �

A.2.2. Proof of Lemma 4.4. We have τ̃ . λτ̃ (resp. τ̃ . λT,τ̃) and dζ τ̃ = 0. Only differentiations
of τ̃ with respect to z thus need to be considered. Recalling that τ̃ = τγϕγ,ε we find that, for
α = (α′, αN) ∈ NN , we can write ∂αz τ̃(%′) as a linear combination of terms of the form

τγ1+kϕγ,ε(z)
k∏

j=1
∂α

( j)

z ψε(z) = τγ1+kε|α
′ | ϕγ,ε(z)

k∏
j=1
∂α

( j)

z ψ(εz′, zN),

with α(1) + · · · + α(k) = α, |α( j)| ≥ 1, j = 1, . . . , k, and k ≤ |α|, implying, as γ ≥ 1, |∂αz τ̃(%′)| .
τ̃(%′)γ|α|ε|α

′ | . τ̃(%′)γαN (εγ)|α
′ |, as ‖ψ(`)‖L∞ ≤ C for any ` ∈ N, which yields the results. �

A.2.3. Proof of Lemma 4.8. For α = (α′, αN) ∈ NN and β′ ∈ NN−1, we may write ∂αz ∂
β′

ζ′a(%′) as a
linear combination of terms of the form,

b(%′) =
( k∏

j=1
∂α

( j)

z τ̂p j(%
′)
)
∂α

(a)

z ∂
β′

ζ′∂
α(b)

t̂ â
(
κ(%′)

)
,
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for some α(b) ∈ NN , with k = |α(b)|, with α = α(a) + α(1) + · · · + α(k), |α( j)| ≥ 1, and where
p j ∈ {1, . . . ,N}, j = 1, . . . , k. Using Lemma 4.5 and Definition 4.1, and we obtain

|b(%′)| .
k∏

j=1

(
λT,τ̃(1 + εγ)|α

( j)′ |γ|α
( j)
N |

)
(|τ̂(%′)| + |ζ′|)m−|β′ |−|α(b) |

. (1 + εγ)|α
(1)′ |+···+|α(k)′ |γα

(1)
N +···+α(k)

N λk
T,τ̃(|τ̂(%′)| + |ζ′|)m−|β′ |−|α(b) |

. (1 + εγ)|α
′ |γαNλk

T,τ̃(|τ̂(%′)| + |ζ′|)m−k−|β′ |,

as γ ≥ 1. If â is polynomial then the term b(%′) vanishes if m − |β′| − |α(b)| < 0. Thus if m − |β′| −
|α(b)| ≥ 0 and, as |τ̂| . τ̃ in U , we obtain

|b(%′)| ≤ (1 + εγ)|α
′ |γαNλ

m−|β′ |
T,τ̃ ,

which yields the result. If â is not polynomial and if we have τ̃ � |τ̂|, we obtain the same estimation,
even if m − |β′| − |α(b)| < 0. �

A.2.4. Proof of Lemma 4.11. By applying (4.14), we have

‖Λm
T,τ̃τ̃

ru‖+ . ‖OpT(τ̃rλm
T,τ̃)u‖+.

Next, we write OpT(τ̃rλm
T,τ̃) = Op(λm

T,τ̃)τ̃
r + γR, with R ∈ Ψ(τ̃rλm−1

T,τ̃ , gT) by the tangential calculus
we have introduced. This yields, as τ̃r ∈ S (λr

T,τ̃, gT),

‖OpT(τ̃rλm
T,τ̃)u‖+ . ‖Op(λm

T,τ̃)τ̃
ru‖+ + γ‖OpT(τ̃rλm−1

T,τ̃ )u‖+,

which yields (4.15) by choosing τ sufficiently large. Estimation (4.16) follows the same. �

A.2.5. Proof of Lemma 4.14. By definition of the Sobolev norms introduced in Section 4.1.6 we
have

‖τ̃rw‖m,m′,τ̃ �
m∑

j=0
‖D j

xd (τ̃rw)‖0,m+m′− j,τ̃ =
m∑

j=0
‖Λ

m+m′− j
T,τ̃ D j

xd (τ̃rw)‖+.

Let m′′j ∈ R. We have [Λ
m′′j
T,τ̃,D

j
xd ] ∈

∑ j
i=1 γ

iΨ(λ
m′′j
T,τ̃, gT)D j−i

xd , from the tangential calculus we have

introduced. With Lemma 4.4 we have [τ̃r,Λ
m′′j
T,τ̃] ∈ (1 + εγ)Ψ(τ̃rΛ

m′′j −1
T,τ̃ , gT). With the same lemma,

for r′j ∈ Rwe also have [τ̃r′j ,D j
xd ] ∈

∑ j
i=1 γ

iΨ(τ̃r′j , gT)D j−i
xd . For r = r′j+r′′j , and m+m′− j = m′′j +m′′′j ,

with r′j, r
′′
j ∈ R and m′′j ,m

′′′
j ∈ R, we thus obtain, by Proposition 4.13,

‖τ̃rw‖m,m′,τ̃ ≥
m∑

j=0
‖τ̃r′jΛ

m′′j
T,τ̃D

j
xd (τ̃r′′j Λ

m′′′j
T,τ̃ w)‖+ −C′

m∑
j=1

j∑
i=1
γi‖τ̃rD j−i

xd w‖0,m+m′− j,τ̃

−C′′
m∑

j=0
γ‖τ̃rD j

xd w‖0,m+m′− j−1,τ̃

≥
m∑

j=0
‖τ̃r′jΛ

m′′j
T,τ̃D

j
xd (τ̃r′′j Λ

m′′′j
T,τ̃ w)‖+ −C′

m−1∑
j=0

m∑
i=1
γi‖τ̃rD j

xd w‖0,m+m′− j−i,τ̃

−C′′
m∑

j=0
γ‖τ̃rD j

xd w‖0,m+m′− j−1,τ̃.

With the argument given in (4.17), we have
m−1∑
j=0

m∑
i=1
γi‖τ̃rD j

xd w‖0,m+m′− j−i,τ̃ +
m∑

j=0
γ‖τ̃rD j

xd w‖0,m+m′− j−1,τ̃ � ‖τ̃
rw‖m,m′,τ̃,
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for τ chosen sufficiently large, and we thus find

‖τ̃rw‖m,m′,τ̃ &
m∑

j=0
‖τ̃r′jΛ

m′′j
T,τ̃D

j
xd (τ̃r′′j Λ

m′′′j
T,τ̃ w)‖+,

for τ chosen sufficiently large. Similarly, we find that

‖τ̃rw‖m,m′,τ̃ .
m∑

j=0
‖τ̃r′jΛ

m′′j
T,τ̃D

j
xd (τ̃r′′j Λ

m′′′j
T,τ̃ w)‖+,

for τ chosen sufficiently large. The result for the trace norms is obtained arguing the same. �

B. Elliptic and sub-elliptic estimates at the boundary (0, S 0) × ∂Ω

B.1. Roots with negative imaginary part: a perfect elliptic estimate. For z0 ∈ ∂Z, V denotes
the neighborhood introduced in Section 4.2. We recall thatMT,V = V×RN−1×[τ∗,+∞)×[1,+∞)×
[0, 1].

Let `(%) ∈ S m,0
τ̃ , with % = (z, ζ, τ, γ, ε) and m ≥ 1, be polynomial in ζN with homogeneous

coefficients in (ζ′, τ̂) and L = `(z,Dz, τ, γ, ε).

Lemma B.1. Let U be a conic open subset ofMT,V . We assume that, for `(%′, ζN) viewed as a
polynomial in ζN , for %′ ∈ U ,

• the leading coefficient is 1;
• all roots of `(%′, ζN) = 0 have negative imaginary part.

Let χ(%′) ∈ S (1, gT), be homogeneous of degree zero and such that supp(χ) ⊂ U . Then, for any
M ∈ N, there exist C > 0, τ0 ≥ τ∗, γ0 ≥ 1 such that

‖OpT(χ)w‖m,0,τ̃ + | tr(OpT(χ)w)|m−1,1/2,τ̃ ≤ C
(
‖L OpT(χ)w‖+ + ‖w‖m,−M,τ̃

)
,

for w ∈ S (RN
+ ) and τ ≥ τ0, γ ≥ γ0, ε ∈ [0, 1].

This lemma can be proven by adapting the proof of [BL15, Lemma 6.5] to the semi-classical
calculus we use here. For the notion of homogeneity for symbols and conic sets in the present
calculus, we refer to Section 4.1.5.

B.2. Sub-ellipticity quantification. For z0 ∈ ∂Z, V denotes the neighborhood introduced in Sec-
tion 4.2. We let the function ψ be as introduced in Section 4, satisfying (4.2) and (4.20), and we
recall that ψε(z) = ψ(εz′, zN) and ϕ(z) = exp(γψε(z)). We also recall that λ2

τ̃ = τ̃2 + |ζ |2 with
τ̃(%′) = τγϕ(z).

Proposition B.2. Let `(z, ζ) be polynomial of degree m in ζ, with smooth coefficient in z. We
assume that for any M ∈ RN \ {0}, the symbol ` satisfies the simple-characteristic property in
direction M in a neighborhood of V (see Definition 2.1). There exist C > 0 and γ0 ≥ 1 such that,

|`(z, ζ + iτ̂(%′))|2 + τϕ(z)|ψ′ε(z)|2
{
Re `(z, ζ + iτ̂(%′)), Im `(z, ζ + iτ̂(%′))

}
≥ Cλ2m

τ̃ ,

for z ∈ V, ζ ∈ RN , τ ≥ τ∗, γ ≥ γ0 and ε ∈ [0, 1].

Proof. We have 0 < C0 ≤ |ψ
′
ε(z)| ≤ C1 for z ∈ V and we set K = {M ∈ RN ; C0 ≤ |M| ≤ C1}. As V

is assumed bounded (see section 4.2), we consider the compact set

C =
{
(z, ζ, θ, M); θ2 + |ζ |2 = 1, z ∈ V , ζ ∈ RN , θ ∈ R+, M ∈ K

}
.

We define

f (z, ζ, θ, M) = |`(z, ζ + iθM)|2 + |θM|2
∣∣∣〈`′ζ(z, ζ + iθM),M〉

∣∣∣2.(B.1)
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As the simple-characteristic property holds in direction M for all M ∈ K and z ∈ V , we have

f (z, ζ, θ, M) ≥ C > 0, (z, ζ, θ, M) ∈ C .

By homogeneity, we obtain

f (z, ζ, θ, M) ≥ C(θ2 + |ζ |2)m, z ∈ V , ζ ∈ RN , θ ∈ R+, M ∈ K.(B.2)

We compute the following Poisson bracket, with τ̂(%′) = τdϕ(z),

{Re `(z, ζ + iτ̂(%′)), Im `(z, ζ + iτ̂(%′))} =
1
2i
{`(z, ζ + iτ̂(%′)), `(z, ζ + iτ̂(%′))} = Θ`,ϕ(z, ζ, τ),

with

Θ`,φ(z, ζ, t) := t
∑
j,k
∂2

z jzk
φ(z) ∂ζ j`(z, ζ + itdφ(z)) ∂ζk`(z, ζ + itdφ(z))

+ Im
∑
j
∂z j`(z, ζ + itdφ(z)) ∂ζ j`(z, ζ + itdφ(z)).

Note that Θ`,φ(z, ζ, t) is homogeneous of degree 2m−1 in (ζ, t). With ϕ(z) = exp(γψε(z)) we obtain

Θ`,ϕ(z, ζ, τ) = Θ`,ψε(z, ζ, τ̃(%′)) + γτ̃(%′)|〈`′ζ(z, ζ + iτ̂(%′)), ψ′ε(z)〉|2.

We thus find, with f defined in (B.1),

|`(z, ζ + iτ̂(%′))|2 + τϕ(z)|ψ′ε(z)|2
{
Re `(z, ζ + iτ̂(%′)), Im `(z, ζ + iτ̂(%′))

}(B.3)

= |`(z, ζ + iτ̂(%′))|2 + τϕ(z)|ψ′ε(z)|2Θ`,ϕ(z, ζ, τ)

= |`(z, ζ + iτ̂(%′))|2 + |τ̃(%′)ψ′ε(z)|2|〈`′ζ(z, ζ + iτ̂(%′)), ψ′ε(z)〉|2 + τϕ(z)|ψ′ε(z)|2Θ`,ψε(z, ζ, τ̃(%′))

= f (z, ζ, τ̃(%′), ψ′ε(z)) + τϕ(z)|ψ′ε(z)|2Θ`,ψε(z, ζ, τ̃(%′)).

Now, as ψ′ε(z) remains in the compact set K, we find, by (B.2),

f (z, ζ, τ̃(%′), ψ′ε(z)) & (τ̂(%′)2 + |ζ |2)m & λ2m
τ̃ ,(B.4)

since |τ̂(%′)| = |ψ′ε|τ̃(%′) ≥ C0τ̃(%′). The homogeneity of Θ`,ψε(z, ζ, τ̃(%′)) gives

|τϕ(z)|ψ′ε(z)|2Θ`,ψε(z, ζ, τ̃(%′))| . γ−1τ̃(%′)λ2m−1
τ̃ . γ−1λ2m

τ̃ .

With (B.3) and (B.4), we obtain the result for γ chosen sufficiently large. �

We recall the definition of qk(%) given in (4.24), we have qk(y) = pk(z, ζ + iτ̂(%′)) with pk(z, ζ) =

(−1)kiσ2 + ξ2
d + r(x, ξ′). From Proposition 2.3 and Proposition B.2, we have the following result,

in any dimension N ≥ 2, that is, d ≥ 1.

Corollary B.3. Let k = 1 or 2. There exist C > 0 and γ0 ≥ 1 such that

|qk(%)|2 + τϕ(z)|ψ′ε(z)|2{Re qk(%′), Im qk(%)} ≥ Cλ4
τ̃, % = (z, ζ, τ, γ, ε),

for z ∈ V, ζ ∈ RN , τ ≥ τ∗, γ ≥ γ0, and ε ∈ [0, 1], and where τ̂(%′) = τγϕ(z)dψε(z).

B.3. Estimates for first-order factors. In this section, we shall assume that U0 ⊂ MT is a conic
open set where the symbol qk(%) = pk(z, ζ + iτ̂(%′)) can be factorized into two smooth first-order
terms,

qk(%) = qk,−(%)qk,+(%), qk,±(%) = ξd − ρk,±(%′).

By Lemma 4.18 we see that qk,− is elliptic, and qk,+ may vanish.
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B.3.1. A root with a positive imaginary part: an elliptic estimate with a trace term. Here, we
further assume that there exists a second conic open set U1 ⊂ U0 such that Im ρk,+(%′) & λT,τ̃, for
%′ ∈ U1. We let χ, χ ∈ S (1, gT) be homogeneous of degree zero and such that

χ ≡ 1 on a conic neighborhood of supp(χ), supp(χ) ⊂ U1.

With Qk,+ = Dxd − OpT
w(χ2ρk,+) we have the following estimation.

Lemma B.4. Let ` ∈ R and M ∈ N. There exist τ1 ≥ τ∗, γ1 ≥ 1, and C > 0 , such that

‖OpT(χ)w‖1,`,τ̃ ≤ C
(
‖Qk,+ OpT(χ)w‖0,`,τ̃ + | tr(OpT(χ)w)|0,`+1/2,τ̃ + ‖w‖0,−M,τ̃

)
,(B.5)

for τ ≥ τ1, γ ≥ γ1, ε ∈ [0, 1], and for w ∈ S (RN
+ ).

Proof. We write Q = A − iB with

A = Dxd − OpT
w(χ2 Re ρk,+), B = OpT

w(χ2 Im ρk,+),

both formally selfadjoint.
We use a pseudo-differential multiplier technique, following for instance [LL13] and compute,

with s = 2` + 1,

2 Re(Q OpT(χ)w,−iΛs
T,τ̃ OpT(χ)w)+

= −2 Re(A OpT(χ)w, iΛs
T,τ̃ OpT(χ)w)+ + 2 Re(B OpT(χ)w,Λs

T,τ̃ OpT(χ)w)+

= −(i[A,Λs
T,τ̃] OpT(χ)w,OpT(χ)w)+ + 2 Re(B OpT(χ)w,Λs

T,τ̃ OpT(χ)w)+

− (Λs
T,τ̃ OpT(χ)w|xd=0+ ,OpT(χ)w|xd=0+)L2(RN−1)

≥ 2 Re(B OpT(χ)w,Λs
T,τ̃ OpT(χ)w)+ −Cγ2‖OpT(χ)w‖20,`+1/2,τ̃

− |OpT(χ)w|xd=0+ |20,`+1/2,τ̃,

which by the (microlocal) Gårding inequality of Proposition 4.16 yields, for any M ∈ N,

Re(Λ`
T,τ̃Q OpT(χ)w,−iΛ`+1

T,τ̃ OpT(χ)w)+ + |OpT(χ)w|xd=0+ |20,`+1/2,τ̃ + ‖w‖20,−M,τ̃ & ‖OpT(χ)w‖20,`+1,τ̃,

for τ and γ chosen sufficiently large. Then, with the Young inequality, we obtain

‖Q OpT(χ)w‖0,`,τ̃ + |OpT(χ)w|xd=0+ |0,`+1/2,τ̃ + ‖w‖0,−M,τ̃ & ‖OpT(χ)w‖0,`+1,τ̃.

Finally, observing that we have

‖Dxd OpT(χ)w‖0,`,τ̃ . ‖Q OpT(χ)w‖0,`,τ̃ + ‖OpT(χ)w‖0,`+1,τ̃

allows one to conclude the proof. �

B.3.2. Transmitted sub-ellipticity. In U0 where qk(%) is smoothly factorized, qk(%) = qk,−(%)qk,+(%),
we now describe how the sub-ellipticity property of Corollary B.3 is “transmitted” to the nonel-
liptic factor qk,+.

Proposition B.5. Let k = 1 or 2. There exist γ0 ≥ 1, α0 > 0, and C > 0 such that

αγτ̃−1| Im ρk,+|
2 +

{
ξd − Re ρk,+,− Im ρk,+

}
≥ Cγτ̃−1λ2

T,τ̃, %′ ∈ U0,(B.6)

for γ ≥ γ0 and α ≥ α0.

Proof. We write

2i{Re qk, Im qk} = {qk, qk} = |qk,−|
2{qk,+, qk,+} + |qk,+|

2{qk,−, qk,−} + 2i Im
(
{qk,−, qk,+}qk,+qk,−

)
,

yielding

{Re qk, Im qk} = |qk,−|
2{Re qk,+, Im qk,+} + |qk,+|

2{Re qk,−, Im qk,−} + Im
(
{qk,−, qk,+}qk,+qk,−

)
.
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We write, for M > 0,

|qk,+|
2
∣∣∣{Re qk,−, Im qk,−}

∣∣∣ +
∣∣∣ Im (

{qk,−, qk,+}qk,+qk,−
)∣∣∣ ≤ C

(
γλτ̃|qk,+|

2 + γλ2
τ̃ |qk,+|

)
≤ C′(1 + M)γλτ̃|qk,+|

2 + C′M−1γλ3
τ̃.

For M > 0 and γ0 ≥ 1 chosen sufficiently large we obtain, with Corollary B.3,

|qk,−(%)|2
(
|qk,+(%)|2 + τϕ(z)|ψ′ε(z)|2{Re qk,+, Im qk,+}(%)

)
≥ Cλ4

τ̃ −C′(1 + M)τ̃λτ̃|qk,+|
2,

In U0 we have |qk,−(%)| � λτ̃, as qk,− is elliptic which gives

α|qk,+(%)|2 + τϕ(z)|ψ′ε(z)|2{Re qk,+, Im qk,+}(%) ≥ Cλ2
τ̃, %′ ∈ U0, ξd ∈ R,

for α > 0 chosen sufficiently large. If we now choose ξd = Re ρk,+(%′) we then obtain the result.
�

B.3.3. A root with a vanishing imaginary part: a sub-elliptic estimate with a trace term. Here,
we consider as above a conic open set U0 ⊂ MT, such that the symbol qk(%) = pk(z, ζ + iτ̂(%′))
can be factorized into two smooth first-order terms, qk(%) = qk,−(%)qk,+(%). We let χ, χ ∈ S (1, gT)
be as above and we recall that Qk,+ := Dxd − OpT

w(χ2ρk,+). We have the following lemma.

Lemma B.6. Let `,m ∈ R and M ∈ N. There exist τ1 ≥ τ∗, γ1 ≥ 1, and C > 0 , such that

γ1/2‖τ̃m−1/2 OpT(χ)w‖1,`,τ̃ ≤ C
(
‖τ̃mQk,+ OpT(χ)w‖0,`,τ̃ + | tr(τ̃m OpT(χ)w)|0,`+1/2,τ̃ + ‖w‖0,−M,τ̃

)
,

(B.7)

for τ ≥ τ1, γ ≥ γ1, ε ∈ [0, 1], and for w ∈ S (RN
+ ).

Proof. For concision, we write Q in place of Qk,+. We decompose Q according to Q = A + iB
with

A = Dxd − OpT
w(χ2 Re ρk,+) ∈ Ψ

1,0
τ̃ , B = −OpT

w(χ2 Im ρk,+) ∈ Ψ
0,1
τ̃ = Ψ(λT,τ̃, gT).(B.8)

Observe that both A and B are formally selfadjoint.
We set w`,m = τ̃mΛ`

T,τ̃ OpT(χ)w and compute

‖Qw`,m‖
2
+ = ‖(A + iB)w`,m‖

2
+ = ‖Aw`,m‖

2
+ + ‖Bw`,m‖

2
+ + 2 Re(Aw`,m, iBw`,m)+(B.9)

From the form of A and B given in (B.8) we find

2 Re(Aw`,m, iBw`,m)+ = i([A, B]w`,m,w`,m)+ − (OpT
w(χ2 Im ρk,+)w`,m |xd=0+ ,w`,m |xd=0+)L2(RN−1).

yielding, with (B.9),

‖Qw`,m‖
2
+ + | tr(τ̃m OpT(χ)w)|20,`+1/2,τ̃

& ‖Aw`,m‖
2
+ + ‖Bw`,m‖

2
+ + i([A, B]w`,m,w`,m)+

& ‖Aw`,m‖
2
+ + (

(
αγτ̃−1B2 + i[A, B]

)
w`,m,w`,m)+

& ‖Aw`,m‖
2
+ + (Λ`

T,τ̃τ̃
m(
αγτ̃−1B2 + i[A, B]

)
τ̃mΛ`

T,τ̃ OpT(χ)w,OpT(χ)w)+,

for α = α0 with α0 given by Proposition B.5, and for τ such that αγτ̃−1 ≤ 1. As the principal
symbol of Λ`

T,τ̃τ̃
m(
αγτ̃−1B2 + i[A, B]

)
τ̃mΛ`

T,τ̃ is given, in a conic neighborhood of supp(χ), where
χ ≡ 1, by

τ̃2mλ2`
T,τ̃

(
αγτ̃−1(Im ρk,+)2 + {ξd − Re ρk,+,− Im ρk,+}

)
∈ S (γτ̃2m−1λ2+2`

T,τ̃ , gT),
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then Proposition B.5 and the (microlocal) Gårding inequality of Proposition 4.16 yield, for any
M ∈ N, by choosing τ and γ sufficiently large,

‖Qw`,m‖+ + | tr(τ̃m OpT(χ)w)|0,`+1/2,τ̃ + ‖w‖0,−M & ‖Aw`,m‖+ + γ1/2‖τ̃m−1/2 OpT(χ)w‖0,1+`,τ̃.

From the form of A in (B.8) we have

γ1/2‖τ̃−1/2Dxd w`,m‖+ . ‖Aw`,m‖+ + γ1/2‖τ̃−1/2w`,m‖0,1,τ̃

. ‖Aw`,m‖+ + γ1/2‖τ̃m−1/2 OpT(χ)w‖0,1+`,τ̃.

We thus obtain

‖Qw`,m‖+ + | tr(τ̃m OpT(χ)w)|0,`+1/2,τ̃ + ‖w‖0,−M

& γ1/2(‖τ̃m−1/2 OpT(χ)w‖0,1+`,τ̃ + ‖τ̃−1/2Dxd w`,m‖+
)

& γ1/2‖τ̃m−1/2 OpT(χ)w‖1,`,τ̃,

by choosing τ sufficiently large and using Lemma 4.14. This concludes the proof. �

B.4. Estimate concatenations. Let U0 be on conic open set of MT. Let χ(%′) ∈ S (1, gT) be
homogeneous of degree zero such that supp(χ) ⊂ U0. Let ρ(k)(%′) ∈ S (λT,τ̃, gT), k = 1, 2, be
homogeneous of degree one in U0 and define Q(k) = Dxd − OpT

w(χ2ρ(k)). The operators Qk,±,
k = 1, 2, defined in what precedes and in Section 4 are of this form. Above, for such operators, we
proved some microlocal estimates of the form

(B.10) γαk/2‖τ̃αk(m−1/2) OpT(χ)w‖1,`,τ̃ + δk| tr(τ̃mαk OpT(χ)w)|0,`+1/2,τ̃

≤ C
(
‖τ̃mαk Q(k) OpT(χ)w‖0,`,τ̃ + (1 − δk)| tr(τ̃mαk OpT(χ)w)|0,`+1/2,τ̃ + ‖w‖0,−M,τ̃

)
,

with δk = (1 − αk)(1 − βk) and αk, βk ∈ {0, 1}, `,m ∈ R, and where χ ∈ S (1, gT), homogeneous of
degree zero and such that χ ≡ 1 on a conic neighborhood of supp(χ).

If αk = 0 and βk = 0 the estimate reads

‖OpT(χ)w‖1,`,τ̃ + | tr(OpT(χ)w)|0,`+1/2,τ̃ ≤ C
(
‖Q(k) OpT(χ)w‖0,`,τ̃ + ‖w‖0,−M,τ̃

)
.

This is a perfect elliptic estimate that holds if ρ(k) is in the lower half complex plane –see Lemma B.1.
If αk = 0 and βk = 1 the estimate reads

‖OpT(χ)w‖1,`,τ̃ ≤ C
(
‖Q(k) OpT(χ)w‖0,`,τ̃ + | tr(OpT(χ)w)|0,`+1/2,τ̃ + ‖w‖0,−M,τ̃

)
.

This is an elliptic estimate, yet with a trace observation term in the r.h.s., that holds if ρ(k) is in the
upper half complex plane –see Lemma B.4.

Finally, if αk = 1, independently of the value of βk we have

γ1/2‖τ̃m−1/2 OpT(χ)w‖1,`,τ̃ ≤ C
(
‖τ̃mQ(k) OpT(χ)w‖0,`,τ̃ + | tr(τ̃m OpT(χ)w)|0,`+1/2,τ̃ + ‖w‖0,−M,τ̃

)
.

This estimate is characterized by the loss of a half derivative and a boundary observation term in
the r.h.s.; such an estimate is proven in Lemma B.6 when the root ρ(k) may cross the real axis.

We shall now describe how such estimates can be concatenated, as this is often done in the
course of the proof of Theorem 4.17.

Proposition B.7. Let ` ∈ R and M ∈ N. Let Q(k) be defined as above, for k = 1, 2. Let τ0 ≥ τ∗,
γ0 ≥ 1 and C > 0 such that estimate (B.10) holds, with `,m ∈ R, with αk, βk ∈ {0, 1}, for both
k = 1 and 2, for τ ≥ τ0, γ ≥ γ0, ε ∈ [0, 1], and for w ∈ S (RN

+ ). We assume that α1 ≤ α2 and
1 − δ1 ≤ 1 − δ2.
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Let χ ∈ S (1, gT), be homogeneous of degree zero and such that χ ≡ 1 on supp(χ). There exist
τ1 ≥ τ∗, γ1 ≥ 1 and C > 0 such that the following estimate for the second-order operator Q(1)Q(2)

holds,

γ(α1+α2)/2‖τ̃−(α1+α2)/2 OpT(χ)w‖2,`,τ̃ + | tr(OpT(χ)w)|1,`+1/2,τ̃

≤ C
(
‖Q(1)Q(2) OpT(χ)w‖0,`,τ̃ + (1 − δ1)| tr(OpT(χ)w)|1,`+1/2,τ̃

+ (1 − δ2)γα1/2| tr(τ̃−α1/2 OpT(χ)w)|0,`+3/2,τ̃ + ‖w‖2,−M,τ̃
)
,

for τ ≥ τ1, γ ≥ γ1, ε ∈ [0, 1], and for w ∈ S (RN
+ ).

Note that the assumptions made on αk and 1− δk, k = 1, 2, imply that Q(1) yields an estimate of
better quality than that associated with Q(2).

Proof. We introduce χ1 ∈ S (1, gT) that is such that χ1 ≡ 1 on supp(χ) and χ ≡ 1 on supp(χ1). For
concision, we write Ξ = OpT(χ) and Ξ1 = OpT(χ1). Here, M will denote an arbitrary large integer
whose value may change from one line to the other.

Using Q(2)Ξw as the unknown function in the estimate (B.10) for Q(1), with m = 0 gives,

γα1/2‖τ̃−α1/2Q(2)Ξw‖1,`,τ̃ + δ1| tr(Q(2)Ξw)|0,`+1/2,τ̃(B.11)

. γα1/2‖τ̃−α1/2Ξ1Q(2)Ξw‖1,`,τ̃ + δ1| tr(Ξ1Q(2)Ξw)|0,`+1/2,τ̃

+ ‖w‖1,−M,τ̃ + | tr(w)|1,−M,τ̃

. ‖Q(1)Ξ1Q(2)Ξw‖0,`,τ̃ + (1 − δ1)| tr(Ξ1Q(2)Ξw)|0,`+1/2,τ̃ + ‖w‖1,−M,τ̃ + | tr(w)|1,−M,τ̃

. ‖Q(1)Q(2)Ξw‖0,`,τ̃ + (1 − δ1)| tr(Ξw)|1,`+1/2,τ̃ + ‖w‖2,−M,τ̃.

Observe now that we can write, using that Dxd − Q(2) ∈ Ψ(λT,τ̃, gT),

(1 − δ2)γα1/2| tr(τ̃−α1/2Ξw)|1,`+1/2,τ̃

. δ1γ
α1/2| tr(τ̃−α1/2Q(2)Ξw)|0,`+1/2,τ̃ + (1 − δ1)γα1/2| tr(τ̃−α1/2Ξw)|1,`+1/2,τ̃

+ (1 − δ2)γα1/2| tr(τ̃−α1/2Ξw)|0,`+3/2,τ̃

. δ1| tr(Q(2)Ξw)|0,`+1/2,τ̃ + (1 − δ1)| tr(Ξw)|1,`+1/2,τ̃ + (1 − δ2)γα1/2| tr(τ̃−α1/2Ξw)|0,`+3/2,τ̃.

With this estimate and (B.11), we thus obtain

γα1/2
(
‖τ̃−α1/2Q(2)Ξw‖1,`,τ̃ + (1 − δ2)| tr(τ̃−α1/2Ξw)|1,`+1/2,τ̃

)
(B.12)

. ‖Q(1)Q(2)Ξw‖0,`,τ̃ + (1 − δ1)| tr(Ξw)|1,`+1/2,τ̃ + (1 − δ2)γα1/2| tr(τ̃−α1/2Ξw)|0,`+3/2,τ̃

+ ‖w‖2,−M,τ̃.

Up to creating error terms, we shall now modify this inequality to be able to apply the estimate
(B.10) associated with Q(2). We write

‖τ̃−α1/2Q(2)Ξ1Dxd Ξw‖0,`,τ̃ + (1 − δ2)| tr(τ̃−α1/2Ξ1Dxd Ξw)|0,`+1/2,τ̃

. ‖τ̃−α1/2Q(2)Dxd Ξw‖0,`,τ̃ + (1 − δ2)| tr(τ̃−α1/2Dxd Ξw)|0,`+1/2,τ̃ + ‖w‖1,−M,τ̃ + | tr(w)|1,−M,τ̃

. ‖τ̃−α1/2Q(2)Ξw‖1,`,τ̃ + (1 − δ2)| tr(τ̃−α1/2Ξw)|1,`+1/2,τ̃ + ‖w‖1,−M,τ̃ + | tr(w)|1,−M,τ̃

+ γ‖τ̃−α1/2Ξw‖1,`,τ̃,
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using that [Dxd ,Q
(2)] ∈ γΨ

1,0
τ̃ and using Lemma 4.14. Hence with (B.12) we have

γα1/2
(
‖τ̃−α1/2Q(2)Ξ1Dxd Ξw‖0,`,τ̃ + (1 − δ2)| tr(τ̃−α1/2Ξ1Dxd Ξw)|0,`+1/2,τ̃(B.13)

+ ‖τ̃−α1/2Q(2)Ξw‖0,`+1,τ̃ + (1 − δ2)| tr(τ̃−α1/2Ξw)|0,`+3/2,τ̃

)
. γα1/2

(
‖τ̃−α1/2Q(2)Ξw‖1,`,τ̃ + (1 − δ2)| tr(τ̃−α1/2Ξw)|1,`+1/2,τ̃

+ γ‖τ̃−α1/2Ξw‖1,`,τ̃
)

+ ‖w‖1,−M,τ̃ + | tr(w)|1,−M,τ̃

. ‖Q(1)Q(2)Ξw‖0,`,τ̃ + (1 − δ1)| tr(Ξw)|1,`+1/2,τ̃ + (1 − δ2)γα1/2| tr(τ̃−α1/2Ξw)|0,`+3/2,τ̃

+ γ1+α1/2‖τ̃−α1/2Ξw‖1,`,τ̃ + ‖w‖2,−M,τ̃

We write, with Lemma 4.14, for τ chosen sufficiently large,

‖τ̃−(α1+α2)/2Ξw‖2,`,τ̃ � ‖τ̃−(α1+α2)/2Dxd Ξw‖1,`,τ̃ + ‖τ̃−(α1+α2)/2Ξw‖1,`+1,τ̃(B.14)

. ‖τ̃−(α1+α2)/2Ξ1Dxd Ξw‖1,`,τ̃ + ‖τ̃−(α1+α2)/2Ξw‖1,`+1,τ̃ + ‖w‖2,−M,τ̃,

and

| tr(τ̃−α1/2Ξw)|1,`+1/2,τ̃ � | tr(τ̃
−α1/2Dxd Ξw)|0,`+1/2,τ̃ + | tr(τ̃−α1/2Ξw)|0,`+3/2,τ̃

(B.15)

. | tr(τ̃−α1/2Ξ1Dxd Ξw)|0,`+1/2,τ̃ + | tr(τ̃−α1/2Ξw)|0,`+3/2,τ̃ + | tr(w)|1,−M,τ̃.

Applying now estimate (B.10) associated with Q(2) to Dxd Ξw and w, with m = −α1/2, using that
α1 = α1α2, we obtain

γ(α1+α2)/2‖τ̃−(α1+α2)/2Ξ1Dxd Ξw‖1,`,τ̃ + δ2γ
α1/2| tr(τ̃−α1/2Ξ1Dxd Ξw)|0,`+1/2,τ̃

(B.16)

. γα1/2
(
‖τ̃−α1/2Q(2)Ξ1Dxd Ξw‖0,`,τ̃ + (1 − δ2)| tr(τ̃−α1/2Ξ1Dxd Ξw)|0,`+1/2,τ̃

)
+ ‖w‖1,−M,τ̃

and

γ(α1+α2)/2‖τ̃−(α1+α2)/2Ξw‖1,`+1,τ̃ + δ2γ
α1/2| tr(τ̃−α1/2Ξw)|0,`+3/2,τ̃(B.17)

. γα1/2
(
‖τ̃−α1/2Q(2)Ξw‖0,`+1,τ̃ + (1 − δ2)| tr(τ̃−α1/2Ξw)|0,`+3/2,τ̃

)
+ ‖w‖0,−M,τ̃.

With (B.14)–(B.17), we achieve

γ(α1+α2)/2‖τ̃−(α1+α2)/2Ξw‖2,`,τ̃ + δ2γ
α1/2| tr(τ̃−α1/2Ξw)|1,`+1/2,τ̃

. γα1/2
(
‖τ̃−α1/2Q(2)Ξ1Dxd Ξw‖0,`,τ̃ + (1 − δ2)| tr(τ̃−α1/2Ξ1Dxd Ξw)|0,`+1/2,τ̃

+ ‖τ̃−α1/2Q(2)Ξw‖0,`+1,τ̃ + (1 − δ2)| tr(τ̃−α1/2Ξw)|0,`+3/2,τ̃

)
+ ‖w‖2,−M,τ̃.

Combining this latter estimate with (B.13) we obtain

γ(α1+α2)/2‖τ̃−(α1+α2)/2Ξw‖2,`,τ̃ + δ2γ
α1/2| tr(τ̃−α1/2Ξw)|1,`+1/2,τ̃

. ‖Q(1)Q(2)Ξw‖0,`,τ̃ + (1 − δ1)| tr(Ξw)|1,`+1/2,τ̃ + (1 − δ2)γα1/2| tr(τ̃−α1/2Ξw)|0,`+3/2,τ̃

+ γ1+α1/2‖τ̃−α1/2Ξw‖1,`,τ̃ + ‖w‖2,−M,τ̃,

which, with the usual semi-classical inequality (4.17)

γ(α1+α2)/2‖τ̃−(α1+α2)/2Ξw‖2,`,τ̃ + δ2γ
α1/2| tr(τ̃−α1/2Ξw)|1,`+1/2,τ̃

. ‖Q(1)Q(2)Ξw‖0,`,τ̃ + (1 − δ1)| tr(Ξw)|1,`+1/2,τ̃ + (1 − δ2)γα1/2| tr(τ̃−α1/2Ξw)|0,`+3/2,τ̃

+ ‖w‖2,−M,τ̃.

Let us now consider two cases:
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Case α1 = 1: Then δ1 = 0 and α2 = 1. We thus have the term | tr(Ξw)|1,`+1/2,τ̃ in the r.h.s.
of the estimation and the sought result then holds.

Case α1 = 0: Then we write

| tr(Ξw)|1,`+1/2,τ̃ . | tr(Q
(2)Ξw)|0,`+1/2,τ̃ + | tr(Ξw)|0,`+3/2,τ̃

. | tr(Q(2)Ξw)|0,`+1/2,τ̃ + δ2| tr(Ξw)|1,`+1/2,τ̃ + (1 − δ2)| tr(Ξw)|0,`+3/2,τ̃.

which leads to

δ1| tr(Ξw)|1,`+1/2,τ̃ . δ1| tr(Q(2)Ξw)|0,`+1/2,τ̃ + δ2| tr(Ξw)|1,`+1/2,τ̃ + (1 − δ2)| tr(Ξw)|0,`+3/2,τ̃.

Recalling that the term δ1| tr(Q(2)Ξw)|0,`+1/2,τ̃ can be found in the l.h.s. of (B.11), We thus
obtain

γα2/2‖τ̃−α2/2Ξw‖2,`,τ̃ + (δ1 + δ2)| tr(Ξw)|1,`+1/2,τ̃

. ‖Q(1)Q(2)Ξw‖0,`,τ̃ + (1 − δ1)| tr(Ξw)|1,`+1/2,τ̃ + (1 − δ2)| tr(Ξw)|0,`+3/2,τ̃

+ ‖w‖2,−M,τ̃.

If δ1 + δ2 > 0 we then have the sought estimate in the case α1 = 0. If δ1 + δ2 = 0
then the term | tr(Ξw)|1,`+1/2,τ̃ can be found in the r.h.s. of the estimation and can thus be
“artificially” added in the l.h.s..

This concludes the proof of Proposition B.7. �

We now show how to obtain microlocal estimates for some products of two factors of order
two.

Proposition B.8. Let assume that Q−(z,Dz, τ, γ, ε) ∈ Ψ
2,0
τ̃ fulfills the requirement of Lemma B.1

in some conic open subset U . Let Q+(z,Dz, τ, γ, ε) ∈ Ψ
2,0
τ̃ be such that, there exist τ0 ≥ τ∗, γ0 ≥ 1

and C > 0 such that, for ` ∈ {0, 1, 2} and all χ ∈ S (1, gT), homogeneous of degree zero, with
supp(χ) ⊂ U , for Ξ = OpT(χ),

γ(α1+α2)/2‖τ̃−(α1+α2)/2Ξw‖2,`,τ̃ + | tr(Ξw)|1,`+1/2,τ̃(B.18)

≤ C
(
‖Q+Ξw‖0,`,τ̃ + (1 − δ1)| tr(Ξw)|1,`+1/2,τ̃

+ (1 − δ2)γα1/2| tr(τ̃−α1/2Ξw)|0,`+3/2,τ̃ + ‖w‖2,−M,τ̃
)
,

for τ ≥ τ0, γ ≥ γ0, ε ∈ [0, 1], and for w ∈ S (RN
+ ), where α1, α2 ∈ {0, 1} and δ1, δ2 ∈ {0, 1}

with α1 ≤ α2, 1 − δ1 ≤ 1 − δ2 and moreover δk = 0 if αk = 1, k = 1, 2. We also assume that
Q+Ξ = D2

xd
Ξ + T1,1Ξ with T1,1 ∈ Ψ

1,1
τ̃ .

Let M ∈ N and let χ ∈ S (1, gT) be as above. In the case α1 + α2 = 2, we furthermore assume
that, for any M ∈ N, [Dxd + iτ̂ξd ,Q

+] OpT(χ1) = (1 + εγ)R2,0 OpT(χ1) + R2,−M, with R2,0 ∈ Ψ
2,0
τ̃

and R2,−M ∈ Ψ
2,−M
τ̃ , if χ1 ∈ S (1, gT) is homogeneous of degree 0 and such that χ1 ≡ 1 in a conic

neighborhood of supp(χ) and supp(χ1) ⊂ U .
There exist τ1 ≥ τ∗, γ1 ≥ 1, ε1 ∈ (0, 1], and C > 0 such that

γ(α1+α2)/2‖τ̃−(α1+α2)/2Ξw‖4,0,τ̃ + | tr(Ξw)|3,1/2,τ̃(B.19)

≤ C
(
‖Q−Q+Ξw‖+ + (1 − δ1)| tr(Ξw)|1,5/2,τ̃

+ (1 − δ2)γα1/2| tr(τ̃−α1/2Ξw)|0,7/2,τ̃ + ‖w‖4,−M,τ̃
)
,

for τ ≥ τ1, γ ≥ γ1, ε ∈ [0, ε1], and for w ∈ S (RN
+ ). In the case α1 + α2 ≤ 1, we can take ε1 = 1.
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In Section 4, for example, this proposition will be applied to Q+ = Q1,+Q2,+ for which an
estimation of the form of (B.18) will hold by Proposition B.7. Note that this proposition, in the
case α1 + α2 = 2, is one instance where it is important to take ε > 0 sufficiently small.

Proof. We introduce χ1 ∈ S (1, gT) that is such that χ1 ≡ 1 on supp(χ) and supp(χ1) ⊂ U . For
concision, we write Ξ = OpT(χ) and Ξ1 = OpT(χ1). Here, M will denote an arbitrary large integer
whose value may change from one line to the other.

Using Q+Ξw as the unknown function in the estimate of Lemma B.1 for the operator Q−:

‖Q+Ξw‖2,0,τ̃ + | tr(Q+Ξw)|1,1/2,τ̃(B.20)

. ‖Ξ1Q+Ξw‖2,0,τ̃ + | tr(Ξ1Q+Ξw)|1,1/2,τ̃ + ‖w‖4,−M,τ̃

. ‖Q−Ξ1Q+Ξw‖+ + ‖w‖4,−M,τ̃

. ‖Q−Q+Ξw‖+ + ‖w‖4,−M,τ̃.

Combining (B.18), for ` = 2, with (B.20) we find

‖Q+Ξw‖2,0,τ̃ + | tr(Q+Ξw)|1,1/2,τ̃ + | tr(Ξw)|1,5/2,τ̃(B.21)

. ‖Q−Q+Ξw‖+ + (1 − δ1)| tr(Ξw)|1,5/2,τ̃ + (1 − δ2)γα1/2| tr(τ̃−α1/2Ξw)|0,7/2,τ̃
+ ‖w‖4,−M,τ̃.

We now make the following claim whose proof is given below.

Lemma B.9. There exists C > 0 such that

| tr(Ξv)|3,1/2,τ̃ ≤ C
(
| tr(Q+Ξw)|1,1/2,τ̃ + | tr(Ξv)|1,5/2,τ̃

)
.

This gives

(B.22) ‖Q+Ξw‖2,0,τ̃ + | tr(Ξv)|3,1/2,τ̃ . ‖Q
−Q+Ξw‖+ + (1 − δ1)| tr(Ξw)|1,5/2,τ̃

+ (1 − δ2)γα1/2| tr(τ̃−α1/2Ξw)|0,7/2,τ̃ + ‖w‖4,−M,τ̃.

First, we treat the case α1 + α2 ≤ 1. As α1 ≤ α2 then α1 = 0. We write

2∑
j=0

(
‖Q+Ξ1D j

xd Ξw‖0,2− j,τ̃ + | tr(Ξ1D j
xd Ξv)|1,5/2− j,τ̃

)
.

2∑
j=0

(
‖Q+D j

xd Ξw‖0,2− j,τ̃ + | tr(D j
xd Ξv)|1,5/2− j,τ̃

)
+ ‖w‖4,−M,τ̃

.
2∑

j=0

(
‖D j

xd Q+Ξw‖0,2− j,τ̃ + | tr(D j
xd Ξv)|1,5/2− j,τ̃

)
+ γ‖Ξw‖3,0 + ‖w‖4,−M,τ̃

. ‖Q+Ξw‖2,0,τ̃ + | tr(Ξv)|3,1/2,τ̃ + γ‖Ξw‖3,0 + ‖w‖4,−M,τ̃.

With (B.22) we then find

2∑
j=0

(
‖Q+Ξ1D j

xd Ξw‖0,2− j,τ̃ + | tr(Ξ1D j
xd Ξv)|1,5/2− j,τ̃

)
. ‖Q−Q+Ξw‖+ + (1 − δ1)| tr(Ξw)|1,5/2,τ̃ + (1 − δ2)| tr(Ξw)|0,7/2,τ̃

+ γ‖Ξw‖3,0 + ‖w‖4,−M,τ̃.
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Now, applying (B.18) with ` = 2 − j, we obtain

2∑
j=0

(
γα2/2‖τ̃−α2/2Ξ1D j

xd Ξw‖2,2− j,τ̃ + | tr(Ξ1D j
xd Ξw)|1,5/2− j,τ̃

)
(B.23)

. ‖Q−Q+Ξw‖+ + (1 − δ1)| tr(Ξw)|1,5/2,τ̃ + (1 − δ2)| tr(Ξw)|0,7/2,τ̃
+ γ‖Ξw‖3,0 + ‖w‖4,−M,τ̃.

With Lemma 4.14, we write, for τ chosen sufficiently large,

γα2/2‖τ̃−α2/2Ξw‖4,0,τ̃ + | tr(Ξw)|3,1/2,τ̃

�
2∑

j=0

(
γα2/2‖τ̃−α2/2D j

xd Ξw‖2,2− j,τ̃ + | tr(D j
xd Ξw)|1,5/2− j,τ̃

)
.

2∑
j=0

(
γα2/2‖τ̃−α2/2Ξ1D j

xd Ξw‖2,2− j,τ̃ + | tr(Ξ1D j
xd Ξw)|1,5/2− j,τ̃

)
+ ‖w‖4,−M,τ̃.

Finally, using (B.23) we obtain

γα2/2‖τ̃−α2/2Ξw‖4,0,τ̃ + | tr(Ξw)|3,1/2,τ̃
. ‖Q−Q+Ξw‖+ + (1 − δ1)| tr(Ξw)|1,5/2,τ̃ + (1 − δ2)| tr(Ξw)|0,7/2,τ̃

+ γ‖Ξw‖3,0 + ‖w‖4,−M,τ̃,

and taking τ sufficiently large, as 0 ≤ α2 ≤ 1, we achieve the sought estimate.

Second, we treat the case α1 + α2 = 2, that is, α1 = α2 = 1. We set D̃xd = Dxd + iτ̂ξd ∈ Ψ
1,0
τ̃ .

We use the further assumption made in this case, namely, for any M ∈ N, [D̃xd ,Q
+]Ξ1 = (1 +

εγ)R2,0Ξ1 + R2,−M with R2,0 ∈ Ψ
2,0
τ̃ and R2,−M ∈ Ψ

2,−M
τ̃ . We write

2∑
j=0

(
‖Q+Ξ1D̃ j

xd Ξw‖0,2− j,τ̃ + | tr(Ξ1D̃ j
xd Ξv)|1,5/2− j,τ̃

)
.

2∑
j=0

(
‖Q+D̃ j

xd Ξ1Ξw‖0,2− j,τ̃ + | tr(D̃ j
xd Ξv)|1,5/2− j,τ̃

)
+ ‖w‖4,−M,τ̃

.
2∑

j=0

(
‖D̃ j

xd Q+Ξ1Ξw‖0,2− j,τ̃ + | tr(D̃ j
xd Ξv)|1,5/2− j,τ̃

)
+ (1 + εγ)‖Ξw‖3,0 + ‖w‖4,−M,τ̃

. ‖Q+Ξw‖2,0,τ̃ + | tr(Ξv)|3,1/2,τ̃ + (1 + εγ)‖Ξw‖3,0 + ‖w‖4,−M,τ̃.

With (B.22) we then find

2∑
j=0

(
‖Q+Ξ1D̃ j

xd Ξw‖0,2− j,τ̃ + | tr(Ξ1D̃ j
xd Ξv)|1,5/2− j,τ̃

)
. ‖Q−Q+Ξw‖+ + (1 − δ1)| tr(Ξw)|1,5/2,τ̃ + (1 − δ2)γ1/2|τ̃−1/2 tr(Ξw)|0,7/2,τ̃

+ (1 + εγ)‖Ξw‖3,0 + ‖w‖4,−M,τ̃.

Now, applying (B.18) with ` = 2 − j, we obtain

2∑
j=0

(
γ‖τ̃−1Ξ1D̃ j

xd Ξw‖2,2− j,τ̃ + | tr(Ξ1D̃ j
xd Ξw)|1,5/2− j,τ̃

)
(B.24)

. ‖Q−Q+Ξw‖+ + (1 − δ1)| tr(Ξw)|1,5/2,τ̃ + (1 − δ2)γ1/2|τ̃−1/2 tr(Ξw)|0,7/2,τ̃
+ (1 + εγ)‖Ξw‖3,0 + ‖w‖4,−M,τ̃.
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Now, as [D̃xd , τ̃
−1] ∈ γΨ

0,−1
τ̃ , we have

2∑
j=0

(
γ‖D̃ j

xd τ̃
−1Ξw‖2,2− j,τ̃ + | tr(D̃ j

xd Ξw)|1,5/2− j,τ̃

)
.

2∑
j=0

(
γ‖τ̃−1D̃ j

xd Ξw‖2,2− j,τ̃ + | tr(D̃ j
xd Ξw)|1,5/2− j,τ̃

)
+ γ2‖τ̃−1Ξw‖3,0

.
2∑

j=0

(
γ‖τ̃−1Ξ1D̃ j

xd Ξw‖2,2− j,τ̃ + | tr(Ξ1D̃ j
xd Ξw)|1,5/2− j,τ̃

)
+ γ2‖τ̃−1Ξw‖3,0 + ‖w‖4,−M,τ̃,

yielding with (B.24), as γ2τ̃−1 . 1,

2∑
j=0

(
γ‖D̃ j

xd τ̃
−1Ξw‖2,2− j,τ̃ + | tr(D̃ j

xd Ξw)|1,5/2− j,τ̃

)
(B.25)

. ‖Q−Q+Ξw‖+ + (1 − δ1)| tr(Ξw)|1,5/2,τ̃ + (1 − δ2)γ1/2|τ̃−1/2 tr(Ξw)|0,7/2,τ̃
+ (1 + εγ)‖Ξw‖3,0 + ‖w‖4,−M,τ̃.

As Dxd − D̃xd = T ∈ Ψ
0,1
τ̃ , observe that we have

‖Dxd τ̃
−1Ξw‖2,1,τ̃ . ‖D̃xd τ̃

−1Ξw‖2,1,τ̃ + ‖τ̃−1Ξw‖2,2,τ̃,

meaning that we have

‖τ̃−1Ξw‖3,1,τ̃ . ‖D̃xd τ̃
−1Ξw‖2,1,τ̃ + ‖τ̃−1Ξw‖2,2,τ̃.

Next, we write

‖D2
xd
τ̃−1Ξw‖2,0,τ̃ . ‖Dxd D̃xd τ̃

−1Ξw‖2,0,τ̃ + ‖Dxd T τ̃−1Ξw‖2,0,τ̃

. ‖D̃2
xd
τ̃−1Ξw‖2,0,τ̃ + ‖D̃xd τ̃

−1Ξw‖2,1,τ̃ + ‖τ̃−1Ξw‖3,1,τ̃,

and thus

‖τ̃−1Ξw‖4,0,τ̃ .
2∑

j=0
‖D̃ j

xd τ̃
−1Ξw‖2,2− j,τ̃.

Similarly, we find

| tr(Ξw)|3,1/2,τ̃ .
2∑

j=0
| tr(D̃ j

xd Ξw)|1,5/2− j,τ̃.

With (B.25) we thus obtain

γ‖τ̃−1Ξw‖4,0,τ̃ + | tr(Ξw)|3,1/2,τ̃
. ‖Q−Q+Ξw‖+ + (1 − δ1)| tr(Ξw)|1,5/2,τ̃ + (1 − δ2)γ1/2|τ̃−1/2 tr(Ξw)|0,7/2,τ̃

+ (1 + εγ)‖Ξw‖3,0 + ‖w‖4,−M,τ̃.

Then, taking γ sufficiently large and ε > 0 sufficiently small we obtain the sought estimate. �

Proof of Lemma B.9. Recalling that Q+Ξ = D2
xd

Ξ + T1,1Ξ, where T1,1 ∈ Ψ
1,1
τ̃ , we have

| tr(Ξv)|2,3/2,τ̃ � | tr(D
2
xd

Ξv)|0,3/2,τ̃ + | tr(Ξv)|1,5/2,τ̃ = | tr((Q+ − T1,1)Ξv)|0,3/2,τ̃ + | tr(Ξv)|1,5/2,τ̃
. | tr(Q+Ξv)|0,3/2,τ̃ + | tr(Ξv)|1,5/2,τ̃.
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We then write

| tr(Ξv)|3,1/2,τ̃ � | tr(D
3
xd

Ξv)|0,1/2,τ̃ + | tr(Ξv)|2,3/2,τ̃ = | tr(Dxd (Q+ − T1,1)Ξv)|0,1/2,τ̃ + | tr(Ξv)|2,3/2,τ̃
. | tr(Q+Ξv)|1,1/2,τ̃ + | tr(Ξv)|2,3/2,τ̃.

Combining the two estimates yields the result. �

B.5. An Estimate for Qk. We recall that

Qk =
(
Dxd + iτ̂ξd (%′)

)2
+ (−1)ki

(
Ds + iτ̂σ(%′)

)2
+ r

(
x,Dx′ + iτ̂ξ′(%′)

)
,

with k = 1, 2. For this operator we have the following estimation.

Proposition B.10. Let V ′ b V. Let ` ∈ R. There exist τ0 ≥ τ∗, γ0 ≥ 1 and C > 0 such that

γ1/2‖τ̃−1/2v‖2,`,τ̃ + | tr(v)|1,`+1/2,τ̃ ≤ C
(
‖Qkv‖0,`,τ̃ + | tr(v)|0,`+3/2,τ̃

)
, k = 1, 2,

for τ ≥ τ0, γ ≥ γ0, ε ∈ [0, 1], and for v = w|
RN

+

, with w ∈ C∞c (RN) and supp(w) ⊂ V ′.

The open neighborhood V is that introduced in Section 4.2.

Proof. Let k be equal to 1 or 2. We write Q in place of Qk for concision. We also write µ in place
of µk.

We need to define microlocalization symbols and operators as in Section 4.4 and use some of
the symbols introduced therein. Let χV′ ∈ C∞(RN) be such that supp(χV′) ⊂ V and χV′ ≡ 1 on an
open neighborhood of V ′.

For δ ∈ (0, 1], we set

χδ,−(%′) = χV′(z) χ−(µ(%′)/δ) ∈ S (1, gT) χ̃δ,0(%′) = χV′(z)
(
1 − χ−(µ(%′)/δ)

)
∈ S (1, gT),

for χ− defined in Section 4.4, and observe that χδ,− + χδ,0 = 1 onMT,V′ . We set Ξδ,− = OpT(χδ,−)
and Ξδ,0 = OpT(χ̃δ,0).

In a conic neighborhood of supp(χδ,−) ⊂ MT,V we have µ ≤ −Cδ. As (4.20) holds in V we have
τ̂ξd ≥ Cτ̃ and thus |τ̂ξ | � τ̃. Thus, by Lemma 4.18, both roots of the symbol q of the operator Q
are in the lower half complex plane. Then, with Lemma B.1 we have the following perfect elliptic
estimate, for any M > 0,

(B.26) ‖Ξδ,−v‖2,0,τ̃ + | tr(Ξδ,−v)|1,1/2,τ̃ . ‖QΞδ,−v‖+ + ‖v‖2,−M,τ̃,

for v ∈ S (RN
+ ), for τ ≥ τ∗, γ ≥ 1 chosen sufficiently large, and ε ∈ [0, 1].

We now let χ
δ
, χδ,1 ∈ S (1, gT) supported in MT,V , homogeneous of degree zero, be such that

µ ≥ −Cδ on their supports and χδ,1 ≡ 1 in a conic neighborhood of supp(χ̃δ,0) and χ
δ
≡ 1 in a

conic neighborhood of supp(χδ,1).

We choose δ > 0 sufficiently small so that the result of Lemma 4.22 applies, that is, on supp(χ
δ
)

the roots of q are simple. We have

q(%) = q−(%)q+(%), q±(%) = ξd − ρ±(%′).

We set Q± := Dxd − OpT
w(χ2ρ±).

We shall denote by R j,k as a generic operator in Ψ
j,k
τ̃ , j ∈ N, k ∈ R, whose expression may

change from one line to the other. We denote by M an arbitrary large integer whose value may
change from one line to the other. We have with a proof similar to that of Lemma 4.33,

QΞδ,0 = Q−Q+Ξδ,0 + γR1,0Ξδ,0 + R2,−M.(B.27)
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In a conic neighborhood of supp(χ̃δ,0), the root of the symbol of Q− is in the lower half complex
plane. Then, with Lemma B.1, we have the following perfect elliptic estimate, for any M > 0,

(B.28) ‖Ξδ,0v‖1,0,τ̃ + | tr(Ξδ,0v)|0,1/2,τ̃ . ‖Q−Ξδ,0v‖+ + ‖v‖1,−M,τ̃,

for v ∈ S (RN
+ ), for τ ≥ τ∗, γ ≥ 1 chosen sufficiently large, and ε ∈ [0, 1].

For Q+ we have the following estimate, characterized by the loss of a half derivative and a trace
observation, as given by Lemma B.6,

γ1/2‖τ̃m−1/2Ξδ,0v‖1,`,τ̃ . ‖τ̃mQ+Ξδ,0v‖0,`,τ̃ + | tr(τ̃mΞδ,0v)|0,`+1/2,τ̃ + ‖v‖0,−M,τ̃,

for v ∈ S (RN
+ ) and ` ∈ R, and for τ and γ chosen sufficiently large, and ε ∈ [0, 1]. Then,

according to Proposition B.7, applied with α1 = 0, α2 = 1, δ1 = 1, and δ2 = 0, we have the
following estimates for the operator Q−Q+, for M > 0 and ` ∈ R,

γ1/2‖τ̃−1/2Ξδ,0v‖2,0,τ̃ + | tr(Ξδ,0v)|1,1/2,τ̃ . ‖Q−Q+Ξδ,0v‖+ + | tr(Ξδ,0v)|0,3/2,τ̃ + ‖v‖2,−M,τ̃,

for v ∈ S (RN
+ ), and for τ and γ chosen sufficiently large. With (B.27) we thus obtain

γ1/2‖τ̃−1/2Ξδ,0v‖2,0,τ̃ + | tr(Ξδ,0v)|1,1/2,τ̃ . ‖QΞδ,0v‖+ + | tr(Ξδ,0v)|0,3/2,τ̃ + ‖v‖2,−M,τ̃,(B.29)

for τ chosen sufficiently large with the usual semi-classical inequality (4.17).
Using that χδ,− + χδ,0 = 1 onMT,V′ we obtain, with (B.26) and (B.29)

γ1/2‖τ̃−1/2v‖2,0,τ̃ + | tr(v)|1,1/2,τ̃
. γ1/2‖τ̃−1/2Ξδ,−v‖2,0,τ̃ + γ1/2‖τ̃−1/2Ξδ,0v‖2,0,τ̃ + | tr(Ξδ,−v)|1,1/2,τ̃ + | tr(Ξδ,0v)|1,1/2,τ̃
. ‖QΞδ,−v‖+ + ‖QΞδ,0v‖+ + | tr(Ξδ,0v)|0,3/2,τ̃ + ‖v‖2,−M,τ̃,

for v = w|
RN

+

, with w ∈ C∞c (RN) and supp(w) ⊂ V ′. Observing that [Q,Ξδ,−] and [Q,Ξδ,0] are

both in γΨ
1,0
τ̃ we conclude the proof with the usual semi-classical inequality (4.17) for τ chosen

sufficiently large. �
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[Hör75] Lars Hörmander, Non-uniqueness for the Cauchy problem, Fourier integral operators and

partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974), Springer, Berlin,
1975, pp. 36–72. Lecture Notes in Math., Vol. 459.
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