
HAL Id: hal-01194742
https://hal.science/hal-01194742v1

Submitted on 7 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global Optimization based on Contractor Programming
Jordan Ninin, Gilles Chabert

To cite this version:
Jordan Ninin, Gilles Chabert. Global Optimization based on Contractor Programming. XII GLOBAL
OPTIMIZATION WORKSHOP, Sep 2014, Malaga, Spain. pp.77-80. �hal-01194742�

https://hal.science/hal-01194742v1
https://hal.archives-ouvertes.fr


Proceedings of MAGO 2014, pp. 1 – 4.

Global Optimization based on Contractor Programming

Jordan Ninin1 and Gilles Chabert2

1ENSTA-Bretagne, LabSTIC, IHSEV team, 2 rue Francois Verny, 29806 Brest, France jordan.ninin@ensta-bretagne.fr

2Ecole des Mines de Nantes, LINA, TASC team, 4 rue Alfred Kastler, 44300 Nantes, France gilles.chabert@mines-nantes.fr

Abstract In this paper, we will present a general pattern based on contractor programming for designing
a global optimization solver. This approach allows to solve problems with a wide variety of con-
straints. The complexity and the performance of the algorithm rely on the construction of contractors
which characterize the feasible region.

Keywords: Global Optimization, Interval Arithmetic, Contractor Programming

1. Introduction

Considering sets in place of single points is not a common point of view in the Mathemat-
ical Programming communities. In contrast, this interpretation is the key concept in global
optimization based on interval arithmetic and in constraint programming.

Faced to complexity and diversity of real-life problems, it is hard to find a general pattern or
unique algorithm for solving all of them. Some algorithms deal with disjunctive constraints,
others with dynamic constraints, others with uncertainties. Furthermore, when real-life prob-
lems merge different kinds of constraints, we often need to remove a part of the model just
because our solvers do not accept it. Unfortunately, these cases are not rare.

In this talk, we will present a general pattern based on contractor programming that allows
to handle a wide variety of problems. In Section 2, we recall the definitions related to interval
arithmetic and contractor programming. Then, we present a short subset of some standard
contractors and how we can combine and merge them. In Section 4, a global optimization
algorithm based on contractors is detailed.

2. Definitions

Since the book of Moore in 1966 [9], many techniques have been developed based on interval
arithmetic. More generally, all these techniques can be considered as Set-Membership Meth-
ods. These methods and algorithms do not consider single numerical values, or floating-point
numbers, but manipulate sets. The interval arithmetic offers a solid theoretical basis to repre-
sent and to calculate with subsets of Rn.

An interval is a closed connected subset of R. A non-empty interval [x] can be represented
by its endpoints: [x] = [x, x] = {x : x ≤ x ≤ x}where x ∈ R∪{−∞}, x ∈ R∪{+∞} and x ≤ x.
The set of intervals will be denoted by IR, and the set of n-dimensional interval vectors, also
called boxes, will be denoted by IRn.



2 Jordan Ninin and Gilles Chabert

Definition 1. Let X ⊆ Rn be a feasible region.
The operator CX : IRn → IRn is a contractor for X if:

∀[x] ∈ IRn,

{
CX([x]) ⊆ [x], (contraction)
CX([x]) ∩ X ⊇ [x] ∩ X. (completeness)

The concept of contractor is very broad for integrating and interfacing mixed techniques
[6]. Contractors are directly inspired form constraint programming. A contractor is defined
for a feasible region X and its purpose is to eliminate a part of a domain which is not in X.

Proposition 2. The operator C : IRn → IRn is a contractor for the equation f(x) = 0, if:

∀[x] ∈ IRn,

{
C([x]) ⊆ [x],
∀x ∈ [x], f(x) = 0 =⇒ x ∈ C([x]).

The basic implementation of a contractor for a numerical constraint is the forward-backward
algorithm, also called constraint propagation technique or FBBT or HC4-Revise [4, 8, 11]. This
algorithm is the basic block of contractor programming.

All set operators can be extended to contractors. For example, the intersection of two con-
tractors creates a contractor for the intersection of these two sets. In the same way, the hull of
two contractors creates a contractor for the disjunction of these constraints.

Definition 3. Let X and Y ⊆ Rn be two feasible regions.

Intersection: (CX ∩ CY)([x]) = CX([x]) ∩ CY([x])
Union: (CX ∪ CY)([x]) = CX([x]) ∪ CY([x])

Composition: (CX ◦ CY)([x]) = CX(CY([x]))
Fixed Point: C∞ = C ◦ C ◦ C ◦ . . .

Many known techniques can be cast into contractors. All linear relaxation techniques can be
considered as contractors. Such a contractor is constructed by intersecting the input box with
the polyhedral hull created by the linear relaxation. This intersection is obtained by solving at
most 2n linear programs, see [2, 10] for details.

3. Non-conventional Contractors

The main interest of contractors is the ability to deal with constraints that are difficult to com-
bine or to formulate mathematically. For example, if the variable corresponds to a position on
a map, it is very simple to make the intersection of a given box with an area of a map, while it
would have been cumbersome to describe this area by a mathematical equation.

Another common case is the possibility of corrupted data. If a set of constraints are based
on physical data, it is not uncommon that some of this data are wrong. For example, only 80
% of constraints are acceptable, without knowing which ones. In this situation, the q-relaxed
intersection of contractors can be applied to this problem:

Definition 4. The q-relaxed intersection of m subsets X1, . . . ,Xm of Rn is the set of all x ∈ Rn which

belong to at least (m− q) Xi. We denote it by X{q} =

{q}⋂
Xi.

Since the q-relaxed intersection is a set operator, we can extend this notion to contractors:(⋂{q} CXi

)
([x]) =

{q}⋂
(CXi([x])). This contractor allows to model the possibility of invalid

constraints: it can also be used for robust optimization.
In [5], Carbonnel et al. found an algorithm with a complexity θ(nm2) to compute a box

which contains the q-relaxed intersection of m boxes of Rn. This algorithm can be interpreted
as an implementation of the q-relaxed intersection of m contractors.



Global Optimization based on Contractor Programming 3

Another possibility is to project a subset of Rn over one or more dimensions. For example,
if a constraint needs to be satisfied for all values of a parameter in a given set, such as {x ∈
Rn : ∀t ∈ X ⊆ Rm, g(x, t) ≤ 0}, few solvers are available to deal with it. Another example
is when a constraint needs to be satisfied for at least one value of the parameter, such as
{x ∈ Rn : ∃t ∈ X ⊆ Rm, g(x, t) ≤ 0}.

Two operators are defined on contractors. The first one is the projection-intersection and the
second one is the projection-union.

Definition 5. Let X ⊆ Rn, Y ⊆ Rm, Z ⊆ Rp, with Z = X × Y. Let C be a contractor for the set Z.
We define C∩Y the Projection Intersection of Z over X and C∪Y its Projection Union by:

∀x ∈ Rn,

{
C∩Y([x]) =

⋂
y∈Y πX (C([x]× {y})) ,

C∪Y([x]) =
⋃

y∈Y πX (C([x]× {y})) .

with πX the projection of Z over X.

Proposition 6. Let C be a contractor for a set Z. C∩Y is a contractor for the set X = {x : ∀y ∈
Y, (x, y) ∈ Z} and C∪Y is a contractor for the set X = {x : ∃y ∈ Y, (x, y) ∈ Z}.

The Projection-Intersection contractor contracts each part of [x] which are contracted by
C([x] × {y}) for any y ∈ Y. Indeed, each part [a] of [x], such as ∃y ∈ Y, ([a], y) /∈ Z, can be
removed. Thus, each part [b] of [x], such as ∀y ∈ Y, ([b], y) ∈ Z, is kept. A similar argument
proves Proposition 6 for the Projection-Union contractor.

4. Global Optimization Algorithm

The implementations of all the previous contractors are available in our library IBEX [1, 3].
Thus, given a physical problem, the user can construct a contractor for the feasible region
X of his problem. We denote this contractor Cout. Moreover, using the counterparts of set-
membership operators for contractors (cf. Definition 3), we can construct in the same way
a contractor for the negation of X. This contractor is denoted by Cout. The only required
mathematical expression is the objective function, fcost.

Given a box [x] ∈ Rn, Cout([x]) removes from [x] a part that does not contain a feasi-
ble solution. In the same way, Cin([x]) removes from [x] parts which are entire feasible; i.e.
([x]/Cin([x])) ⊆ X. Thus, ([x]/Cin([x])) is a feasible subset and we can perform a global opti-
mization without constraint on it. If this step succeeds, this set can be discarded: indeed, if
a new best current solution is found, we save it and it is proved that this set does not con-
tain a better solution; else it is directly proved that no better solution can be found in this set
([x]/Cin([x])).

The following algorithm describes a simple implementation pattern for a global optimiza-
tion solver based on contractors. This algorithm is inspired from the SIVIA Algorithm (Set-
Inversion Via Interval Analysis), which is used to compute the feasible set in a domain [7].

The inputs are an initial domain [x] ∈ IRn, Cout a contractor for X, Cin a contractor for X and
fcost an objective function. The outputs are f̃ , the global minimum value found and x̃, a global
minimum. A boolean variable b is added for each element of L to indicate if the element is
included in the feasible region.

(x̃, f̃ ) = OptiCtc ([x], Cout, Cin, fcost):
f̃ := +∞, denotes the current upper bound for the global minimum;
L := {([x], false)}, initialization of the data structure of the stored elements;
Let Cf a contractor based on the constraint {x : fcost(x) ≤ f̃};
Repeat until a stopping criterion is fulfilled:

Extract from L an element ([y], b),



4 Jordan Ninin and Gilles Chabert

Bisect the considered box [y]: [y1], [y2],
for j = 1 to 2 :

if (b = false) then
Contract [yi] with Cout ∩ Cf ,
[ytmp] := [yi],

Contract [yi] with Cin,
Add ([yi],false) in L.
[ytmp] := [ytmp]/[yi],

else
Contract [yi] with Cf ,
[ytmp] := [yi],

Try to find the global optimum without constraint in [ytmp],
if the search succeeds in a limited time then

Update f̃ and x̃.
else

Add ([ytmp], true) in L.
end.

Further refinements can improve the behavior of the algorithm, but we must keep in mind
that most of time, the performances depend of the problem itself. With this algorithm, the
improvements which can have a real and direct impact are in the implementation of the con-
tractors and in the relevance of the model.

5. Summary

This paper introduces the use of the contractors for designing a global optimization algorithm.
These concepts will be illustrated to minimize the consumption of two robots following non-
linear parametric trajectories and subject to two constraints: conflict avoidance and validation
of at least 80% checkpoints.

References

[1] IBEX : a C++ numerical library based on interval arithmetic and constraint programming.
http://www.emn.fr/z-info/ibex/.

[2] I. Araya, G. Trombettoni, and B. Neveu. A contractor based on convex interval taylor. In Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems, Springer, 2012.

[3] I. Araya, G Trombettoni, B. Neveu and G Chabert. Upper Bounding in Inner Regions for Global Optimization under
Inequality Constraints. Journal of Global Optimization, 2014, to appear.

[4] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Waechter, Branching and bounds tightening techniques for non-convex
MINLP, Optimization Methods & Software, vol. 24, pp. 597-634, 2009.

[5] C. Carbonnel, G. Trombettoni, P. Vismara and G. Chabert, Q-intersection algorithms for robust parameter estima-
tion, in submission.

[6] G. Chabert and L. Jaulin, Contractor programming, Artificial Intelligence, vol. 173, n. 11, pp. 1079-1100, 2009.

[7] L. Jaulin and E. Walter. Set inversion via interval analysis for nonlinear bounded-error estimation. Automatica, vol.
29, n.4, pp. 1053-1064, 1993.

[8] F. Messine, Deterministic global optimization using interval constraint propagation techniques, RAIRO-Operations
Research, vol. 38, pp. 277-293, 2004.

[9] R.E. Moore, Interval Analysis, Prentice-Hall Inc., Englewood Cliffs, 1966.

[10] J. Ninin, P. Hansen, and F. Messine, A reliable affine relaxation method for global optimization. Cahier du GERAD,
in submission.

[11] X.-H. Vu, D. Sam-Haroud, and B. Faltings, Enhancing numerical constraint propagation using multiple inclusion
representations, Annals of Mathematics and Artificial Intelligence, vol. 55, pp. 295-354, 2009.


