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A PEDESTRIAN APPROACH TO THE INVARIANT GIBBS

MEASURES FOR THE 2-d DEFOCUSING NONLINEAR

SCHRÖDINGER EQUATIONS

TADAHIRO OH AND LAURENT THOMANN

Abstract. We consider the defocusing nonlinear Schrödinger equations on the two-
dimensional compact Riemannian manifold without boundary or a bounded domain in
R

2. Our aim is to give a pedagogic and self-contained presentation on the Wick renormal-
ization in terms of the Hermite polynomials and the Laguerre polynomials and construct
the Gibbs measures corresponding to the Wick ordered Hamiltonian. Then, we construct
global-in-time solutions with initial data distributed according to the Gibbs measure and
show that the law of the random solutions, at any time, is again given by the Gibbs
measure.
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1. Introduction

1.1. Nonlinear Schrödinger equations. Let (M, g) be a two-dimensional compact Rie-

mannian manifold without boundary or a bounded domain in R
2. We consider the defo-

cusing nonlinear Schrödinger equation (NLS):
{
i∂tu+∆gu = |u|k−2u

u|t=0 = φ,
(t, x) ∈ R×M, (1.1)

where ∆g stands for the Laplace-Beltrami operator on M, k = 2m ≥ 4 is an even integer,

and the unknown is the function u : R×M −→ C.

The aim of this article is to give a pedagogic and self-contained1 presentation on the

construction of an invariant Gibbs measure for a renormalized version of (1.1). In particular,

we present an elementary Fourier analytic approach to the problem in the hope that this will

be accessible to readers (in particular those in dispersive PDEs) without prior knowledge in

quantum field theory and/or stochastic analysis. In order to make the presentation simpler,

we first detail the case of the flat torus M = T
2, where T = R/(2πZ). Namely, we consider

{
i∂tu+∆u = |u|k−2u

u|t=0 = φ,
(t, x) ∈ R× T

2. (1.2)

The equation (1.2) is known to possess the following Hamiltonian structure:

∂tu = −i
∂H

∂u
, (1.3)

where H = H(u) is the Hamiltonian given by

H(u) =
1

2

ˆ

T2

|∇u|2dx+
1

k

ˆ

T2

|u|kdx. (1.4)

Moreover, the mass

M(u) =

ˆ

T2

|u|2dx

is also conserved under the dynamics of (1.2).

1.2. Gibbs measures. Given a Hamiltonian flow on R
2n:

{
ṗj =

∂H
∂qj

q̇j = − ∂H
∂pj

(1.5)

with Hamiltonian H(p, q) = H(p1, · · · , pn, q1, · · · , qn), Liouville’s theorem states that the

Lebesgue measure
∏n

j=1 dpjdqj on R
2n is invariant under the flow. Then, it follows from

the conservation of the Hamiltonian H that the Gibbs measures e−βH(p,q)
∏n

j=1 dpjdqj are

invariant under the dynamics of (1.5). Here, β > 0 denotes the reciprocal temperature.

NLS (1.2) is a Hamiltonian PDE, where the Hamiltonian is conserved under its dynamics.

Thus by drawing an analogy to the finite dimensional setting, one expects the Gibbs measure

1with the exception of the Wiener chaos estimate (Lemma 2.6).



INVARIANT GIBBS MEASURES FOR THE 2-d DEFOCUSING NLS 3

of the form:2

“dP
(2m)
2 = Z−1 exp(−βH(u))du” (1.6)

to be invariant under the dynamics of (1.2).3 As it is, (1.6) is merely a formal expression

and we need to give a precise meaning. From (1.4), we can write (1.6) as

“dP
(2m)
2 = Z−1e−

1
2m

´

|u|2mdxe−
1
2

´

|∇u|2dxdu”. (1.7)

This motivates us to define the Gibbs measure P
(2m)
2 as an absolutely continuous (proba-

bility) measure with respect to the following massless Gaussian free field: dµ = Z̃−1 exp
(
−

1
2

´

|∇u|2dx
)
du. In order to avoid the problem at the zeroth frequency, we instead consider

the following massive Gaussian free field:

dµ = Z̃−1e−
1
2

´

|∇u|2dx− 1
2

´

|u|2dxdu. (1.8)

in the following. Note that this additional factor replaces −H(u) by −H(u) − 1
2M(u) in

the formal definition (1.6) of P
(2m)
2 . In view of the conservation of mass, however, we still

expect P
(2m)
2 to be invariant if we can give a proper meaning to P

(2m)
2 .

It is well known that µ in (1.8) corresponds to a mean-zero Gaussian free field on T
2.

More precisely, µ is the mean-zero Gaussian measure on Hs(T2) for any s < 0 with the

covariance operator Qs = (Id−∆)−1+s. Recall that a covariance operator Q of a mean-zero

probability measure µ on a Hilbert space H is a trace class operator, satisfying

ˆ

H
〈f, u〉H〈h, u〉Hdµ(u) = 〈Qf, h〉H (1.9)

for all f, h ∈ H.

We can also view the Gaussian measure µ as the induced probability measure under the

map:4

ω ∈ Ω 7−→ u(x) = u(x;ω) =
∑

n∈Z2

gn(ω)√
1 + |n|2

ein·x, (1.10)

where {gn}n∈Z2 is a sequence of independent standard5 complex-valued Gaussian random

variables on a probability space (Ω,F , P ). Namely, functions under µ are represented by

the random Fourier series given in (1.10). Note that the random function u in (1.10)

is in Hs(T2) \ L2(T2) for any s < 0, almost surely. Thus, µ is a Gaussian probability

measure on Hs(T2) for any s < 0. Moreover, it is easy to see that (1.9) with H = Hs(T2)

2In the following, Z, ZN , and etc. denote various normalizing constants so that the corresponding mea-
sures are probability measures when appropriate.

3For simplicity, we set β = 1 in the following. See [33] for a discussion on the Gibbs measures and
different values of β > 0.

4Strictly speaking, there is a factor of (2π)−1 in (1.10). For simplicity of the presentation, however, we
drop such harmless 2π hereafter.

5Namely, gn has mean 0 and Var(gn) = 1.
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Qs = (Id−∆)−1+s, s < 0, follows from (1.10). Indeed, we have

ˆ

Hs

〈f, u〉Hs〈h, u〉Hsdµ(u) = E

[ ∑

n∈Z2

f̂(n)gn(ω)

〈n〉1−2s

∑

m∈Z2

ĥ(m)gm(ω)

〈m〉1−2s

]

=
∑

n∈Z2

f̂(n)ĥ(n)

〈n〉2−4s
= 〈Qsf, h〉Hs . (1.11)

Here, 〈 · 〉 = (1 + | · |) 1
2 . Note that the second equality in (1.11) holds even for s ≥ 0. For

s ≥ 0, however, µ is not a probability measure on Hs(T2). Indeed, we have µ(L2(T2)) = 0.

The next step is to make sense of the Gibbs measure P
(2m)
2 in (1.7). First, let us briefly

go over the situation when d = 1. In this case, µ defined by (1.8) is a probability measure

on Hs(T), s < 1
2 . Then, it follows from Sobolev’s inequality that

´

T
|u(x;ω)|kdx is finite

almost surely. Hence, for any k > 2, the Gibbs measure:

dP
(k)
1 = Z−1e−

1
k

´

T
|u|kdxdµ (1.12)

is a probability measure on Hs(T), s < 1
2 , absolutely continuous with respect to µ. More-

over, by constructing global-in-time dynamics in the support of P
(k)
1 , Bourgain [6] proved

that the Gibbs measure P
(k)
1 is invariant under the dynamics of the defocusing NLS for

k > 2. Here, by invariance, we mean that

P
(k)
1

(
Φ(−t)A

)
= P

(k)
1 (A) (1.13)

for any measurable set A ∈ BHs(T) and any t ∈ R, where Φ(t) : u0 ∈ Hs(T) 7→ u(t) =

Φ(t)u0 ∈ Hs(T) is a well-defined solution map, at least almost surely with respect to P
(k)
1 .

McKean [25] gave an independent proof of the invariance of the Gibbs measure when k = 4,

relying on a probabilistic argument. See Remark 1.7 below for the discussion on the focusing

case. Over the recent years, there has been a significant progress in the study of invariant

Gibbs measures for Hamiltonian PDEs. See, for example, [24, 6, 27, 25, 7, 8, 44, 41, 42,

13, 15, 31, 32, 43, 40, 30, 34, 21, 10, 19, 37, 12].

The situation for d = 2 is entirely different. As discussed above, the random function u

in (1.10) is not in L2(T2) almost surely. This in particular implies that
ˆ

T2

|u(x;ω)|kdx = ∞ (1.14)

almost surely for any k ≥ 2. Therefore, we can not construct a probability measure of the

form:

dP
(k)
2 = Z−1e−

1
k

´

T2 |u|kdxdµ. (1.15)

Thus, we are required to perform a (Wick) renormalization on the nonlinear part |u|k of

the Hamiltonian. This is a well studied subject in the Euclidean quantum field theory, at

least in the real-valued setting. See Simon [38] and Glimm-Jaffe [23]. Also, see Da Prato-

Tubaro [18] for a concise discussion on T
2, where the Gibbs measures naturally appear in

the context of the stochastic quantization equation.
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1.3. Wick renormalization. There are different ways to introduce the Wick renormal-

ization. One classical way is to use the Fock-space formalism, where the Wick ordering is

given as the reordering of the creation and annihilation operators. See [38, 26, 20] for more

details. It can be also defined through the multiple Wiener-Ito integrals. In the following,

we directly define it as the orthogonal projection onto the Wiener homogeneous chaoses

(see the Wiener-Ito decomposition (2.5) below) by using the Hermite polynomials and the

(generalized) Laguerre polynomials, since this allows us to introduce only the necessary ob-

jects without introducing cumbersome notations and formalism, making our presentation

accessible to readers without prior knowledge in the problem.

Before we study the Wick renormalization for NLS, let us briefly discuss the Wick renor-

malization on T
2 in the real-valued setting. We refer to [18] for more details. We assume

that u is real-valued. Then, the random function u under µ in (1.8) is represented by the

random Fourier series (1.10) conditioned that g−n = gn. Given N ∈ N, let PN be the

Dirichlet projection onto the frequencies {|n| ≤ N} and set uN = PNu, where u is as

in (1.10). Note that, for each x ∈ T
2, the random variable uN (x) is a mean-zero real-valued

Gaussian with variance

σN := E[u2N (x)] =
∑

|n|≤N

1

1 + |n|2 ∼ logN. (1.16)

Note that σN is independent of x ∈ T
2. Fix an even integer k ≥ 4. We define the Wick

ordered monomial :ukN : by

:ukN : = Hk(uN ;σN ), (1.17)

where Hk(x;σ) is the Hermite polynomial of degree k defined in (2.1). Then, one can show

that the limit
ˆ

T2

:uk : dx = lim
N→∞

ˆ

T2

:ukN : dx (1.18)

exists in Lp(µ) for any finite p ≥ 1. Moreover, one can construct the Gibbs measure:

dP
(k)
2 = Z−1e−

1
k

´

T2 :u
k: dxdµ

as the limit of

dP
(k)
2,N = Z−1

N e−
1
k

´

T2 :u
k
N : dxdµ.

The key ingredients of the proof of the above claims are the Wiener-Ito decomposition of

L2(Hs(T2), µ) for s < 0, the hypercontractivity of the Ornstein-Uhlenbeck semigroup, and

Nelson’s estimate [28, 29].

For our problem on NLS (1.2), we need to work on complex-valued functions. In the

real-valued setting, the Wick ordering was defined by the Hermite polynomials. In the

complex-valued setting, we also define the Wick ordering by the Hermite polynomials, but

through applying the Wick ordering the real and imaginary parts separately.

Let u be as in (1.10). Given N ∈ N, we define uN by

uN = PNu =
∑

|n|≤N

û(n)ein·x,
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where PN is the Dirichlet projection onto the frequencies {|n| ≤ N} as above. Then, for

m ∈ N, we define the Wick ordered monomial : |uN |2m : by

: |uN |2m : = :
(
(Re uN )2 + (ImuN )2

)m
:

=
m∑

ℓ=0

(
m
ℓ

)
: (Re uN )2ℓ : : (ImuN )2(m−ℓ) : . (1.19)

It turns out, however, that it is more convenient to work with the Laguerre polynomials

in the current complex-valued setting; see Section 2. Recall that the Laguerre polynomials

Lm(x) are defined through the following generating function:

G(t, x) :=
1

1− t
e−

tx
1−t =

∞∑

m=0

tmLm(x), (1.20)

for |t| < 1 and x ∈ R. For readers’ convenience, we write out the first few Laguerre

polynomials in the following:

L0(x) = 1, L1(x) = −x+ 1, L2(x) =
1
2(x

2 − 4x+ 2),

L3(x) =
1
3!(−x3 + 9x2 − 18x+ 6), L4(x) =

1
4!(x

4 − 16x3 + 72x2 − 96x+ 24). (1.21)

More generally, the Lm are given by the formula

Lm(x) =
m∑

ℓ=0

(
m
ℓ

)
(−1)ℓ

ℓ!
xℓ. (1.22)

Given σ > 0, we set

Lm(x;σ) := σmLm

(
x
σ

)
. (1.23)

Note that Lm(x;σ) is a homogenous polynomial of degree m in x and σ. Then, given

N ∈ N, we can rewrite the Wick ordered monomial : |uN |2m : defined in (1.19) as

: |uN |2m : = (−1)mm! · Lm(|uN |2;σN ), (1.24)

where σN is given by

σN = E[|uN (x)|2] =
∑

|n|≤N

1

1 + |n|2 ∼ logN, (1.25)

independently of x ∈ T
2. See Lemma 2.1 for the equivalence of (1.19) and (1.24).

For N ∈ N, let

GN (u) =
1

2m

ˆ

T2

: |PNu|2m : dx. (1.26)

Then, we have the following proposition.

Proposition 1.1. Let m ≥ 2 be an integer. Then, {GN (u)}N∈N is a Cauchy sequence in

Lp(µ) for any p ≥ 1. More precisely, there exists Cm > 0 such that

‖GM (u)−GN (u)‖Lp(µ) ≤ Cm(p− 1)m
1

N
1
2

for any p ≥ 1 and any M ≥ N ≥ 1.
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Proposition 1.1 states that we can define the limit G(u) as

G(u) =
1

2m

ˆ

T2

: |u|2m : dx = lim
N→∞

GN (u) =
1

2m
lim

N→∞

ˆ

T2

: |PNu|2m : dx

and that G(u) ∈ Lp(µ) for any finite p ≥ 2. This allows us to define the Wick ordered

Hamiltonian:

HWick(u) =
1

2

ˆ

T2

|∇u|2dx+
1

2m

ˆ

T2

: |u|2m : dx (1.27)

for an integer m ≥ 2. In order to discuss the invariance property of the Gibbs measures,

we need to overcome the following two problems.

(i) Define the Gibbs measure of the form

“dP
(2m)
2 = Z−1e−HWick(u)− 1

2
M(u)du”, (1.28)

corresponding to the Wick ordered Hamiltonian HWick.

(ii) Make sense of the following defocusing Wick ordered NLS on T
2:

i∂tu+∆u = : |u|2(m−1)u : , (t, x) ∈ R× T
2, (1.29)

arising as a Hamiltonian PDE: ∂tu = −i∂uHWick. In particular, we need to give a

precise meaning to the Wick ordered nonlinearity : |u|2(m−1)u :.

Let us first discuss Part (i). For N ∈ N, let

RN (u) = e−GN (u) = e−
1

2m

´

T2 :|uN |2m: dx

and define the truncated Gibbs measure P
(2m)
2,N by

dP
(2m)
2,N := Z−1

N RN (u)dµ = Z−1
N e−

1
2m

´

T2 :|uN |2m: dxdµ, (1.30)

corresponding to the truncated Wick ordered Hamiltonian:

HN
Wick

(u) =
1

2

ˆ

T2

|∇u|2dx+
1

2m

ˆ

T2

: |uN |2m : dx. (1.31)

Note that P
(2m)
2,N is absolutely continuous with respect to the Gaussian free field µ.

We have the following proposition on the construction of the Gibbs measure P
(2m)
2 as a

limit of P
(2m)
2,N .

Proposition 1.2. Let m ≥ 2 be an integer. Then, RN (u) ∈ Lp(µ) for any p ≥ 1 with a

uniform bound in N , depending on p ≥ 1. Moreover, for any finite p ≥ 1, RN (u) converges

to some R(u) in Lp(µ) as N → ∞.

In particular, by writing the limit R(u) ∈ Lp(µ) as

R(u) = e−
1

2m

´

T2
:|u|2m: dx,

Proposition 1.2 allows us to define the Gibbs measure P
(2m)
2 in (1.28) by

dP
(2m)
2 = Z−1R(u)dµ = Z−1e−

1
2m

´

T2 :|u|2m: dxdµ. (1.32)

Then, P
(2m)
2 is a probability measure on Hs(T2), s < 0, absolutely continuous to the

Gaussian field µ. Moreover, P
(2m)
2,N converges weakly to P

(2m)
2 .
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1.4. Invariant dynamics for the Wick ordered NLS. In this subsection, we study the

dynamical problem (1.29). First, we consider the Hamiltonian PDE corresponding to the

truncated Wick ordered Hamiltonian HN
Wick

in (1.31):

i∂tu
N +∆uN = PN

(
: |PNuN |2(m−1)PNuN :

)
. (1.33)

The high frequency part P⊥
NuN evolves according to the linear flow, while the low frequency

part PNuN evolves according to the finite dimensional system of ODEs viewed on the

Fourier side. Here, P⊥
N is the Dirichlet projection onto the high frequencies {|n| > N}.

Let µ = µN ⊗ µ⊥
N , where µN and µ⊥

N are the marginals of µ on EN = span{ein·x}|n|≤N

and E⊥
N = span{ein·x}|n|>N , respectively. Then, we can write P

(2m)
2,N in (1.30) as

P
(2m)
2,N = P̂

(2m)
2,N ⊗ µ⊥

N , (1.34)

where P̂
(2m)
2,N is the finite dimensional Gibbs measure defined by

dP̂
(2m)
2,N = Ẑ−1

N e−
1

2m

´

T2 :|PNuN |2m: dxdµN . (1.35)

Then, it is easy to see that P
(2m)
2,N is invariant under the dynamics of (1.33); see Lemma 5.1

below. In particular, the law of uN (t) is given by P
(2m)
2,N for any t ∈ R.

For N ∈ N, define FN (u) by

FN (u) = PN

(
: |PNu|2(m−1)PNu :

)
. (1.36)

Then, assuming that u is distributed according to the Gaussian free field µ in (1.8), the

following proposition lets us make sense of the Wick ordered nonlinearity : |u|2(m−1)u :

in (1.29) as the limit of FN (u).

Proposition 1.3. Let m ≥ 2 be an integer and s < 0. Then, {FN (u)}N∈N is a Cauchy

sequence in Lp(µ;Hs(T2)) for any p ≥ 1. More precisely, given ε > 0 with s+ ε < 0, there

exists Cm,s,ε > 0 such that

∥∥‖FM (u)− FN (u)‖Hs

∥∥
Lp(µ)

≤ Cm,s,ε(p− 1)m− 1
2

1

N ε
(1.37)

for any p ≥ 1 and any M ≥ N ≥ 1.

In the real-valued setting, the nonlinearity corresponding to the Wick ordered Hamiltonian

is again given by a Hermite polynomial. Indeed, from (1.17), we have

1
k∂uN

(
:ukN :

)
= 1

k∂uN
Hk(uN ;σN ) = Hk−1(uN ;σN ),

since ∂xHk(x; ρ) = kHk−1(x; ρ); see (2.3). The situation is slightly different in the complex-

valued setting. In the proof of Proposition 1.3, the generalized Laguerre polynomials L
(α)
m (x)

with α = 1 plays an important role. See Section 3.

We denote the limit by F (u) = :|u|2(m−1)u : and consider the Wick ordered NLS (1.29).

When m = 2, Bourgain [7] constructed almost sure global-in-time strong solutions and

proved the invariance of the Gibbs measure P
(4)
2 for the defocusing cubic Wick ordered NLS.

See Remark 1.6 below. The main novelty in [7] was to construct local-in-time dynamics

in a probabilistic manner, exploiting the gain of integrability for the random rough linear

solution. By a similar approach, Burq-Tzvetkov [14, 15] constructed almost sure global-in-

time strong solutions and proved the invariance of the Gibbs measure for the defocusing
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subquintic nonlinear wave equation (NLW) posed on the three-dimensional ball in the radial

setting.

On the one hand, when m = 2, there is only an ε-gap between the regularity of the

support Hs(T2), s < 0, of the Gibbs measure P
(4)
2 and the scaling criticality s = 0 (and the

regularity s > 0 of the known deterministic local well-posedness [5]). On the other hand,

when m ≥ 3, the gap between the regularity of the Gibbs measure P
(2m)
2 and the scaling

criticality is slightly more than 1 − 1
m−1 ≥ 1

2 . At present, it seems very difficult to close

this gap and to construct strong solutions even in a probabilistic setting.

In the following, we instead follow the approach presented in the work [12] by the second

author with Burq and Tzvetkov. This work, in turn, was motivated by the works of

Albeverio-Cruzeiro [1] and Da Prato-Debussche [17] in the study of fluids. The main idea

is to exploit the invariance of the truncated Gibbs measures P
(2m)
2,N for (1.33), then to

construct global-in-time weak solutions for the Wick ordered NLS (1.29), and finally to

prove the invariance of the Gibbs measure P
(2m)
2 in some mild sense.

Now, we are ready to state our main theorem.

Theorem 1.4. Let m ≥ 2 be an integer. Then, there exists a set Σ of full measure with

respect to P
(2m)
2 such that for every φ ∈ Σ, the Wick ordered NLS (1.29) with initial

condition u(0) = φ has a global-in-time solution

u ∈ C(R;Hs(T2))

for any s < 0. Moreover, for all t ∈ R, the law of the random function u(t) is given

by P
(2m)
2 .

There are two components in Theorem 1.4: existence of solutions and invariance of P
(2m)
2 .

A precursor to the existence part of Theorem 1.4 appears in [11]. In [11], the second author

with Burq and Tzvetkov used the energy conservation and a regularization property under

randomization to construct global-in-time solutions to the cubic NLW on T
d for d ≥ 3. The

main ingredient in [11] is the compactness of the solutions to the approximating PDEs.

In order to prove Theorem 1.4, we instead follow the argument in [12]. Here, the main

ingredient is the tightness (= compactness) of measures on space-time functions, emanating

from the truncated Gibbs measure P
(2m)
2,N and Skorokhod’s theorem (see Lemma 5.7 below).

We point out that Theorem 1.4 states only the existence of a global-in-time solution u

without uniqueness.

Theorem 1.4 only claims that the law L(u(t)) of the Hs-valued random variable u(t)

satisfies

L(u(t)) = P
(2m)
2

for any t ∈ R. This implies the invariance property of the Gibbs measure P
(2m)
2 in some

mild sense, but it is weaker than the actual invariance in the sense of (1.13).

In fact, the result of Theorem 1.4 remains true in a more general setting. Let (M, g) be

a two-dimensional compact Riemannian manifold without boundary or a bounded domain

in R
2. We consider the equation (1.1) on M (when M is a domain in R

2, we impose the

Dirichlet or Neumann boundary condition). Assume that k = 2m for some integer m ≥ 2.

In Section 4, we prove the analogues of Propositions 1.1, 1.2, and 1.3 in this geometric
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setting, by incorporating the geometric information such as the eigenfunction estimates. In

particular, it is worthwhile to note that the variance parameter σN in (1.25) now depends on

x ∈ M in this geometric setting and more care is needed. Once we establish the analogues

of Propositions 1.1, 1.2, and 1.3, we can proceed as in the flat torus case. Namely, these

propositions allow us to define a renormalized Hamiltonian:

HWick(u) =
1

2

ˆ

M
|∇u|2dx+

1

2m

ˆ

M
: |u|2m : dx,

and a Gibbs measure P
(2m)
2 as in (1.28). Moreover, we are able to give a sense to NLS with

a Wick ordered nonlinearity:{
i∂tu+∆gu = : |u|2(m−1)u :

u|t=0 = φ,
(t, x) ∈ R×M. (1.38)

In this general setting, we have the following result.

Theorem 1.5. Let m ≥ 2 be an integer. Then, there exists a set Σ of full measure with

respect to P
(2m)
2 such that for every φ ∈ Σ, the Wick ordered NLS (1.38) with initial

condition u(0) = φ has a global-in-time solution

u ∈ C(R;Hs(M))

for any s < 0. Moreover, for all t ∈ R, the law of the random function u(t) is given

by P
(2m)
2 .

Theorems 1.4 and 1.5 extend [12, Theorem 1.11] for the defocusing Wick ordered cubic

NLS (m = 2) to all defocusing nonlinearities (all m ≥ 2). While the main structure of

the argument follows that in [12], the main source of challenge for our problem is the

more and more complicated combinatorics for higher values of m. See Appendix A for an

example of an concrete combinatorial argument for m = 3 in the case M = T
2, following

the methodology in [7, 12]. In order to overcome this combinatorial difficulty, we introduce

the white noise functional (see Definition 2.2 below) and avoid combinatorial arguments

of increasing complexity in m, allowing us to prove Propositions 1.1 and 1.3 in a concise

manner. In order to present how we overcome the combinatorial complexity in a clear

manner, we decided to first discuss the proofs of Propositions 1.1, 1.2, and 1.3 in the case

of the flat torus T
2 (Sections 2 and 3). This allows us to isolate the main idea. We then

discuss the geometric component and prove the analogues of Propositions 1.1, 1.2, and 1.3

in a general geometric setting (Section 4).

Remark 1.6. Let m = 2 andM = T
2. Then, the Wick ordered NLS (1.29) can be formally

written as

i∂tu+∆u = (|u|2 − 2σ∞)u, (1.39)

where σ∞ is the (non-existent) limit of σN ∼ logN as N → ∞.

Given u as in (1.10), define θN =
ffl

T2 |PNu|2dx−σN , where
ffl

T2 f(x)dx = 1
4π2

´

T2 f(x)dx.

Then, it is easy to see that the limit θ∞ := limN→∞ θN exists in Lp(µ) for any p ≥ 1. Thus,

by setting v(t) = e2itθ∞u(t), we can rewrite (1.39) as

i∂tv +∆v = (|v|2 − 2
ffl

T2 |v|2dx)v. (1.40)
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Note that ‖v‖L2 = ∞ almost surely. Namely, (1.40) is also a formal expression for the

limiting dynamics. In [7], Bourgain studied (1.40) and proved local well-posedness below

L2(T2) in a probabilistic setting.

If v is a smooth solution to (1.40), then by setting w(t) = e−2it
ffl

T2 |v|2dxv(t), we see that

w is a solution to the standard cubic NLS:

i∂tw +∆w = |w|2w. (1.41)

This shows that the Wick ordered NLS (1.39) and (1.40) are “equivalent” to the standard

cubic NLS in the smooth setting. Note that this formal reduction relies on the fact that the

Wick ordering introduces only a linear term when m = 2. For m ≥ 3, the Wick ordering

introduces higher order terms and thus there is no formal equivalence between the standard

NLS (1.2) and the Wick ordered NLS (1.29).

Remark 1.7. So far, we focused on the defocusing NLS. Let us now discuss the situation

in the focusing case:

i∂tu+∆u = −|u|k−2u

with the Hamiltonian given by

H(u) =
1

2

ˆ

Td

|∇u|2dx− 1

k

ˆ

Td

|u|kdx.

In the focusing case, the Gibbs measure can be formally written as

dP
(k)
d = Z−1e−H(u)du = Z−1e

1
k

´

Td
|u|kdxdµ.

The main difficulty is that
´

Td |u|kdx is unbounded. When d = 1, Lebowitz-Rose-Speer [24]

constructed the Gibbs measure P
(k)
1 for 2 < k ≤ 6, by adding an extra L2-cutoff. Then,

Bourgain [6] constructed global-in-time flow and proved the invariance of the Gibbs measure

for k ≤ 6. See also McKean [25].

When d = 2, the situation becomes much worse. Indeed, Brydges-Slade [9] showed that

the Gibbs measure P
(4)
2 for the focusing cubic NLS on T

2 can not be realized as a probability

measure even with the Wick order nonlinearity and/or with a (Wick ordered) L2-cutoff.

In [8], Bourgain pointed out that an ε-smoothing on the nonlinearity makes this problem

well-posed and the invariance of the Gibbs measure may be proven even in the focusing

case.

Remark 1.8. In a recent paper [36], we also studied the defocusing nonlinear wave equa-

tions (NLW) in two spatial dimensions (with an even integer k = 2m ≥ 4 and ρ ≥ 0):
{
∂2
t u−∆gu+ ρu+ uk−1 = 0

(u, ∂tu)|t=0 = (φ0, φ1),
(t, x) ∈ R×M (1.42)

and its associated Gibbs measure:

dP
(2m)
2 = Z−1 exp(−H(u, ∂tu))du ⊗ d(∂tu)

= Z−1e−
1

2m

´

u2mdxe−
1
2

´

(ρu2+|∇u|2)dxdu⊗ e−
1
2

´

(∂tu)2d(∂tu). (1.43)

As in the case of NLS, the Gibbs measure in (1.43) is not well defined in the two spatial

dimensions. Namely, one needs to consider the Gibbs measure P
(2m)
2 associated to the Wick



12 T. OH AND L. THOMANN

ordered Hamiltonian6 as in (1.32) and study the associated dynamical problem given by

the following defocusing Wick ordered NLW:

∂2
t u−∆u+ ρu+ :uk−1 : = 0. (1.44)

In the case of the flat torus M = T
2 with ρ > 0, we showed that the defocusing Wick

ordered NLW (1.44) is almost surely globally well-posed with respect to the Gibbs measure

P
(2m)
2 and that the Gibbs measure P

(2m)
2 is invariant under the dynamics of (1.44). For

a general two-dimensional compact Riemannian manifold without boundary or a bounded

domain in R
2 (with the Dirichlet or Neumann boundary condition), we showed that an

analogue of Theorem 1.5 (i.e. almost sure global existence and invariance of the Gibbs

measure P
(2m)
2 in some mild sense) holds for (1.44) when ρ > 0. In the latter case with the

Dirichlet boundary condition, we can also take ρ = 0.

In particular, our result on T
2 is analogous to that for the defocusing cubic NLS on

T
2 [7], where the main difficulty lies in constructing local-in-time unique solutions almost

surely with respect to the Gibbs measure. We achieved this goal for any even k ≥ 4 by

exploiting one degree of smoothing in the Duhamel formulation of the Wick ordered NLW

(1.44). As for the Wick ordered NLS (1.29) on T
2, such smoothing is not available and the

construction of unique solutions with the Gibbs measure as initial data remains open for

the (super)quintic case.

Remark 1.9. In [6, 37], Bourgain (k = 2, 3) and Richards (k = 4) proved invariance of

the Gibbs measures for the generalized KdV equation (gKdV) on the circle:

∂tu+ ∂3
xu = ±∂x(u

k), (t, x) ∈ R× T. (1.45)

In [35], the authors and Richards studied the problem for k ≥ 5. In particular, by following

the approach in [12] and this paper, we proved almost sure global existence and invariance

of the Gibbs measuresin some mild sense analogous to Theorem 1.4 for (i) all k ≥ 5 in the

defocusing case and (ii) k = 5 in the focusing case. Note that there is no need to apply a

renormalization for constructing the Gibbs measures for this problem since the equation is

posed on T. See [24, 6].

This paper is organized as follows. In Sections 2 and 3, we present the details of the

proofs of Propositions 1.1, 1.2, and 1.3 in the particular case when M = T
2. We then

indicate the changes required to treat the general case in Section 4. In Section 5, we prove

Theorems 1.4 and 1.5. In Appendix A, we present an alternative proof of Proposition 1.1

when m = 3 in the case M = T
2, performing concrete combinatorial computations.

2. Construction of the Gibbs measures

In this section, we present the proofs of Propositions 1.1 and 1.2 and construct the Gibbs

measure P
(2m)
2 in (1.32). One possible approach is to use the Fock-space formalism in quan-

tum field theory [38, 23, 26, 20]. As mentioned above, however, we present a pedestrian

Fourier analytic approach to the problem since we believe that it is more accessible to a

wide range of readers. The argument presented in this section and the next section (on

Proposition 1.3) follows the presentation in [18] with one important difference; we work in

6In the case of NLW, we only need to use the Hermite polynomials since we deal with real-valued
functions.
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the complex-valued setting and hence we will make use of the (generalized) Laguerre poly-

nomials instead of the Hermite polynomials. Their orthogonal properties play an essential

role. See Lemmas 2.4 and 3.2.

2.1. Hermite polynomials, Laguerre polynomials, and Wick ordering. First, recall

the Hermite polynomials Hn(x;σ) defined through the generating function:

F (t, x;σ) := etx−
1
2
σt2 =

∞∑

k=0

tk

k!
Hk(x;σ) (2.1)

for t, x ∈ R and σ > 0. For simplicity, we set F (t, x) := F (t, x; 1) and Hk(x) := Hk(x; 1) in

the following. Note that we have

Hk(x, σ) = σ
k
2Hk

(
σ− 1

2x
)
. (2.2)

From (2.1), we directly deduce the following recursion relation

∂xHk(x;σ) = kHk−1(x;σ), (2.3)

for all k ≥ 0. This allows to compute the Hk, up to the constant term. The constant term

is given by

H2k(0, σ) = (−1)k(2k − 1)!!σk and H2k+1(0, σ) = 0,

for all k ≥ 0, where (2k−1)!! = (2k−1)(2k−3) · · · 3·1 = (2k)!
2kk!

and (−1)!! = 1 by convention.

This can be easily deduced from (2.1) by taking x = 0. For readers’ convenience, we write

out the first few Hermite polynomials in the following:

H0(x;σ) = 1, H1(x;σ) = x, H2(x;σ) = x2 − σ,

H3(x;σ) = x3 − 3σx, H4(x;σ) = x4 − 6σx2 + 3σ2.

The monomial xk can be expressed in term of the Hermite polynomials:

xk =

[ k
2
]∑

m=0

(
k
2m

)
(2m− 1)!!σmHk−2m(x;σ). (2.4)

Fix d ∈ N, 7 let H = R
d. Then, consider the Hilbert space8 ΓH = L2(QH, µd;C) endowed

with the Gaussian measure dµd = (2π)−
d
2 exp(−|x|2/2)dx, x = (x1, . . . , xd) ∈ R

d. We

define a homogeneous Wiener chaos of order k to be an element of the form

Hk(x) =

d∏

j=1

Hkj(xj),

where k = k1 + · · · + kd and Hkj is the Hermite polynomial of degree kj defined in (2.1).

Denote by Γk(H) the closure of homogeneous Wiener chaoses of order k under L2(Rd, µd).

7Indeed, the discussion presented here also holds for d = ∞ in the context of abstract Wiener spaces.
For simplicity, however, we restrict our attention to finite values for d.

8Here, QH = R
d when d < ∞. When d = ∞, we set QH to be an appropriate extension of H such that

(H, QH, µ∞) forms an abstract Wiener space with H as the Cameron-Martin space.
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Then, we have the following Wiener-Ito decomposition:9

L2(QH, µd;C) =
∞⊕

k=0

Γk(H). (2.5)

Given a homogeneous polynomial Pk(x) = Pk(x1, . . . , xd) of degree k, we define the

Wick ordered polynomial : Pk(x) : to be its projection onto Hk. In particular, we have

: xkj : = Hk(xj) and :
∏d

j=1 x
kj
j : =

∏d
j=1Hkj(xj) with k = k1 + · · ·+ kd.

Now, let g be a standard complex-valued Gaussian random variable. Then, g can be

written as g = h1√
2
+ i h2√

2
, where h1 and h2 are independent standard real-valued Gaussian

random variables. We investigate the Wick ordering on |g|2m for m ∈ N, that is, the

projection of |g|2m onto H2m. When m = 1, |g|2 = 1
2(h

2
1 + h22) is Wick-ordered into

: |g|2 : = 1
2(h

2
1 − 1) + 1

2(h
2
2 − 1) = |g|2 − 1. (2.6)

When m = 2, |g|4 = 1
4 (h

2
1 + h22)

2 = 1
4(h

4
1 + 2h21h

2
2 + h42) is Wick-ordered into

: |g|4 : = 1
4(h

4
1 − 6h21 + 3) + 1

2(h
2
1 − 1)(h22 − 1) + 1

4 (h
4
2 − 6h22 + 3)

= 1
4(h

4
1 + 2h21h

2
2 + h42)− 2(h21 + h22) + 2

= |g|4 − 4|g|2 + 2.

When m = 3, a direct computation shows that

|g|6 =
1

8
(h21 + h22)

3 =
1

8
(h61 + 3h41h

2
2 + 3h21h

4
2 + h62)

is Wick-ordered into

: |g|6 : = 1
8H6(h1) +

3
8H4(h1)H2(h2) +

3
8H2(h1)H4(h2) +

1
8H6(h2)

= |g|6 − 9|g|4 + 18|g|2 − 6.

In general, we have

: |g|2m : =
1

2m

m∑

ℓ=0

(
m
ℓ

)
H2ℓ(h1)H2m−2ℓ(h2)

=

m∑

ℓ=0

(
m
ℓ

)
H2ℓ(Re g;

1
2)H2m−2ℓ(Im g; 12 ), (2.7)

where we used (2.2) in the second equality. It follows from the rotational invariance of the

complex-valued Gaussian random variable that : |g|2m : = Pm(|g|2) for some polynomial Pm

of degree m with the leading coefficient 1. This fact is, however, not obvious from (2.7).

The following lemma shows that the Wick ordered monomials : |g|2m : can be expressed

in terms of the Laguerre polynomials (recall the definition (1.20)).

9This is (equivalent to) the Fock space in quantum field theory. See [38, Chapter I]. In particular, the

Fock space F(H) =
⊕∞

k=0 H
⊗k

sym

C
is shown to be equivalent to the Wiener-Ito decomposition (2.5). In the

Fock space formalism, the Wick renormalization can be stated as the reordering of the creation operators
on the left and annihilation operator on the right. We point out that while much of our discussion can be
recast in the Fock space formalism, our main aim of this paper is to give a self-contained presentation (as
much as possible) accessible to readers not familiar with the formalism in quantum field theory. Therefore,
we stick to a simpler Fourier analytic and probabilistic approach.
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Lemma 2.1. Let m ∈ N. For a complex valued mean-zero Gaussian random variable g

with Var(g) = σ > 0, we have

: |g|2m : =
m∑

ℓ=0

(
m
ℓ

)
H2ℓ(Re g;

σ
2 )H2m−2ℓ(Im g; σ2 )

= (−1)mm! · Lm(|g|2;σ). (2.8)

As a consequence, the Wick ordered monomial : |uN |2m : defined in (1.19) satisfies (1.24)

for any N ∈ N.

Proof. The first equality follows from (2.7) and scaling with (2.2). Moreover, by scaling

with (1.23) and (2.2), we can assume that g is a standard complex-valued Gaussian random

variable with g1 = Re g and g2 = Im g. Define Hm(|g|2) and Lm(|g|2) by

Hm(|g|2) =
m∑

ℓ=0

(
m
ℓ

)
H2ℓ(g1;

1
2)H2m−2ℓ(g2;

1
2),

Lm(|g|2) = (−1)mm! · Lm(|g|2). (2.9)

Then, (2.8) follows once we prove the following three properties:

H1(|g|2) = L1(|g|2) = |g|2 − 1, (2.10)




∂2

∂g∂gHm(|g|2) = m2Hm−1(|g|2),
∂2

∂g∂gLm(|g|2) = m2Lm−1(|g|2),
(2.11)

E[Hm(|g|2)] = E[Lm(|g|2)] = 0, (2.12)

for all m ≥ 2. Noting that both Hm(|g|2) and Lm(|g|2) are polynomials in |g|2, the three

properties (2.10), (2.11), and (2.12) imply that Hm(|g|2) = Lm(|g|2) for all m ∈ N.

The first property (2.10) follows from (2.6) and (1.21). Next, we prove (2.11) for Hm(|g|2).
From ∂g = 1

2(∂g1 − i∂g2) and ∂g =
1
2(∂g1 + i∂g2), we have

∂2

∂g∂g
=

1

4
∆g1,g2 ,

where ∆g1,g2 denotes the usual Laplacian on R
2 in the variables (g1, g2). Then, recalling

that ∂xHk(x;σ) = kHk−1(x;σ), we have

∂2

∂g∂g
Hm(|g|2) = 1

4
∆g1,g2Hm(|g|2)

=
1

4

m∑

ℓ=1

(
m
ℓ

)
2ℓ(2ℓ− 1)H2ℓ−2(g1;

1
2)H2m−2ℓ(g2;

1
2 )

+
1

4

m−1∑

ℓ=0

(
m
ℓ

)
(2m− 2ℓ)(2m− 2ℓ− 1)H2ℓ(g1;

1
2)H2m−2ℓ−2(g2;

1
2 )

= m2
m−1∑

ℓ=0

(
m− 1

ℓ

)
H2ℓ(g1;

1
2 )H2(m−1)−2ℓ(g2;

1
2).
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As for the second identity in (2.11), thanks to the formula (1.22), we get

∂2

∂g∂g
Lm(|g|2) = (−1)mm!

4

m∑

ℓ=0

(
m
ℓ

)
(−1)ℓ

ℓ!
∆g1,g2(g

2
1 + g22)

ℓ

= (−1)m−1m!

m∑

ℓ=1

(
m
ℓ

)
(−1)ℓ−1

ℓ!
ℓ2|g|2(ℓ−1) = m2

Lm−1(|g|2).

This proves (2.11). The property (2.12) follows from (i) independence of g1 and g2 together

with the orthogonality of Hk(x) and the constant function 1 under e−x2
dx and (ii) the

orthogonality of Lm(x) and the constant function 1 under 1R+e
−xdx

Let u be as in (1.10). Fix x ∈ T
2. Letting g̃n = gne

in·x, we see that {g̃n}n∈N is a sequence

of independent standard complex-valued Gaussian random variables. Then, given N ∈ N,

Re uN (x) and ImuN (x) are mean-zero real-valued Gaussian random variables with variance
σN

2 , while uN (x) is a mean-zero complex-valued Gaussian random variable with variance

σN , Then, it follows from (1.19) with (1.17) and (2.8) that

: |uN (x)|2m : =

m∑

ℓ=0

(
m
ℓ

)
H2ℓ(Re u(x);

σN

2 )H2m−2ℓ(Imu(x); σN

2 )

= (−1)mm! · Lm(|uN (x)|2;σN ),

verifying (1.24). This proves the second claim in Lemma 2.1. �

2.2. White noise functional. Next, we define the white noise functional. Let w(x;ω) be

the mean-zero complex-valued Gaussian white noise on T
2 defined by

w(x;ω) =
∑

n∈Z2

gn(ω)e
in·x.

Definition 2.2. The white noise functional W(·) : L
2(T2) → L2(Ω) is defined by

Wf (ω) = 〈f,w(ω)〉L2
x
=
∑

n∈Z2

f̂(n)gn(ω). (2.13)

for a function f ∈ L2(T2).

Note that this is basically the periodic and higher dimensional version of the classical

Wiener integral
´ b
a fdB. It can also be viewed as the Gaussian process indexed by f ∈

L2(T2). See [38, Model 1 on p. 19 and Model 3 on p. 21]. For each f ∈ L2(T2), Wf is a

complex-valued Gaussian random variable with mean 0 and variance ‖f‖2L2 . Moreover, we

have

E
[
WfWh] = 〈f, h〉L2

x

for f, h ∈ L2(T2). In particular, the white noise functional W(·) : L2(T2) → L2(Ω) is an

isometry.

Lemma 2.3. Given f ∈ L2(T2), we have
ˆ

Ω
eReWf (ω)dP (ω) = e

1
4
‖f‖2

L2 . (2.14)
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Proof. Noting that Re gn and Im gn are mean-zero real-valued Gaussian random variables

with variance 1
2 , it follows from (2.13) that

ˆ

Ω
eReWf (ω)dP (ω) =

∏

n∈Z

1

π

ˆ

R

eRe f̂(n) Re gn−(Re gn)2dRe gn

×
ˆ

R

eIm f̂(n) Im gn−(Im gn)2d Im gn

= e
1
4
‖f‖2

L2 . �

The following lemma on the white noise functional and the Laguerre polynomials plays

an important role in our analysis. In the following, we present an elementary proof, using

the generating function G in (1.20). See also Folland [22].

Lemma 2.4. Let f, h ∈ L2(T2) such that ‖f‖L2 = ‖h‖L2 = 1. Then, for k,m ∈ Z≥0, we

have

E
[
Lk(|Wf |2)Lm(|Wh|2)

]
= δkm|〈f, h〉|2k. (2.15)

Here, δkm denotes the Kronecker delta function.

First, recall the following identity:

e
u2

2 =
1√
2π

ˆ

R

exu−
x2

2 dx. (2.16)

Indeed, we used a rescaled version of (2.16) in the proof of Lemma 2.3.

Proof of Lemma 2.4. Let G be as in (1.20). Then, for any −1 < t, s < 0, from (2.16) and

Lemma 2.3, we have

ˆ

Ω
G(t, |Wf (ω)|2)G(s, |Wh(ω)|2)dP (ω) =

1

1− t

1

1− s

ˆ

Ω
e−

t
1−t

|Wf |2− s
1−s

|Wh|2dP (ω)

=
1

1− t

1

1− s

1

4π2

ˆ

R4

e−
x21+x22+y21+y22

2

×
ˆ

Ω
exp

(
ReW√

−2t
1−t

(x1−ix2)f+
√

−2s
1−s

(y1−iy2)h

)
dPdx1dx2dy1dy2

=
1

1− t

1

1− s

1

4π2

ˆ

R4

e
−x21+x22

2(1−t)
− y21+y22

2(1−s)

× e
1
2
Re
(√

−2t
1−t

√
−2s
1−s

(x1−ix2)(y1+iy2)〈f,h〉
)
dx1dx2dy1dy2
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By a change of variables and applying (2.16), we have

=
1

4π2

ˆ

R2

e−
y21+y22

2

ˆ

R

e
√
ts(y1 Re〈f,h〉−y2 Im〈f,h〉)x1−

x21
2 dx1

×
ˆ

R

e
√
ts(y2 Re〈f,h〉+y1 Im〈f,h〉)x2−

x22
2 dx2dy1dy2

=
1

2π

ˆ

R2

e−
y21+y22

2 e
1
2
ts|〈f,h〉|2(y21+y22)dy1dy2

=
1

1− ts|〈f, h〉|2 =
∞∑

k=0

tksk|〈f, h〉|2k . (2.17)

In the second to the last equality, we used the fact that 1
2ts|〈f, h〉|2 < 1

2 . Hence, it follows

from (1.20) and (2.17) that

∞∑

k=0

tksk|〈f, h〉|2k =

∞∑

k,m=0

tksm
ˆ

Ω
Lk(|Wf (ω)|2)Lm(|Wh(ω)|2)dP (ω).

By comparing the coefficients of tksm, we obtain (2.15). �

Now, we are ready to make sense of the nonlinear part of the Wick ordered Hamiltonian

HWick in (1.27). We first present the proof of Proposition 1.1 for p = 2. Recall that

GN (u) =
1

2m

ˆ

T2

: |PNu|2m : dx.

Then, we have the following convergence property of GN (u) in L2(µ).

Lemma 2.5. Let m ≥ 2 be an integer. Then, {GN (u)}N∈N is a Cauchy sequence in

L2(Hs(T2), µ). More precisely, there exists Cm > 0 such that

‖GM (u)−GN (u)‖L2(µ) ≤
Cm

N
1
2

(2.18)

for any M ≥ N ≥ 1.

Given N ∈ N, let σN be as in (1.25). For fixed x ∈ T
2 and N ∈ N, we define

ηN (x)(·) := 1

σ
1
2
N

∑

|n|≤N

en(x)√
1 + |n|2

en(·), (2.19)

γN (·) :=
∑

|n|≤N

1

1 + |n|2 en(·), (2.20)

where en(y) = ein·y. Note that

‖ηN (x)‖L2(T2) = 1 (2.21)

for all (fixed) x ∈ T
2 and all N ∈ N. Moreover, we have

〈ηM (x), ηN (y)〉L2(T2) =
1

σ
1
2
Mσ

1
2
N

γN (y − x) =
1

σ
1
2
Mσ

1
2
N

γN (x− y), (2.22)

for fixed x, y ∈ T
2 and N,M ∈ N with M ≥ N .



INVARIANT GIBBS MEASURES FOR THE 2-d DEFOCUSING NLS 19

Proof of Lemma 2.5. Let m ≥ 2 be an integer. Given N ∈ N and x ∈ T
2, it follows

from (1.10), (2.13), and (2.19) that

uN (x) = σ
1
2
N

uN (x)

σ
1
2
N

= σ
1
2
NWηN (x). (2.23)

Then, from (1.24) and (2.23), we have

: |uN |2m : = (−1)mm!σm
NLm

( |uN |2
σN

)
= (−1)mm!σm

NLm

(∣∣WηN (x)

∣∣2). (2.24)

From (2.24), Lemma 2.4, and (2.22), we have

(2m)2‖GM (u)−GN (u)‖2L2(µ) = (m!)2
ˆ

T2
x×T2

y

ˆ

Ω

[
σ2m
M Lm

(∣∣WηM (x)

∣∣2)Lm

(∣∣WηM (y)

∣∣2)

− σm
Mσm

NLm

(∣∣WηM (x)

∣∣2)Lm

(∣∣WηN (y)

∣∣2)

− σm
Mσm

NLm

(∣∣WηN (x)

∣∣2)Lm

(∣∣WηM (y)

∣∣2)

+ σ2m
N Lm

(∣∣WηN (x)

∣∣2)Lm

(∣∣WηN (y)

∣∣2)
]
dPdxdy

= (m!)2
ˆ

T2
x×T2

y

[
(γM (x− y))2m − (γN (x− y))2m

]
dxdy

= (m!)2
ˆ

T2

[
(γM (x))2m − (γN (x))2m

]
dx

≤ Cm

ˆ

T2

∣∣γM (x)− γN (x)
∣∣ ·
[
|γM (x)|2m−1 + |γN (x)|2m−1

]
dx. (2.25)

In the second equality, we used the fact that γN is a real-valued function.

From (2.20), we have

∥∥γM − γN
∥∥
L2 =

( ∑

N<|n|≤M

1

(1 + |n|2)2
)1

2

.
1

N
. (2.26)

By Hausdorff-Young’s inequality, we have

∥∥|γN |2m−1
∥∥
L2 = ‖γN‖2m−1

L4m−2 ≤
( ∑

|n|≤N

1

(1 + |n|2)
4m−2
4m−3

) 4m−3
2

≤ Cm < ∞ (2.27)

uniformly in N ∈ N. Then, (2.18) follows from (2.25), (2.26), and (2.27). �

2.3. Wiener chaos estimates. In this subsection, we complete the proof of Proposi-

tion 1.1. Namely, we upgrade (2.18) in Lemma 2.5 to any finite p ≥ 2. Our main tool is

the following Wiener chaos estimate (see [38, Theorem I.22]).

Lemma 2.6. Let {gn}n∈N be a sequence of independent standard real-valued Gaussian

random variables. Given k ∈ N, let {Pj}j∈N be a sequence of polynomials in ḡ = {gn}n∈N
of degree at most k. Then, for p ≥ 2, we have

∥∥∥∥
∑

j∈N
Pj(ḡ)

∥∥∥∥
Lp(Ω)

≤ (p− 1)
k
2

∥∥∥∥
∑

j∈N
Pj(ḡ)

∥∥∥∥
L2(Ω)

. (2.28)



20 T. OH AND L. THOMANN

Observe that the estimate (2.28) is independent of d ∈ N. By noting that Pj(ḡ) ∈⊕k
ℓ=0 Γℓ(H), this lemma follows as a direct corollary to the hypercontractivity of the

Ornstein-Uhlenbeck semigroup due to Nelson [28].

We are now ready to present the proof of Proposition 1.1.

Proof of Proposition 1.1. Let m ≥ 2 be an integer. For 1 ≤ p ≤ 2, Proposition 1.1 follows

from Lemma 2.5. In the following, we consider the case p > 2. From (1.22), (1.24),

and (1.26), we have

GM (u)−GN (u) =
(−1)mm!

2m

m∑

ℓ=1

(
m
ℓ

)
(−1)ℓ

ℓ!
Σℓ.

Here, Σℓ is given by

Σℓ =
σm
M

σℓ
M

∑

Γ2ℓ(0)
|nj |≤M

2ℓ∏

j=1

g∗nj√
1 + |nj|2

− σm
N

σℓ
N

∑

Γ2ℓ(0)
|nj |≤N

2ℓ∏

j=1

g∗nj√
1 + |nj|2

,

where Γk and g∗nj
are defined by

Γk(n) = {(n1, . . . , nk) ∈ Z
k : n1 − n2 + · · · + (−1)knk = n}, (2.29)

g∗nj
=

{
gnj

if j is odd,

gnj
if j is even.

(2.30)

Noting that Σℓ is a sum of polynomials of degree 2ℓ in {gn}n∈Z2 , Proposition 1.1 follows

from Lemmas 2.5 and 2.6. �

2.4. Nelson’s estimate. In this subsection, we prove Proposition 1.2. Our main tool

is the so-called Nelson’s estimate, i.e. in establishing an tail estimate of size λ > 0, we

divide the argument into low and high frequencies, depending on the size of λ. See (2.32)

and (2.34). What plays a crucial role here is the defocusing property of the Hamiltonian

and the logarithmic upper bound on −GN (u), which we discuss below.

For each m ∈ N, there exists finite am > 0 such that (−1)mLm(x2) ≥ −am for all x ∈ R.

Then, it follows from (1.23), (1.24), (1.25), and (1.26) that there exists some finite bm > 0

such that

−GN (u) = − 1

2m

ˆ

T2

: |PNu|2m : dx ≤ bm(logN)m (2.31)

for all N ≥ 1. Namely, while GN (u) is not sign definite, −GN (u) is bounded from above

by a power of logN . This is where the defocusing property of the equation (1.33) plays an

essential role.

Proof of Proposition 1.2. Let m ≥ 2 be an integer. It follows from Proposition 1.1 that the

following tail estimate holds: there exist cm,p, Cm > 0 such that

µ
(
p|GM (u)−GN (u)| > λ

)
≤ Cme−cm,pN

1
2m λ

1
m (2.32)

for all M ≥ N ≥ 1, p ≥ 1, and all λ > 0. See, for example, [43, Lemma 4.5].
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We first show that RN (u) = e−GN (u) is in Lp(µ) with a uniform bound in N . We have

‖RN (u)‖pLp(µ) =

ˆ

Hs

e−pGN (u)dµ(u)

=

ˆ ∞

0
µ(e−pGN (u) > α)dα

≤ 1 +

ˆ ∞

1
µ(−pGN (u) > logα)dα.

Hence, it suffices to show that there exist C, δ > 0 such that

µ(−pGN (u) > logα) ≤ Cα−(1+δ) (2.33)

for all α > 1 and N ∈ N. Given λ = log α > 0, choose N0 ∈ R such that λ = 2pbm(logN0)
m.

Then, it follows from (2.31) that

µ
(
− pGN (u) > λ

)
= 0 (2.34)

for all N < N0. For N ≥ N0, it follows from (2.31) and (2.32) that there exist δm,p > 0

and Cm,p > 0 such that

µ
(
− pGN (u) > λ

)
≤ µ

(
− pGN (u) + pGN0(u) > λ− pbm(logN0)

m
)

≤ µ
(
− pGN (u) + pGN0(u) >

1
2λ
)

≤ Cme−c′m,pN
1

2m
0 λ

1
m = Cme−c′m,pλ

1
m ec̃mλ

1
m

≪ Cm,pe
−(1+δm,p)λ (2.35)

for all N ≥ N0. This shows that (2.33) is satisfied in this case as well. Hence, we have

RN (u) ∈ Lp(µ) with a uniform bound in N , depending on p ≥ 1.

By (2.32), GN (u) converges to G(u) in measure with respect to µ. Then, as a composition

of GN (u) with a continuous function, RN (u) = e−GN (u) converges to R(u) := e−G(u) in

measure with respect to µ. In other words, given ε > 0, defining AN,ε by

AN,ε =
{
|RN (u)−R(u)| ≤ ε

}
,

we have µ(Ac
N,ε) → 0, as N → ∞. Hence, by Cauchy-Schwarz inequality and the fact that

‖R‖L2p , ‖RN‖L2p ≤ Cp uniformly in N ∈ N, we obtain

‖R −RN‖Lp(µ) ≤ ‖(R −RN )1AN,ε
‖Lp(µ) + ‖(R −RN )1Ac

N,ε
‖Lp(µ)

≤ ε
(
µ(AN,ε )

) 1
p + ‖R −RN‖L2p(µ)

(
µ(Ac

N,ε)
) 1

2p ≤ Cε,

for all sufficiently large N . This completes the proof of Proposition 1.2. �

3. On the Wick ordered nonlinearity

In this section, we present the proof of Proposition 1.3. The main idea is similar to that

in Section 2 but, this time, we will make use of the generalized Laguerre functions L
(α)
m (x).

The generalized Laguerre polynomials L
(α)
m (x) are defined through the following generating

function:

Gα(t, x) :=
1

(1− t)α+1
e−

tx
1−t =

∞∑

m=0

tmL(α)
m (x), (3.1)
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for |t| < 1 and x ∈ R. From (3.1), we obtain the following differentiation rule; for ℓ ∈ N,

dℓ

dxℓ
L(α)
m (x) = (−1)ℓL

(α+ℓ)
m−ℓ (x). (3.2)

Given N ∈ N, let uN = PN , where u is as in (1.10). Let m ≥ 2 be an integer. Then,

from (1.36), (1.24), (1.23), and (3.2), we have

FN (u) = PN

(
: |PNu|2(m−1)PNu :

)
= (−1)mm!σm

N · 1
mPN∂uN

{
Lm

(
|uN |2
σN

)}

= (−1)m+1(m− 1)!σm−1
N ·PN

{
L
(1)
m−1

(
|uN |2
σN

)
uN

}
. (3.3)

Remark 3.1. Here, ∂u denotes the usual differentiation in u viewing u and u as independent

variables. This is not to be confused with ∂H
∂u in (1.3). Note that ∂H

∂u in (1.3) comes from the

symplectic structure of NLS and the Gâteaux derivative of H. More precisely, we can view

the dynamics of NLS (1.2) as a Hamiltonian dynamics with the symplectic space L2(T2)

and the symplectic form ω(f, g) = Im

ˆ

f(x)g(x)dx. Then, we define ∂H
∂u by

dH|u(φ) = ω
(
φ,−i∂H∂u

)
,

where dH|u(φ) is the the Gâteaux derivative given by dH|u(φ) = d
dεH(u+ εφ)

∣∣
ε=0

.

The following lemma is an analogue of Lemma 2.4 for the generalized Laguerre polyno-

mials L
(1)
m (x) and plays an important role in the proof of Proposition 1.3.

Lemma 3.2. Let f, h ∈ L2(T2) such that ‖f‖L2 = ‖h‖L2 = 1. Then, for k,m ∈ Z≥0, we

have

E

[
L
(1)
k (|Wf |2)WfL

(1)
m (|Wh|2)Wh

]
= δkm(k + 1)|〈f, h〉|2k〈f, h〉. (3.4)

Here, δkm denotes the Kronecker delta function.

Besides (2.16), we will use the following identity:

ue
u2

2 =
1√
2π

ˆ

R

xexu−
x2

2 dx. (3.5)

This follows from differentiating (2.16) in u.

Proof of Lemma 3.2. Let G1 be as in (3.1) with α = 1. Let −1 < t < 0. From (2.16)

and (3.5), we have

G1(t, |Wf |2)Wf =
1

(1− t)2
ReWfe

−t
1−t

(
(ReWf )

2+(ImWf )
2
)

+
i

(1− t)2
ImWfe

−t
1−t

(
(ReWf )

2+(ImWf )
2
)

=
1

√
−2t(1− t)

3
2

1

2π

ˆ

R2

(x1 + ix2)e
−x21+x22

2 e

√
−2t
1−t

(x1 ReWf+x2 ImWf )dx1dx2.
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Given x1, x2, y1, y2 ∈ R, let x = x1 + ix2 and y = y1 + iy2. Then, for any −1 < t, s < 0,

from Lemma 2.3, we have
ˆ

Ω
G1(t,Wf (ω))Wf (ω)G1(s,Wh(ω))Wh(ω)dP (ω)

=
1

√
−2t(1− t)

3
2

1
√
−2s(1− s)

3
2

1

4π2

ˆ

R4

xye−
|x|2+|y|2

2

×
ˆ

Ω
exp

(
ReW√

−2t
1−t

xf+
√

−2s
1−s

yh

)
dPdx1dx2dy1dy2

=
1

√
−2t(1− t)

3
2

1
√
−2s(1− s)

3
2

1

4π2

ˆ

R4

xye
− |x|2

2(1−t)
− |y|2

2(1−s)

× e
1
2
Re
(√

−2t
1−t

√
−2s
1−s

xy〈f,h〉
)
dx1dx2dy1dy2

By a change of variables and applying (2.16) and (3.5), we have

=
1

2
√
ts

1

4π2

ˆ

R4

xye−
|x|2

2
− |y|2

2 e
√
tsRe(xy〈f,h〉)dx1dx2dy1dy2

= 〈f, h〉 1

4π

ˆ

R2

|y|2e− 1
2
(1−ts|〈f,h〉|2)|y|2dy1dy2

By integration by parts, we have

=
〈f, h〉

1− ts|〈f, h〉|2
1

2π

ˆ

R2

e−
1
2
(1−ts|〈f,h〉|2)|y|2dy1dy2

=
〈f, h〉

(1− ts|〈f, h〉|2)2 =

∞∑

k=0

(k + 1)tksk|〈f, h〉|2k〈f, h〉. (3.6)

Hence, it follows from (3.1) and (3.6) that

∞∑

k=0

(k + 1)tksk|〈f, h〉|2k〈f, h〉 =
∞∑

k,m=0

tksm
ˆ

Ω
L
(1)
k (|Wf (ω)|2)WfL

(1)
m (|Wh(ω)|2)WhdP (ω).

By comparing the coefficients of tksm, we obtain (3.4). �

As a preliminary step to the proof of Proposition 1.3, we first estimate the size of the

Fourier coefficient of FN (u).

Lemma 3.3. Let m ≥ 2 be an integer. Then, for any θ > 0, there exists Cm,θ > 0 such

that

‖〈FN (u), en〉L2
x
‖L2(µ) ≤ Cm,θ

1

(1 + |n|2) 1
2
(1−θ)

(3.7)

for any n ∈ Z
2 and any N ∈ N. Moreover, given positive ε < 1

2 and any 0 < θ ≤ 1 − ε,

there exists Cm,θ,ε > 0 such that

‖〈FM (u)− FN (u), en〉L2
x
‖L2(µ) ≤ Cm,θ,ε

1

N ε(1 + |n|2) 1
2
(1−θ−ε)

(3.8)

for any n ∈ Z
2 and any M ≥ N ≥ 1.
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Proof. We first prove (3.7). Let m ≥ 2 be an integer and N ∈ N. From (3.3) with (2.23),

we have

FN (u) = (−1)m+1(m− 1)!σ
m− 1

2
N ·PN

{
L
(1)
m−1

(∣∣WηN (x)

∣∣2)WηN (x)

}
. (3.9)

Clearly, 〈FN (u), en〉L2
x
= 0 when |n| > N . Thus, we only need to consider the case |n| ≤ N .

From Lemma 3.2 with (3.9), (2.21) and (2.22), we have

‖〈FN (u), en〉L2
x
‖2L2(µ) =

[
(m− 1)!

]2
σ2m−1
N

ˆ

T2
x×T2

y

en(x)en(y)

×
ˆ

Ω
L
(1)
m−1

(∣∣WηN (x)

∣∣2)WηN (x)L
(1)
m−1

(∣∣WηN (y)

∣∣2)WηN (y)dPdxdy

= m!(m− 1)!

ˆ

T2
x×T2

y

|γN (x− y)|2m−2γN (x− y)en(x− y)dxdy

= CmF
[
|γN |2m−2γN

]
(n). (3.10)

Let Γ2m−1(n) be as in (2.29). For (n1, . . . , n2m−1) ∈ Γ2m−1(n), we have maxj |nj | & |n|.
Thus, we have

F
[
|γN |2m−2γN

]
(n) =

∑

Γ2m−1(n)
|nj |≤N

2m−1∏

j=1

1

1 + |nj |2
≤ dm,θ

1

(1 + |n|2)1−θ
. (3.11)

Hence, (3.7) follows from (3.10) and (3.11).

Next, we prove (3.8). Let M ≥ N ≥ 1. Proceeding as before with (3.9), Lemma 3.2,

and (2.22), we have

‖〈FM (u)− FN (u), en〉L2
x
‖2L2(µ)

= Cm

{
1[0,M ](|n|)F

[
|γM |2m−2γM

]
(n)− 1[0,N ](|n|)F

[
|γN |2m−2γN

]
(n)
}

= Cm1[0,N ](|n|)
{
F
[
|γM |2m−2γM

]
(n)−F

[
|γN |2m−2γN

]
(n)
}

+ Cm1(N,M ](|n|)F
[
|γM |2m−2γM

]
(n). (3.12)

On the one hand, noting that |n| > N , we can use (3.11) to estimate the second term on

the right-hand side of (3.12), yielding (3.8). On the other hand, noting that
∣∣∣F
[
|γM |2m−2γM

]
(n)−F

[
|γN |2m−2γN

]
(n)
∣∣∣

≤
∑

Γ2m−1(n)
|nj |≤M

maxj |nj |≥N

2m−1∏

j=1

1

1 + |nj|2
≤ dm,θ

1

max(N2, 1 + |n|2)1−θ
,

we can estimate the first term on the right-hand side of (3.12) by (3.8). �

Next, we use the Wiener chaos estimate (Lemma 2.6) to extend Lemma 3.3 for any finite

p ≥ 1.
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Corollary 3.4. Let m ≥ 2 be an integer. Then, for any θ > 0, there exists Cm,θ > 0 such

that

‖〈FN (u), en〉L2
x
‖Lp(µ) ≤ Cm,θ(p− 1)m− 1

2
1

(1 + |n|2) 1
2
(1−θ)

(3.13)

for any n ∈ Z
2 and any N ∈ N. Moreover, given positive ε < 1

2 and any 0 < θ ≤ 1 − ε,

there exists Cm,θ,ε > 0 such that

‖〈FM (u)− FN (u), en〉L2
x
‖Lp(µ) ≤ Cm,θ,ε(p− 1)m− 1

2
1

N ε(1 + |n|2) 1
2
(1−θ−ε)

(3.14)

for any n ∈ Z
2 and any M ≥ N ≥ 1.

Proof. Let m ≥ 2 be an even integer. In view of Lemma 3.3, we only consider the case

p > 2. From (3.3) with (1.22), we have

FN (u) = |u|2m−2u+
m−1∑

ℓ=0

am,ℓ,N |u|2ℓ−2u.

Recalling (2.29) and (2.30), we have

〈FN (u), en〉L2
x
=

m∑

ℓ=0

am,ℓ,N

∑

Γ2ℓ−1(n)
|nj |≤N

2ℓ−1∏

j=1

g∗nj√
1 + |nj|2

. (3.15)

Noting that the right-hand side of (3.15) is a sum of polynomials of degree (at most)

2m− 1 in {gn}n∈Z2 , the bound (3.13) follows from Lemma 3.3 and 2.6. The proof of (3.14)

is analogous and we omit the details. �

Finally, we present the proof of Proposition 1.3.

Proof of Proposition 1.3. Let s < 0. Choose sufficiently small θ > 0 such that s + θ < 0.

Let p ≥ 2. Then, it follows from Minkowski’s integral inequality and (3.13) that

∥∥‖FN (u)‖Hs

∥∥
Lp(µ)

≤
( ∑

n∈Z2

〈n〉2s‖〈FN (u), en〉L2
x
‖2Lp(µ)

) 1
2

. (p − 1)m− 1
2

( ∑

n∈Z2

〈n〉−2+2θ+2s

) 1
2

≤ Cm,p < ∞

since s + θ < 0. Similarly, given ε > 0 such that s+ ε < 0, choose sufficiently small θ > 0

such that s+ θ + ε < 0. Then, from (3.14), we have

∥∥‖FM (u)− FN (u)‖Hs

∥∥
Lp(µ)

≤
( ∑

n∈Z2

〈n〉2s‖〈FM (u)− FN (u), en〉L2
x
‖2Lp(µ)

) 1
2

. (p− 1)m− 1
2

1

N ε

( ∑

n∈Z2

〈n〉−2+2θ+2ε+2s

) 1
2

. (p− 1)m− 1
2

1

N ε

since s+ θ + ε < 0. This proves (1.37). �
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4. Extension to 2-d manifolds and domains in R
2

Let (M, g) be a two-dimensional compact Riemannian manifold without boundary or a

bounded domain in R
2. In this section, we discuss the extensions of Propositions 1.1, 1.2,

and 1.3 to M.

Let {ϕn}n∈N be an orthonormal basis of L2(M) consisting of eigenfunctions of −∆g

(with the Dirichlet or Neumann boundary condition when M is a domain in R
2) with

the corresponding eigenvalues {λ2
n}n∈N, which we assume to be arranged in the increasing

order. Then, by Weyl’s asymptotics, we have

λn ≈ n
1
2 . (4.1)

See, for example, [45, Chapter 14].

Let {gn(ω)}n∈N be a sequence of independent standard complex-valued Gaussian random

variables on a probability space (Ω,F , P ). We define the Gaussian measure µ as the induced

probability measure under the map:

ω ∈ Ω 7−→ u(x) = u(x;ω) =
∑

n∈N

gn(ω)

(1 + λ2
n)

1
2

ϕn(x). (4.2)

Note that all the results in Sections 2 and 3 still hold true in this general context with

exactly the same proofs, except for Lemma 2.5 and Lemma 3.3, where we used standard

Fourier analysis on T
2. In the following, we will instead use classical properties of the

spectral functions of the Laplace-Beltrami operator.

Let us now define the Wick renormalization in this context. Let u be as in (4.2). Given

N ∈ N, we define the projector PN by

uN = PNu =
∑

λn≤N

û(n)ϕn.

We also define σN by

σN (x) = E[|uN (x)|2] =
∑

λn≤N

|ϕn(x)|2
1 + λ2

n

. logN, (4.3)

where the last inequality follows from [12, Proposition 8.1] and Weyl’s law (4.1). Unlike σN
defined in (1.25) for the flat torus T

2, the function σN defined above depends on x ∈ M.

Note that σN (x) > 0 for all x ∈ M. The Wick ordered monomial : |uN |2m : is then defined

by

: |uN |2m : = (−1)mm! · Lm(|uN |2;σN ). (4.4)

By analogy with (2.19) and (2.20) we define

ηN (x)(·) := 1

σ
1
2
N (x)

∑

λn≤N

ϕn(x)√
1 + λ2

n

ϕn(·), (4.5)

γN (x, y) :=
∑

λn≤N

ϕn(x)ϕn(y)

1 + λ2
n

, (4.6)

for x, y ∈ M. We simply set γ = γ∞ when N = ∞.
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From the definition (4.3) of σN , we have ‖ηN (x)‖L2(M) = 1 for all x ∈ M. Moreover, we

have

〈ηM (x), ηN (y)〉L2(M) =
1

σ
1
2
M (x)σ

1
2
N (y)

γN (x, y) (4.7)

for all x, y ∈ M and M ≥ N .

We now introduce the spectral function of the Laplace-Beltrami operator on M as

πj(x, y) =
∑

λn∈(j−1,j]

ϕn(x)ϕn(y),

for x, y ∈ M and j ∈ Z≥0. From [39, (1.3) and (1.5) with q = ∞], we have the bound

πj(x, x) ≤ C(j + 1), uniformly in x ∈ M. Therefore, by Cauchy-Schwarz inequality, we

obtain

|πj(x, y)| ≤
∑

λn∈(j−1,j]

|ϕn(x)||ϕn(y)| ≤ C(j + 1), (4.8)

uniformly in x, y ∈ M.

Let σ be a weighted counting measure on Z≥0 defined by σ =
∑∞

j=0(j + 1)δj , where δj
is the Dirac delta measure at j ∈ Z≥0. We define the operator L by

L : c = {cj}∞j=0 7−→
∞∑

j=0

cjπj .

Then, we have the following boundedness of the operator L.

Lemma 4.1. Let 1 ≤ q ≤ 2. Then, the operator L defined above is continuous from

ℓq(Z≥0, σ) into Lq′(M2). Here, q′ denotes the Hölder conjugate of q.

Proof. By interpolation, it is enough to consider the endpoint cases q = 1 and q = 2.

• Case 1: q = 1. Assume that c ∈ ℓ1(Z≥0, σ). Then, from (4.8), we get

|L(c)(x, y)| ≤
∞∑

j=0

|cj ||πj(x, y)| ≤ C
∞∑

j=0

(j + 1)|cj | = ‖c‖ℓ1(σ).

for all x, y ∈ M. This implies the result for q = 1.

• Case 2: q = 2. Assume that c ∈ ℓ2(Z≥0, σ). By the orthogonality of the eigenfunctions

ϕn, we have
ˆ

M
|L(c)(x, y)|2dx =

∞∑

j=0

|cj |2πj(y, y). (4.9)

From (4.8) and (4.9), we deduce that
ˆ

M2

|L(c)(x, y)|2dxdy ≤ C

∞∑

j=0

(j + 1)|cj |2 = ‖c‖2ℓ2(σ).

This implies the result for q = 2. �

Next, we extend the definition of γN to general values of s:

γs,N (x, y) :=
∑

λn≤N

ϕn(x)ϕn(y)

(1 + λ2
n)

s
2
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for x, y ∈ M. When N = ∞, we simply set γs = γs,∞ as before. Note that when s = 2,

γ2,N and γ2 correspond to γN and γ defined in (4.6).

Lemma 4.2. Let s > 1. Then, the sequence {γs,N}N∈N converges to γs in Lp(M2) for all

2 ≤ p < 2
2−s when s ≤ 2 and 2 ≤ p ≤ ∞ when s ≥ 2. Moreover, for the same range of p,

there exist C > 0 and κ > 0 such that

‖γs,M − γs,N‖Lp(M2) ≤
C

Nκ
, (4.10)

for all M ≥ N ≥ 1.

Proof. Given M ≥ N ≥ 1, define αN,M (x, y) and βN,M (x, y) by

αN,M (x, y) := γs,M (x, y)− γs,N(x, y)

=
∑

N<λn≤M

ϕn(x)ϕn(y)

(1 + λ2
n)

s
2

=

M∑

j=N+1

∑

λn∈(j−1,j]

ϕn(x)ϕn(y)

(1 + λ2
n)

s
2

(4.11)

and

βN,M (x, y) :=

M∑

j=N+1

1

(1 + j2)
s
2

∑

λn∈(j−1,j]

ϕn(x)ϕn(y) =

M∑

j=N+1

πj(x, y)

(1 + j2)
s
2

.

Let us first estimate the difference αN,M − βN,M :

|αN,M (x, y)− βN,M (x, y)| ≤
M∑

j=N+1

∑

λn∈(j−1,j]

∣∣∣∣
1

(1 + λ2
n)

s
2

− 1

(1 + j2)
s
2

∣∣∣∣|ϕn(x)||ϕn(y)|

≤ C

M∑

j=N+1

1

js+1

∑

λn∈(j−1,j]

|ϕn(x)||ϕn(y)|.

Then, by (4.8), we obtain

|αN,M (x, y) − βN,M (x, y)| ≤ C

N s−1
. (4.12)

Next, we estimate βN,M . Define a sequence c = {cj}∞j=0 by setting

cj =

{
1

(1+j2)
s
2
, if N + 1 ≤ j ≤ M,

0, otherwise.

Note that c ∈ ℓq(N, σ) for 2
s < q ≤ 2. Hence, it follows from Lemma 4.1 that, given any

2 ≤ p < 2
2−s , there exist C > 0 and κ > 0 such that

‖βN,M‖Lp(M2) =

∥∥∥∥
M∑

j=N+1

πj

(1 + j2)
s
2

∥∥∥∥
Lp(M2)

≤ C

( M∑

j=N+1

j + 1

(1 + j2)
s
2
p′

) 1
p′

≤ C

Nκ
. (4.13)

The desired estimate (4.10) follows from (4.11), (4.12), and (4.13). �

As in the case of the flat torus, define GN , N ∈ N, by

GN (u) =
1

2m

ˆ

M
: |PNu|2m : dx.

Then, we have the following extension of Proposition 1.1
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Proposition 4.3. Let m ≥ 2 be an integer. Then, {GN (u)}N∈N is a Cauchy sequence in

Lp(µ) for any p ≥ 1. More precisely, there exists Cm > 0 such that

‖GM (u)−GN (u)‖Lp(µ) ≤ Cm(p− 1)m
1

N
1
2

(4.14)

for any p ≥ 1 and any M ≥ N ≥ 1.

As in Section 2, we make use of the white noise functional on L2(M). Let w(x;ω) be

the mean-zero complex-valued Gaussian white noise on M defined by

w(x;ω) =
∑

n∈N
gn(ω)ϕ(x).

We then define the white noise functional W(·) : L
2(M) → L2(Ω) by

Wf = 〈f,w(ω)〉L2(M) =
∑

n∈N
f̂(n)gn(ω). (4.15)

Note that Lemma 2.3 and hence Lemma 2.4 also hold on M.

Proof. Thanks to the Wiener chaos estimate (Lemma 2.6), we are reduced to the case p = 2.

Given N ∈ N and x ∈ T
2, it follows from (4.3), (4.5), and (4.15) that

uN (x) = σ
1
2
N (x)

uN (x)

σ
1
2
N (x)

= σ
1
2
N (x)WηN (x). (4.16)

Then, from (4.4) and (4.16), we have

: |uN |2m : = (−1)mm!σm
NLm

( |uN |2
σN

)
= (−1)mm!σm

NLm

(∣∣WηN (x)

∣∣2). (4.17)

Hence, from (4.17), Lemma 2.4, and (4.7), we have

(2m)2‖GM (u)−GN (u)‖2L2(µ)

= (m!)2
ˆ

Mx×My

ˆ

Ω

[
σm
M (x)σm

M (y)Lm

(∣∣WηM (x)

∣∣2)Lm

(∣∣WηM (y)

∣∣2)

− σm
M (x)σm

N (y)Lm

(∣∣WηM (x)

∣∣2)Lm

(∣∣WηN (y)

∣∣2)

− σm
N (x)σm

M (y)Lm

(∣∣WηN (x)

∣∣2)Lm

(∣∣WηM (y)

∣∣2)

+ σm
N (x)σm

N (y)Lm

(∣∣WηN (x)

∣∣2)Lm

(∣∣WηN (y)

∣∣2)
]
dPdxdy

= (m!)2
ˆ

Mx×My

[
|γM (x, y)|2m − |γN (x, y)|2m

]
dxdy.

The desired estimate (4.14) for p = 2 follows from Hölder’s inequality and Lemma 4.2. �

Remark 4.4. Observe that the renormalization procedure (4.4) uses less spectral informa-

tion than the one used in [12, Section 8] for the case m = 2. Namely, the approach in [12]

needed an explicit expansion of the spectral function (see [12, Proposition 8.7]), but the

inequality (4.8) is enough in the argument above.

The function γ defined in (4.6) is the Green function of the operator 1 −∆. It is well-

known (see for example Aubin [2, Theorem 4.17]) that it enjoys the bound

|γ(x, y)| ≤ C
∣∣ log(d(x, y))

∣∣, (4.18)
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where d(x, y) is the distance on M between the points x, y ∈ M. The bound (4.18) implies

that γ ∈ Lp(M2) for all 1 ≤ p < ∞. However, we do not know whether γN (which is the

Green function of a spectral truncation of 1−∆) satisfies a similar bound, uniformly in N .

This could have given an alternative proof. We refer to [12, Remark 8.4] for a discussion

on these topics.

All the definitions and notations from (1.28) to (1.36) have obvious analogues in the

general case of the manifold M, and thus we do not redefine them here.

For N ∈ N, let

RN (u) = e−GN (u) = e−
1

2m

´

M:|uN |2m: dx.

In view of (4.3) and (4.17), the logarithmic upper bound (2.31) on −GN (u) also holds on

the manifold M. Hence, by proceeding as in the case of the flat torus, we have the following

analogue of Proposition 1.2.

Proposition 4.5. Let m ≥ 2 be an integer. Then, RN (u) ∈ Lp(µ) for any p ≥ 1 with a

uniform bound in N , depending on p ≥ 1. Moreover, for any finite p ≥ 1, RN (u) converges

to some R(u) in Lp(µ) as N → ∞.

We conclude this section by the following analogue of Proposition 1.3, which enables us

to define the Wick ordered nonlinearity : |u|2(m−1)u : on the manifold M.

Proposition 4.6. Let m ≥ 2 be an integer and s < 0. Then, {FN (u)}N∈N defined in (1.36)

and (3.3) is a Cauchy sequence in Lp(µ;Hs(M)) for any p ≥ 1. More precisely, there exist

κ > 0 and Cm,s,κ > 0 such that

∥∥‖FM (u)− FN (u)‖Hs

∥∥
Lp(µ)

≤ Cm,s,κ(p− 1)m− 1
2

1

Nκ
(4.19)

for any p ≥ 1 and any M ≥ N ≥ 1.

Proof. Given N,n ∈ N, define JN,n by

JN,n = m!(m− 1)!

ˆ

Mx×My

|γ2,N (x, y)|2m−2γ2,N (x, y)ϕn(x)ϕn(y)dxdy.

Then, proceeding as in (3.10) and (3.12) with (3.9), Lemma 3.2, and (4.7), we obtain

‖〈FM (u)− FN (u), ϕn〉L2
x
‖2L2(µ) = 1[0,N ](λn)

(
JM,n − JN,n

)
+ 1(N,M ](λn)JM,n

for M ≥ N ≥ 1. With ε = −s > 0, we then obtain
∥∥‖FM (u)− FN (u)‖H−ε

∥∥2
L2(µ)

=
∑

n≥1

1

(1 + λ2
n)

ε
‖〈FM (u)− FN (u), ϕn〉L2

x
‖2L2(µ)

=
∑

λn≤N

1

(1 + λ2
n)

ε
(JM,n − JN,n) +

∑

N<λn≤M

1

(1 + λ2
n)

ε
JM,n

= Cm

ˆ

Mx×My

(
|γ2,M |2m−2γ2,M − |γ2,N |2m−2γ2,N

)
γ2ε,N (x, y)dxdy

+ Cm

ˆ

Mx×My

|γ2,M |2m−2γ2,M
(
γ2ε,M − γ2ε,N

)
(x, y)dxdy

=: AN,M +BN,M .
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In the following, We only bound the term BN,M , since the first term AN,M can be

handled similarly. Set 〈∇x〉 = (1−∆x)
1
2 . Then, noting that 〈∇x〉−1+εγ2ε = γ1+ε and that

〈∇x〉1−εγ2 = γ1+ε, it follows from Cauchy-Schwarz inequality and the fractional Leibniz

rule that

BN,M = Cm

ˆ

Mx×My

〈∇x〉1−ε
(
|γ2,M |2m−2γ2,M (x, y)

)
〈∇x〉−1+ε(γ2ε,M − γ2ε,N )(x, y)dxdy

= Cm

ˆ

Mx×My

〈∇x〉1−ε
(
|γ2,M |2m−2γ2,M (x, y)

)
(γ1+ε,M − γ1+ε,N)(x, y)dxdy.

≤ Cm

∥∥〈∇x〉1−ε
(
|γ2,M |2m−2γ2,M

)∥∥
L2(M2)

‖γ1+ε,M − γ1+ε,N‖L2(M2)

.
∥∥γ1+ε,M

∥∥
Lpε(M2)

∥∥γ2,M
∥∥2m−2

Lqε (M2)
‖γ1+ε,M − γ1+ε,N‖L2(M2)

with pε =
2

1−ε/2 and qε = 8(m− 1)/ε. Hence, from Lemma 4.2 we conclude that

BN,M ≤ Cm,ε

Nκ
.

By estimating AN,M in an analogous manner, we obtain

∥∥‖FM (u)− FN (u)‖H−ε

∥∥
L2(µ)

≤ Cm,ε

Nκ
. (4.20)

The bound (4.19) for general p ≥ 2 follows from (4.20) and the Wiener chaos estimate

(Lemma 2.6). �

5. Proof of Theorem 1.4 and Theorem 1.5

In this section, we present the proof of Theorem 1.5 on a manifold M (which contains

a particular case of the flat torus stated in Theorem 1.4). Fix an integer m ≥ 2 and

s < 0 in the remaining part of this section. We divide the proof into three subsections. In

Subsection 5.1, we first construct global-in-time dynamics for the truncated Wick ordered

NLS and prove that the corresponding truncated Gibbs measures P
(2m)
2,N are invariant under

its dynamics. Then, we construct a sequence {νN}N∈N of probability measures on space-

time functions such that their marginal distributions at time t are precisely given by the

truncated Gibbs measures P
(2m)
2,N . In Subsection 5.2, we prove a compactness property

of {νN}N∈N so that νN converges weakly up to a subsequence. In Subsection 5.3, by

Skorokhod’s theorem (Lemma 5.7), we upgrade this weak convergence of νN to almost sure

convergence of new C(R;Hs)-valued random variables, whose laws are given by νN , and

complete the proof of Theorem 1.5.

5.1. Extending the truncated Gibbs measures onto space-time functions. Recall

that PN is the spectral projector onto the frequencies
{
n ∈ N : λn ≤ N

}
. Consider the

truncated Wick ordered NLS:

i∂tu
N +∆uN = PN

(
: |PNuN |2(m−1)PNuN :

)
. (5.1)

We first prove global well-posedness of (5.1) and invariance of the truncated Gibbs mea-

sure P
(2m)
2,N defined in (1.30):

dP
(2m)
2,N = Z−1

N RN (u)dµ = Z−1
N e−

1
2m

´

M
:|uN |2m: dxdµ.
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Lemma 5.1. Let N ∈ N. Then, the truncated Wick ordered NLS (5.1) is globally well-posed

in Hs(M). Moreover, the truncated Gibbs measure P
(2m)
2,N is invariant under the dynamics

of (5.1).

Proof. We first prove global well-posedness of the truncated Wick ordered NLS (5.1). Given

N ∈ N, let vN = PNuN . Then, (5.1) can be decomposed into the nonlinear evolution

equation for vN on the low frequency part {λn ≤ N}:

i∂tv
N +∆vN = PN

(
: |vN |2(m−1)vN :

)
(5.2)

and a linear ODE for each high frequency λn > N :

i∂tûN (n) = λ2
nû

N (n). (5.3)

As a linear equation, any solution ûN (n) to (5.3) exists globally in time. By viewing (5.2)

on the Fourier side, we see that (5.2) is a finite dimensional system of ODEs of dimension

dN = #
{
n : λn ≤ N

}
, where the vector field depends smoothly on

{
ûN (n)

}
λn≤N

. Hence,

by the Cauchy-Lipschitz theorem, we obtain local well-posedness of (5.2).

With (3.3) we have

d

dt

ˆ

M
|vN |2dx = 2Re

ˆ

M
∂tv

NvNdx

= −2Re

(
i

ˆ

M
|∇vN |2dx

)

− 2(−1)m+1(m− 1)!σm−1
N Re

(
i

ˆ

M
L
(1)
m−1

(
|vN |2
σN

)
|vN |2dx

)

= 0.

In particular, this shows that the Euclidean norm

∥∥{v̂N (n)}λn≤N

∥∥
CdN

=

( ∑

λn≤N

|v̂N (n)|2
)1

2

=

(
ˆ

M
|vN |2dx

) 1
2

is conserved under (5.2). This proves global existence for (5.2) and hence for the truncated

Wick ordered NLS (5.1).

As in (1.34), write P
(2m)
2,N = P̂

(2m)
2,N ⊗ µ⊥

N . On the one hand, the Gaussian measure µ⊥
N on

the high frequencies {λn > N} is clearly invariant under the linear flow (5.3). On the other

hand, noting that (5.2) is the finite dimensional Hamiltonian dynamics corresponding to

HN
Wick

(vN ) with

HN
Wick

(vN ) =
1

2

ˆ

M
|∇vN |2dx+

1

2m

ˆ

M
: |vN |2m : dx,

we see that P̂
(2m)
2,N is invariant under (5.2). Therefore, the truncated Gibbs measure P

(2m)
2,N

is invariant under the dynamics of (5.1). �

Let ΦN : Hs(M) → C(R;Hs(M)) be the solution map to (5.1) constructed in

Lemma 5.1. For t ∈ R, we use ΦN (t) : Hs(M) → Hs(M) to denote the map defined
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by ΦN(t)(φ) =
(
ΦN (φ)

)
(t). We endow C(R;Hs(M)) with the compact-open topology.

Namely, we can view C(R;Hs(M)) as a Fréchet space endowed with the following metric:

d(u, v) =

∞∑

j=1

1

2j
‖u− v‖C([−j,j];Hs)

1 + ‖u− v‖C([−j,j];Hs)
.

Under this topology, a sequence {un}n∈N ⊂ C(R;Hs(M)) converges if and only if it con-

verges uniformly on any compact time interval. Then, it follows from the local Lipschitz

continuity of ΦN(·) that ΦN is continuous from Hs(M) into C(R;Hs(M)). We now extend

P
(2m)
2,N on Hs to a probability measure νN on C(R;Hs(M)) by setting

νN = P
(2m)
2,N ◦ Φ−1

N .

Namely, νN is the induced probability measure of P
(2m)
2,N under the map ΦN . In particular,

we have
ˆ

C(R;Hs)
F (u)dνN (u) =

ˆ

Hs

F (ΦN (φ))dP
(2m)
2,N (φ) (5.4)

for any measurable function F : C(R;Hs(M)) → R.

5.2. Tightness of the measures νN . In the following, we prove that the sequence

{νN}N∈N of probability measures on C(R;Hs(M)) is precompact. Recall the following

definition of tightness of a sequence of probability measures.

Definition 5.2. A sequence {ρn}n∈N of probability measures on a metric space S is tight

if, for every ε > 0, there exists a compact set Kε such that ρn(K
c
ε) ≤ ε for all n ∈ N.

It is well known that tightness of a sequence of probability measures is equivalent to pre-

compactness of the sequence. See [3].

Lemma 5.3 (Prokhorov’s theorem). If a sequence of probability measures on a metric space

S is tight, then there is a subsequence that converges weakly to a probability measure on S.

The following proposition shows that the family {νN}N∈N is tight and hence, up to a

subsequence, it converges weakly to some probability measure ν on C(R;Hs).

Proposition 5.4. Let s < 0. Then, the family {νN}N∈N of the probability measures on

C(R;Hs(M)) is tight.

The proof of Proposition 5.4 is similar to that of [12, Proposition 4.11]. While [12, Proposi-

tion 4.11] proves the tightness of {νN}N∈N restricted to [−T, T ] for each T > 0, we directly

prove the tightness of {νN}N∈N on the whole time interval.

In the following, we first state several lemmas. We present the proof of Proposition 5.4

at the end of this subsection. For simplicity of presentation, we use the following notations.

Given T > 0, we write Lp
TH

s for Lp([−T, T ];Hs). We use a similar abbreviation for other

function spaces in time. Let ρ be a probability measure on Hs. With a slight abuse of

notation, we use Lp(ρ)Hs to denote

‖φ‖Lp(ρ)Hs =
∥∥‖φ‖Hs

∥∥
Lp(ρ)

.

The first lemma provides a control on the size of random space-time functions. The

invariance of P
(2m)
2,N under the dynamics of (5.1) plays an important role.
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Lemma 5.5. Let s < 0 and p ≥ 1. Then, there exists Cp > 0 such that
∥∥‖u‖Lp

T
Hs

∥∥
Lp(νN )

≤ CpT
1
p , (5.5)

∥∥‖u‖W 1,p
T

Hs−2

∥∥
Lp(νN )

≤ CpT
1
p , (5.6)

uniformly in N ∈ N.

Proof. By Fubini’s theorem, the definition (5.4), the invariance of P
(2m)
2,N (Lemma 5.1), and

Hölder’s inequality, we have
∥∥‖u‖Lp

T
Hs

∥∥
Lp(νN )

=
∥∥‖ΦN (t)(φ)‖Lp

T
Hs

∥∥
Lp(P

(2m)
2,N )

=
∥∥‖ΦN (t)(φ)‖

Lp(P
(2m)
2,N )Hs

∥∥
Lp
T

= (2T )
1
p ‖φ‖

Lp(P
(2m)
2,N )Hs ≤ (2T )

1
p ‖RN‖L2p(µ)‖φ‖L2p(µ)Hs . (5.7)

Then, (5.5) follows from (5.7) with Proposition 4.5, (4.2), and Lemma 2.6.

From (5.1) and the definition of FN , we have
∥∥‖∂tu‖Lp

T
Hs−2

∥∥
Lp(νN )

≤
∥∥‖u‖Lp

T
Hs

∥∥
Lp(νN )

+
∥∥‖FN (u)‖Lp

T
Hs−2

∥∥
Lp(νN )

. (5.8)

The first term is estimated by (5.5). Proceeding as in (5.7) with Propositions 4.5 and 4.6,

we have
∥∥‖FN (u)‖Lp

T
Hs−2

∥∥
Lp(νN )

≤ (2T )
1
p ‖RN‖L2p(µ)‖FN (φ)‖L2p(µ)Hs−1 ≤ CpT

1
p .

This proves (5.6). �

Recall the following lemma on deterministic functions from [12].

Lemma 5.6 ([12, Lemma 3.3]). Let T > 0 and 1 ≤ p ≤ ∞. Suppose that u ∈ Lp
TH

s1 and

∂tu ∈ Lp
TH

s2 for some s2 ≤ s1. Then, for δ > p−1(s1 − s2), we have

‖u‖L∞
T
Hs1−δ . ‖u‖1−

1
p

Lp
T
Hs1

‖u‖
1
p

W 1,p
T

Hs2
.

Moreover, there exist α > 0 and θ ∈ [0, 1] such that for all t1, t2 ∈ [−T, T ], we have

‖u(t2)− u(t1)‖Hs1−2δ . |t2 − t1|α‖u‖1−θ
Lp
T
Hs1

‖u‖θ
W 1,p

T
Hs2

.

We are now ready to present the proof of Proposition 5.4.

Proof of Proposition 5.4. Let s < s1 < s2 < 0. For α ∈ (0, 1), consider the Lipschitz space

Cα
TH

s1 = Cα([−T, T ];Hs1(M)) defined by the norm

‖u‖Cα
T
Hs1 = sup

t1,t2∈[−T,T ]
t1 6=t2

‖u(t1)− u(t2)‖Hs1

|t1 − t2|α
+ ‖u‖L∞

T
Hs1 .

It follows from the Arzelà-Ascoli theorem that the embedding Cα
TH

s1 ⊂ CTH
s is compact

for each T > 0.

By Lemma 5.6 with large p ≫ 1 and Young’s inequality, we have

‖u‖Cα
T
Hs1 . ‖u‖1−θ

Lp
T
Hs2

‖u‖θ
W 1,p

T
Hs2−2 . ‖u‖Lp

T
Hs2 + ‖u‖

W 1,p
T

Hs2−2 (5.9)

for some α ∈ (0, 1). Then, it follows from (5.9) and Lemma 5.5 that
∥∥‖u‖Cα

T
Hs1

∥∥
Lp(νN )

≤ CpT
1
p . (5.10)
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For j ∈ N, let Tj = 2j . Given ε > 0, define Kε by

Kε =
{
u ∈ C(R;Hs) : ‖u‖Cα

Tj
Hs1 ≤ c0ε

−1T
1+ 1

p

j for all j ∈ N
}
.

Then, by Markov’s inequality with (5.10) and choosing c0 > 0 sufficiently large, we have

νN (Kc
ε) ≤ c−1

0 C1εT
−1− 1

p

j

∥∥‖u‖Cα
Tj

Hs1

∥∥
Lp(νN )

≤ c−1
0 Cpε

∞∑

j=1

T−1
j = c−1

0 Cpε < ε.

Hence, it remains to prove that Kε is compact in C(R;Hs) endowed with the compact-

open topology. Let {un}n∈N ⊂ Kε. By the definition of Kε, {un}n∈N is bounded in Cα
Tj
Hs1

for each j ∈ N. Then, by a diagonal argument, we can extract a subsequence {unℓ
}ℓ∈N

convergent in Cα
Tj
Hs for each j ∈ N. In particular, {unℓ

}ℓ∈N converges uniformly in Hs

on any compact time interval. Hence, {unℓ
}ℓ∈N converges in C(R;Hs) endowed with the

compact-open topology. This proves that Kε is compact in C(R;Hs). �

5.3. Proof of Theorem 1.5. It follows from Proposition 5.4 and Lemma 5.3 that, passing

to a subsequence, νNj
converges weakly to some probability measure ν on C(R;Hs(M))

for any s < 0. The following Skorokhod’s theorem tells us that, by introducing a new

probability space (Ω̃,F , P̃ ) and a sequence of new random variables ũN with the same

distribution νN , we can upgrade this weak convergence to almost sure convergence of ũN .

See [3].

Lemma 5.7 (Skorokhod’s theorem). Let S be a complete separable metric space. Suppose

that ρn are probability measures on S converging weakly to a probability measure ρ. Then,

there exist random variables Xn : Ω̃ → S with laws ρn and a random variable X : Ω̃ → S
with law ρ such that Xn → X almost surely.

By Lemma 5.7, there exist another probability space (Ω̃, F̃ , P̃ ), a sequence
{
ũNj

}
j∈N of

C(R;Hs)-valued random variables, and a C(R;Hs)-valued random variable u such that

L
(
ũNj

)
= L(uNj ) = νN , L(u) = ν, (5.11)

and ũNj converges to u in C(R;Hs) almost surely with respect to P̃ .

Next, we determine the distributions of these random variables at a given time t. By

Lemma 5.1, we have

L(uNj (t)) = P
(2m)
2,Nj

(5.12)

for each t ∈ R.

Lemma 5.8. Let ũNj
and u be as above. Then, we have

L
(
ũNj(t)

)
= P

(2m)
2,Nj

and L(u(t)) = P
(2m)
2

for any t ∈ R.

Proof. Fix t ∈ R. Let Rt : C(R;Hs) → Hs be the evaluation map defined by Rt(v) = v(t).

Note that Rt is continuous. From (5.12), we have

P
(2m)
2,Nj

= νNj
◦R−1

t . (5.13)
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Denoting by νtNj
the distribution of ũNj (t), it follows from (5.11) and (5.13) that

νtNj
= νNj

◦R−1
t = P

(2m)
2,Nj

. (5.14)

Since ũNj converges to u in C(R;Hs) almost surely with respect to P̃ , ũNj(t) converges

to u(t) in Hs almost surely. Then, denoting by νt the distribution of u(t), it follows from

the dominated convergence theorem with (5.14) that

νt(A) =

ˆ

1{u(t)(ω)∈A}dP̃ = lim
j→∞

ˆ

1{
ũNj (t)(ω)∈A

}dP̃ = lim
j→∞

P
(2m)
2,Nj

(A). (5.15)

Therefore, from (5.15) and Proposition 4.5, we conclude that L(u(t)) = P
(2m)
2 . �

Finally, we show that the random variable u is indeed a global-in-time distributional

solution to the Wick ordered NLS

i∂tu+∆u = : |u|2(m−1)u : , (t, x) ∈ R×M. (5.16)

Then, Theorem 1.5 follows from Lemmas 5.8 and 5.9.

Lemma 5.9. Let ũNj and u be as above. Then, ũNj and u are global-in-time distributional

solutions to the truncated Wick ordered NLS (5.1) for each j ∈ N and to the Wick ordered

NLS (5.16), respectively.

Proof. For j ∈ N, define the D′
t,x-valued random variable Xj by

Xj = i∂tu
Nj +∆uNj −PNj

(
: |PNj

uNj |2(m−1)PNj
uNj :

)
.

Here, D′
t,x = D′(R × M) denotes the space of space-time distributions on R × M. We

define X̃j for ũNj in an analogous manner. Since uNj is a solution to (5.1), we see that

LD′
t,x
(Xj) = δ0, where δ0 denotes the Dirac delta measure. By (5.11), we also have

LD′
t,x
(X̃j) = δ0,

for each j ∈ N. In particular, ũNj is a global-in-time distributional solution to the truncated

Wick ordered NLS (5.1) for each j ∈ N, i.e.

i∂tũNj +∆ũNj = PNj

(
: |PNj

ũNj |2(m−1)PNj
ũNj :

)

in the distributional sense, almost surely with respect to P̃ .

In view of the almost sure convergence of ũNj to u in C(R;Hs), we have

i∂tũNj +∆ũNj −→ i∂tu+∆u

in D′(R×M) as j → ∞, almost surely with respect to P̃ . Next, we show the almost sure

convergence of FNj

(
ũNj

)
to F (u) = : |u|2(m−1)u :. For simplicity of notation, let Fj = FNj

and uj = ũNj . Given M ∈ N, write

Fj(uj)− F (u) =
(
Fj(uj)− F (uj)

)
+
(
F (uj)− FM (uj)

)

+
(
FM (uj)− FM (u)

)
+
(
FM (u)− F (u)

)
. (5.17)
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Then, for each fixed M ≥ 1, it follows from the almost sure convergence of ũNj to u in

C(R;Hs) and the continuity of FM that the third term on the right-hand side of (5.17)

converges to 0 in C(R;Hs) as j → ∞, almost surely with respect to P̃ .

Fix T > 0 and let s < −1. Arguing as in (5.7) with Proposition 4.6, we have

∥∥‖F (uj)− FM (uj)‖L2
T
Hs

∥∥
L2(νNj

)
=
∥∥‖F (ΦNj

φ)− FM (ΦNj
φ)‖

L2(P
(2m)
2,Nj

)Hs

∥∥
L2
T

= (2T )
1
2 ‖F (φ)− FM (φ)‖

L2(P
(2m)
2,Nj

)Hs

. T
1
2 ‖RNj

‖L4(µ)‖F (φ) − FM (φ)‖L4(µ)Hs

≤ CT
1
2M−ε, (5.18)

for some small ε > 0, uniformly in j ∈ N. In the third step, we used the fact that ZN & 1

in view of Proposition 1.2: ZN = ‖RN (u)‖L1(ρ) → ‖R(u)‖L1(ρ) > 0 as N → ∞. The fourth

term on the right-hand side of (5.17) can be treated in an analogous manner. Proceeding

as in (5.18), we obtain

∥∥‖Fj(uj)− F (uj)‖L2
T
Hs

∥∥
L2(νNj

)
≤ (2T )

1
2 ‖RNj

‖L4(µ)‖Fj(φ)− F (φ)‖L4(µ)Hs

≤ CT
1
2N−ε

j .

Putting everything together, we conclude that, after passing to a subsequence, Fj(uj)

converges to F (u) in L2([−T, T ];Hs) almost surely with respect to P̃ . Since the choice

of T > 0 was arbitrary, we can apply the previous argument iteratively for Tℓ = 2ℓ,

ℓ ∈ N. Thus, for each ℓ ≥ 2, we obtain a set Ωℓ ⊂ Ωℓ−1 of full measure such that a

subsequence Fj(ℓ)(uj(ℓ))(ω) of Fj(ℓ−1)(uj(ℓ−1)) from the previous step converges to F (u)(ω)

in L2([−Tℓ, Tℓ];H
s) for all ω ∈ Ωℓ. Then, by a diagonal argument, passing to a subsequence,

Fj(uj) converges to F (u) in L2
locH

s almost surely with respect to P̃ . In particular, up to

a subsequence, Fj(uj) converges to F (u) in D′(R × M) almost surely with respect to P̃ .

Therefore, u is a global-in-time distributional solution to (5.16). �

Appendix A. Example of a concrete combinatorial argument: the case

M = T
2 and m = 3

In this appendix, we present a concrete combinatorial computation on the Fourier side

for the proof of Proposition 1.1 when m = 3. The aim of this appendix is to convince

readers of increasing combinatorial complexity in m . Compare the m = 3 case presented

here with the m = 2 case in [7]. This shows that the use of the white noise functional is

essential in establishing our result for general m ≥ 2.

Let GN (u) be as in (1.26). For simplicity, we show that GN (u) is uniformly bounded

in L2(µ). Namely, we prove

‖GN (u)‖L2(µ) ≤ C < ∞ (A.1)

independently of N ∈ N. Then, a small modification yields Proposition 1.1 for p = 2. The

general case follows from the p = 2 case and the Wiener chaos estimate (Lemma 2.6).
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From (1.21), (1.23), (1.24), and (1.26) with (1.10), we have

6GN (u) =

ˆ

T2

: |uN |6 : dx =

ˆ

T2

|uN |6 − 9σN |uN |4 + 18σ2
N |uN |2 − 6σ3

Ndx

=
∑

Γ6(0)
|nj |≤N

6∏

j=1

g∗nj√
1 + |nj |2

− 9

( ∑

|n|≤N

1

1 + |n|2
)( ∑

Γ4(0)
|nj |≤N

4∏

j=1

g∗nj√
1 + |nj|2

)

+ 18

( ∑

|n|≤N

1

1 + |n|2
)2( ∑

|n|≤N

|gn|2
1 + |n|2

)
− 6

( ∑

|n|≤N

1

1 + |n|2
)3

=: I + II + III + IV, (A.2)

where σN is as in (1.25) and Γk(0) and g∗n are as in (2.29) and (2.30), respectively.

The basic idea is to regroup the terms in (A.2) by introducing some factorizations,

and separately estimate each contribution. Given ℓ ∈ 2N, we say that we have a pair in

n = (n1, . . . , nℓ) ∈ Γℓ(0) if nj = nj′ for some odd j and even j′.
Let us first consider I . Given n ∈ Γ6(0), there are three cases: (i) no pair, (ii) 1 pair,

and (iii) 3 pairs. Thus, write I as

I = I 1 + I 2 + I 3,

corresponding to the three cases: (i) no pair, (ii) 1 pair, and (iii) 3 pairs, respectively. For

simplicity of notation, we may drop the frequency restriction |n| ≤ N in the following but

it is understood that all the summations are over {|n| ≤ N}.

• Case 1: No pair. In this case, we can easily estimate the contribution from I 1 by

‖ I 1‖L2(µ) .

( ∑

Γ6(0)

6∏

j=1

1

1 + |nj|2
) 1

2

≤ C < ∞. (A.3)

• Case 2: 1 pair. In this case, there are 9 possibilities to form a pair from each of

{n1, n3, n5} and {n2, n4, n6}. Thus, we have

I 2 = 9

(∑ |gn|2
1 + |n|2

)( ∑

Γ4(0)
n1 6=n2,n4

4∏

j=1

g∗nj√
1 + |nj |2

)
.

Combining this with II, we have

I 2 + II = 9

(∑ |gn|2 − 1

1 + |n|2
)( ∑

Γ4(0)
n1 6=n2,n4

4∏

j=1

g∗nj√
1 + |nj |2

)

− 18

(∑ 1

1 + |n|2
)(∑ |gn|2

1 + |n|2
)2

+ 9

(∑ 1

1 + |n|2
)(∑ |gn|4

(1 + |n|2)2
)

=: II1 + II2 + II3. (A.4)
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Note that E[|gn|2 − 1] = 0. Then, by Lemma 2.6, we have

‖II1‖L2(µ) .

∥∥∥∥
∑ |gn|2 − 1

1 + |n|2
∥∥∥∥
L4(µ)

∥∥∥∥
∑

Γ4(0)
n1 6=n2,n4

4∏

j=1

g∗nj√
1 + |nj|2

∥∥∥∥
L4(µ)

.

(∑ 1

(1 + |n|2)2
) 1

2
( ∑

Γ4(0)

4∏

j=1

1

1 + |nj|2
) 1

2

≤ C < ∞. (A.5)

The terms II2 and II3 are treated with other terms in the following.

• Case 3: 3 pairs. In this case, there are 3 scenarios on the values of n1, n3, and

n5: (i) n1 = n3 = n5, (ii) n1 = n3 6= n5 up to permutations, (iii) all distinct. Write

I 3 = I 31 + I 32 + I 33, corresponding to these three cases.

◦ Subcase 3 (i): n1 = n3 = n5. In this case, the contribution can be estimated by

‖ I 31‖L2(µ) ≤
∥∥∥∥
∑ |gn|6

(1 + |n|2)3
∥∥∥∥
L2(µ)

.

(∑ 1

(1 + |n|2)6
) 1

2

≤ C < ∞. (A.6)

◦ Subcase 3 (ii): n1 = n3 6= n5 up to permutations. In this case, we have

I 32 =

(
3
2

)(
3
2

)(∑ |gn|4
(1 + |n|2)2

)(∑

m6=n

|gm|2
1 + |m|2

)

= 9

(∑ |gn|4
(1 + |n|2)2

)(∑ |gm|2
1 + |m|2

)
− 9

(∑ |gn|6
(1 + |n|2)3

)

=: I 321 +OL2(µ)(1). (A.7)

Here, we estimated the second term as in (A.6).

◦ Subcase 3 (iii): all distinct. In this case, we have

I 33 = 6

(∑ |gn1 |2
1 + |n1|2

)( ∑

n3 6=n1

|gn3 |2
1 + |n3|2

)( ∑

n5 6=n1,n3

|gn5 |2
1 + |n5|2

)

= 6

(∑ |gn1 |2
1 + |n1|2

)( ∑

n3 6=n1

|gn3 |2
1 + |n3|2

)( ∑

n5 6=n1

|gn5 |2
1 + |n5|2

)

− 6

(∑ |gn1 |2
1 + |n1|2

)( ∑

n3 6=n1

|gn3 |4
(1 + |n3|2)2

)

= 6

(∑ |gn1 |2
1 + |n1|2

)( ∑

n3 6=n1

|gn3 |2
1 + |n3|2

)(∑ |gn5 |2
1 + |n5|2

)

− 6

(∑ |gn1 |2
1 + |n1|2

)( ∑

n3 6=n1

|gn3 |4
(1 + |n3|2)2

)

− 6

(∑ |gn1 |4
(1 + |n1|2)2

)( ∑

n3 6=n1

|gn3 |2
1 + |n3|2

)

= 6

(∑ |gn1 |2
1 + |n1|2

)3

− 18

(∑ |gn1 |2
1 + |n1|2

)(∑ |gn3 |4
(1 + |n3|2)2

)
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+ 12

(∑ |gn1 |6
(1 + |n1|2)3

)

=: I 331 + I 332 +OL2(µ)(1). (A.8)

From (A.4), (A.7), and (A.8), we have

II3 + I 321 + I 332 = 9

(∑ 1− |gn|2
1 + |n|2

)(∑ |gn|4
(1 + |n|2)2

)
.

Proceeding as in (A.5), we obtain

‖II3 + I 321 + I 332‖L2(µ) ≤ C < ∞. (A.9)

From (A.2), (A.4), and (A.8), we have

III + IV + II2 + I 331 = 6

(∑ |gn|2 − 1

1 + |n|2
)3

.

Proceeding as in (A.5), we obtain

‖III + IV + II2 + I 331‖L2(µ) .

∥∥∥∥
∑ |gn|2 − 1

1 + |n|2
∥∥∥∥
3

L6(µ)

≤ C < ∞. (A.10)

Finally, putting (A.2)-(A.10) together, we obtain (A.1).

Remark A.1. The above computation merely handles the nonlinear part GN (u) in the

truncated Wick ordered Hamiltonian. In order to prove Theorem 1.4, one still needs to

estimate FN (u) in (1.36), which has a different combinatorial structure. For our problem,

it is much more efficient to work on the physical side, using the white noise functional and

the (generalized) Laguerre polynomials.
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