On the number of zero increments of random walks with a barrier - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2008

On the number of zero increments of random walks with a barrier

Résumé

Continuing the line of research initiated in Iksanov and Möhle (2008) and Negadajlov (2008) we investigate the asymptotic (as $n \to \infty$) behaviour of $V_n$ the number of zero increments before the absorption in a random walk with the barrier $n$. In particular, when the step of the unrestricted random walk has a finite mean, we prove that the number of zero increments converges in distribution. We also establish a weak law of large numbers for $V_n$ under a regular variation assumption.
Fichier principal
Vignette du fichier
dmAI0115.pdf (178.36 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01194687 , version 1 (07-09-2015)

Identifiants

Citer

Alex Iksanov, Pavlo Negadajlov. On the number of zero increments of random walks with a barrier. Fifth Colloquium on Mathematics and Computer Science, 2008, Kiel, Germany. pp.243-250, ⟨10.46298/dmtcs.3568⟩. ⟨hal-01194687⟩

Collections

TDS-MACS
67 Consultations
704 Téléchargements

Altmetric

Partager

More