On the density and the structure of the Peirce-like formulae - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2008

On the density and the structure of the Peirce-like formulae

Résumé

Within the language of propositional formulae built on implication and a finite number of variables $k$, we analyze the set of formulae which are classical tautologies but not intuitionistic (we call such formulae - Peirce's formulae). We construct the large family of so called simple Peirce's formulae, whose sequence of densities for different $k$ is asymptotically equivalent to the sequence $\frac{1}{ 2 k^2}$. We prove that the densities of the sets of remaining Peirce's formulae are asymptotically bounded from above by $\frac{c}{ k^3}$ for some constant $c \in \mathbb{R}$. The result justifies the statement that in the considered language almost all Peirce's formulae are simple. The result gives a partial answer to the question stated in the recent paper by H. Fournier, D. Gardy, A. Genitrini and M. Zaionc - although we have not proved the existence of the densities for Peirce's formulae, our result gives lower and upper bound for it (if it exists) and both bounds are asymptotically equivalent to $\frac{1}{ 2 k^2}$.
Fichier principal
Vignette du fichier
dmAI0131.pdf (145.5 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01194671 , version 1 (07-09-2015)

Identifiants

Citer

Antoine Genitrini, Jakub Kozik, Grzegorz Matecki. On the density and the structure of the Peirce-like formulae. Fifth Colloquium on Mathematics and Computer Science, 2008, Kiel, Germany. pp.461-474, ⟨10.46298/dmtcs.3584⟩. ⟨hal-01194671⟩

Collections

CNRS UVSQ TDS-MACS
130 Consultations
587 Téléchargements

Altmetric

Partager

More