Branching processes in random environment die slowly - Archive ouverte HAL Access content directly
Conference Papers Discrete Mathematics and Theoretical Computer Science Year : 2008

Branching processes in random environment die slowly

Vladimir A. Vatutin
  • Function : Author
  • PersonId : 872141
Andreas E. Kyprianou
  • Function : Author
  • PersonId : 856542


Let $Z_n,n=0,1,\ldots,$ be a branching process evolving in the random environment generated by a sequence of iid generating functions $f_0(s),f_1(s),\ldots,$ and let $S_0=0$, $S_k=X_1+ \ldots +X_k,k \geq 1$, be the associated random walk with $X_i=\log f_{i-1}^{\prime}(1), \tau (m,n)$ be the left-most point of minimum of $\{S_k,k \geq 0 \}$ on the interval $[m,n]$, and $T=\min \{ k:Z_k=0\}$. Assuming that the associated random walk satisfies the Doney condition $P(S_n > 0) \to \rho \in (0,1), n \to \infty$, we prove (under the quenched approach) conditional limit theorems, as $n \to \infty$, for the distribution of $Z_{nt}, Z_{\tau (0,nt)}$, and $Z_{\tau (nt,n)}, t \in (0,1)$, given $T=n$. It is shown that the form of the limit distributions essentially depends on the location of $\tau (0,n)$ with respect to the point $nt$.
Fichier principal
Vignette du fichier
dmAI0125.pdf (277.67 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

hal-01194660 , version 1 (07-09-2015)



Vladimir A. Vatutin, Andreas E. Kyprianou. Branching processes in random environment die slowly. Fifth Colloquium on Mathematics and Computer Science, 2008, Kiel, Germany. pp.375-396, ⟨10.46298/dmtcs.3578⟩. ⟨hal-01194660⟩


72 View
502 Download



Gmail Mastodon Facebook X LinkedIn More