A Note on the Transience of Critical Branching Random Walks on the Line - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2008

A Note on the Transience of Critical Branching Random Walks on the Line

Résumé

Gantert and Müller (2006) proved that a critical branching random walk (BRW) on the integer lattice is transient by analyzing this problem within the more general framework of branching Markov chains and making use of Lyapunov functions. The main purpose of this note is to show how the same result can be derived quite elegantly and even extended to the nonlattice case within the theory of weighted branching processes. This is done by an analysis of certain associated random weighted location measures which, upon taking expectations, provide a useful connection to the well established theory of ordinary random walks with i.i.d. increments. A brief discussion of the asymptotic behavior of the left- and rightmost particles in a critical BRW as time goes to infinity is provided in the final section by drawing on recent work by Hu and Shi (2008).
Fichier principal
Vignette du fichier
dmAI0128.pdf (244.63 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01194659 , version 1 (07-09-2015)

Identifiants

Citer

Gerold Alsmeyer, Matthias Meiners. A Note on the Transience of Critical Branching Random Walks on the Line. Fifth Colloquium on Mathematics and Computer Science, 2008, Kiel, Germany. pp.421-436, ⟨10.46298/dmtcs.3581⟩. ⟨hal-01194659⟩

Collections

TDS-MACS
83 Consultations
620 Téléchargements

Altmetric

Partager

More