
HAL Id: hal-01194631
https://hal.science/hal-01194631

Submitted on 7 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporal Logic with Forgettable Past
François Laroussinie, Nicolas Markey, Philippe Schnoebelen

To cite this version:
François Laroussinie, Nicolas Markey, Philippe Schnoebelen. Temporal Logic with Forgettable Past.
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science (LICS’02), 2002,
Copenhagen, Denmark. pp.383-392, �10.1109/LICS.2002.1029846�. �hal-01194631�

https://hal.science/hal-01194631
https://hal.archives-ouvertes.fr

Temporal Logic with Forgettable Past

François Laroussinie1, Nicolas Markey1,2, Philippe Schnoebelen1

1 Laboratoire Spécification et Vérification, ENS de Cachan & CNRS UMR 8643,
61, avenue de Président Wilson, 94235 Cachan Cedex, France.

2 Laboratoire d’Informatique Fondamentale d’Orléans, Univ. Orléans & CNRS FRE 2490,
rue Léonard de Vinci, BP 6759, 45067 Orléans Cedex 2, France.

E-mail: {fl,markey,phs}@lsv.ens-cachan.fr

Abstract

We investigate NLTL, a linear-time temporal logic with
forgettable past. NLTL can be exponentially more suc-
cinct than LTL + Past (which in turn can be more succinct
than LTL). We study satisfiability and model checking for
NLTL and provide optimal automata-theoretic algorithms
for these EXPSPACE-complete problems.

1. Introduction

Temporal logic and verification. Temporal logic pro-
vides a fundamental framework for formally specifying sys-
tems and reasoning about them [4, 18]. Model checking
techniques further allow the automatic verification that a
finite-state model of a system satisfies a temporal logic
specification [2, 1].

Temporal logic with past. Usually, specification and ver-
ification is done with pure-future temporal logics, i.e. log-
ics where the modalities only refer to the future of the cur-
rent time. It is well-known that temporal logics combin-
ing past and future modalities make some specifications
easier to write and more natural [17]. However, allowing
past-time makes verification algorithms harder to imple-
ment (though not necessarily from a complexity-theoretic
viewpoint). Additionally, all the main temporal logics
with past-time admit translations to their pure-future frag-
ment [11, 7, 6, 8, 23, 15, 25].

Forgettable past and the N modality. Being able to refer
to past moments is often useful, but there also exist situa-
tions where it is convenient to forget the past. Consider for
example, the following temporal formula

G(alarm ⇒ F
−1 problem) (Spec1)

where “F−1” means “at some past time”. (Spec1) states that
“whenever the alarm rings, then there has been some prob-
lem in the past”, i.e. the alarm does not ring without due
cause. If now the alarm has a reset button, and we want to
state that (Spec1) holds after any reset, the formula

G
(

reset ⇒ G(alarm ⇒ F
−1 problem)

)

(Spec2)

is not exactly what we aim at. With (Spec2), a problem that
occurred before the reset may account for the alarm ringing,
which is probably not what we had in mind.

For this kind of situations, Laroussinie and Schnoe-
belen [15, 16] proposed to use a new modality, N (read
“Now”1, or “from now on”) that forgets all the past moments
(see below for the formal semantics). With N, one can state
the intended property of the alarm example via e.g.

G
(

reset ⇒ NG(alarm ⇒ F
−1 problem)

)

(Spec3)

Not much is known about N, except that the trans-
lations of LTL + Past and CTL∗ + Past into (resp.)
LTL and CTL∗ carry over to LTL + Past + Now and
CTL∗ + Past + Now [16].

Our contribution. In this paper, we investigate NLTL,
i.e. LTL + Past + Now, and give automata-theoretic de-
cision procedures for model checking and satisfiability.
These algorithms run in EXPSPACE, which is optimal:
we show that both satisfiability and model checking are
EXPSPACE-complete for NLTL. This came as a surprise
since NLTL does not appear to be a big departure from
PLTL, i.e. LTL + Past, for which verification is (as for
LTL) PSPACE-complete [21].

The increased complexity of NLTL is partly explained
by its expressive power: we prove that NLTL can be ex-
ponentially more succinct than PLTL, and that PLTL can

1No connection with the Now of H. Kamp, Formal properties of ‘now’,
Theoria, 227–263, 1971.

in turn be exponentially more succinct than LTL. This last
result is the first direct proof of a succinctness gap between
PLTL and LTL 2.

Finally we show how the model checking of a path can
be done in polynomial time for NLTL formulae and is in
fact PTIME-complete (observe that the precise complexity
of model checking a path is still an open-problem for LTL

and PLTL [3]).

Related works. Past-time is more popular in linear-time
settings but branching-time settings exist, e.g. [8, 15, 14,
16]. Automata-theoretic methods for temporal-logics were
pioneered by Vardi and Wolper, and they were adapted for
LTL + Past and mu-calculus + Past in [17, 23, 12, 13] (these
logics have PSPACE-complete verification problems). N

can be encoded in richer formalisms, e.g. QPLTL (PLTL

with arbitrary quantification over propositional variables)
but QPLTL and QLTL have non-elementary verification
problems [22]. “Chop” is another modality where part of
the computation can be forgotten: here too verification be-
comes non-elementary [10, 20].

Plan of the paper. We provide the necessary definitions
in § 2, study succinctness issues in § 3, and provide
automata-theoretic decision procedures for NLTL in § 4.
Model checking a path is investigated in § 5.

2. Temporal logic with past

We first define PLTL and only introduce N later.

Syntax of PLTL. Let AP = {p1, p2, . . .} be a countable
set of atomic propositions. PLTL formulae are given by:

φ, ψ ::= ψ∧φ | ¬φ | Xφ | ψUφ | X
−1φ | ψSφ | p1 | p2 | ...

where U reads “until”, S reads “since”, X is “next” and
X−1 “previous”. Standard abbreviations include: >, ψ ∨ φ,
ψ ⇒ φ, ψ ⇔ φ, ... Moreover we let Fφ

def
= >Uφ

(“φ will eventually be true”), Gφ
def
= ¬F¬φ (“φ is always

true in the future”) and, symmetrically, F−1φ
def
= >Sφ and

G−1φ
def
= ¬F−1¬φ. The size |φ| of a formula is its length in

symbols.
S, X−1, F−1 and G−1 are the past modalities, while U, X,

F and G are the future modalities. The classical logic LTL

is the pure-future fragment of PLTL.

2Regarding upper bounds, the direct translations in [6] is non-
elementary. An elementary upper bound can be obtained from the ele-
mentary translations of counter-free Büchi automata into LTL formulae
(see [27]). Regarding lower bounds, the non-existence of succinct transla-
tions has been conjectured (e.g. [13]) but not yet proved.

Semantics of PLTL. A (linear-time) structure (also, a
path) is a pair (π, ξ) of an ω-sequence π = π(0), π(1), . . .
of positions, with a mapping ξ : {π(0), π(1), . . .} → 2AP

labeling each position π(i) with the propositions that hold
locally. We often simply write π for a structure when the
labeling can be inferred from the context. Let (π, ξ) be a
structure, i a nonnegative integer, and φ a PLTL formula.
We inductively define the relation π, i |= φ, read “φ holds
at position i in π”, by:

π, i |= p iff p ∈ ξ(π(i)),
π, i |= φ ∧ ψ iff π, i |= φ and π, i |= ψ,
π, i |= ¬φ iff π, i 6|= φ,
π, i |= Xφ iff π, i+ 1 |= φ,
π, i |= ψUφ iff π, j |= φ for some j ≥ i

s .t . π, k |= ψ for all i ≤ k < j,
π, i |= X−1φ iff i > 0 and π, i− 1 |= φ,
π, i |= ψSφ iff π, j |= φ for some 0 ≤ j ≤ i

s .t . π, k |= ψ for all j < k ≤ i.

We write φ ≡ ψ when φ and ψ are equivalent, i.e. when
for all π and i, we have π, i |= φ iff π, i |= ψ. A less dis-
criminating equivalence is initial equivalence, denoted ≡i,
and defined by: φ ≡i ψ iff for all π, π, 0 |= φ iff π, 0 |= ψ.
“Global” equivalence (≡) is the natural notion of equiva-
lence, and it is substitutive. Initial equivalence is less well-
behaved and, e.g., it is not substitutive under past-time con-
texts. Using ≡i is meaningful when we compare two tem-
poral specifications of some system, since these specifica-
tions have to hold at the initial positions. Observe that
Gabbay’s theorem, stating that “any PLTL formula can be
translated into an equivalent LTL formula”, refers to ini-
tial equivalence: saying that aUb and F(b∧G−1(a∨ b)) are
equivalent is only correct with initial equivalence in mind.

Verification problems. Satisfiability is the first verifica-
tion problem we consider. The problem is “given a formula
φ, is there some π and i s.t. π, i |= φ ?” A variant prob-
lem asks whether φ is initially satisfiable, that is, satisfiable
in the initial position of some structure. Clearly, the two
problems are inter-reducible: φ is satisfiable iff Fφ is ini-
tially satisfiable and φ is initially satisfiable iff φ ∧ ¬X−1>
is satisfiable.

Model checking is our second verification problem. Here
we consider a Kripke structure 3 K and a formula φ and asks
whether K |= φ, that is whether π, 0 |= φ for all infinite
paths π in K that start from an initial node (a path in K is
naturally interpreted as a linear-time structure).

It is well known that both model checking and satisfia-
bility are PSPACE-complete for LTL and PLTL [21].

3i.e. a structure 〈Q,→, Q0, l〉 where Q is a set of nodes, →⊆ Q × Q

is a total transition relation, Q0 ⊆ Q is a set of initial nodes and l : Q →
2AP a labeling of the nodes.

The N modality. The semantics of PLTL assumes that
past is cumulative, i.e., when time progresses, history grows
ever larger. As a consequence, the entire history is always
used for evaluating formulae with past modalities.

The N modality was introduced for situations where at
some point one wants to forget the past, and start anew [15,
16]. Such a situation can be, e.g., the alarm+reset example
seen in the Introduction.

Formally, we define NLTL, or PLTL+Now, by extend-
ing the syntax of PLTL with the unary modality N and by
extending the semantics with the following clause:

π, i |= Nφ iff πi, 0 |= φ

where πi is the i-th suffix of π starting from π(i). Then,
all the notions that are meaningful for PLTL (satisfiability,
global and initial equivalences, . . .) apply equally to NLTL.

The following useful equivalences hold for any NLTL

formulae:

N(φ ∧ ψ) ≡ Nφ ∧ Nψ N¬φ ≡ ¬Nφ

NX−1φ ≡ ⊥ N(φSψ) ≡ Nψ

Nφ ≡ φ if φ is pure-future

(N-Laws)

Also, N allows defining initial equivalence in term of global
equivalence: φ ≡i ψ iff Nφ ≡ Nψ.

3. Succinctness of temporal logics with past

Gabbay’s (and Kamp’s) theorem implies that PLTL and
LTL have the same expressive power [11, 7, 6]. Gabbay’s
proof associates with any PLTL formula ψ a (globally)
equivalent but separated ψ′ (i.e. ψ′ is a Boolean combina-
tion of pure-past and pure-future formulae). With this sep-
aration theorem, it is easy to prove that NLTL also can be
translated to LTL (modulo initial equivalence): one just ap-
plies the N-Laws on the separated formulae (see [15]).

In this section we show these three “equally expressive”
logics can be distinguished in terms of succinctness. These
results provide a formal justification of the claim that the
addition of past-time modalities make some specifications
easier to write. That there can exist a succinctness gap be-
tween PLTL and LTL has been conjectured by many re-
searchers in the field, but Theorem 3.1 provides, as far as
we know, the first proof.

Theorem 3.1. PLTL can be exponentially more succinct
than LTL.

Proof. Assume {p0, p1, . . . , pn} are atomic propositions
and let ψn be the following PLTL formula:

G

(

(

n
∧

i=1

(pi ⇔ F
−1(¬X

−1> ∧ pi))
)

⇒

(

p0 ⇔ F
−1(¬X

−1> ∧ p0)
)

)

(ψn)

ψn uses ¬X−1> to characterize the initial position of a path
π, so that π |= ψn iff all positions in π that agree with the
initial position π(0) on p1, . . . , pn also agree on p0. Let
ϕn be an LTL formula s.t. ψn ≡i ϕn (it is easy to come
up with such a ϕn, e.g. by considering all possible valu-
ations for p0, p1, . . . , pn). Since ϕn is pure-future, Gϕn

states that “any two future positions that agree on p1, . . . , pn

also agree on p0”. But this latter property can only be
expressed by PLTL (or LTL) formulae of size Ω(2n) [5,
Theorem 2] 4. Hence |ϕn| is in Ω(2n) while |ψn| is in
O(n).

Remark 3.2. The statement of Theorem 3.1 (and 3.3) can
be sharpened:

1. Observe that the succinctness gap already occurs with
temporal formulae from the L(F,F−1,X−1) fragment,
and having a fixed temporal depth. We could adapt the
proof and further restrict to L(F,F−1).

2. The proof that |ϕn| is in Ω(2n) even shows that ϕn

has Ω(2n) distinct subformulae, so thatϕn cannot suc-
cinctly be represented as a dag (sharing common sub-
formulae).

3. ψn uses n+1 distinct propositions but, using standard
encoding techniques (see e.g. [3]), one shows the suc-
cinctness gap occurs even for formulae with a single
proposition (at the cost of the fixed temporal depth).

Adding N further allows more conciseness:

Theorem 3.3. NLTL can be exponentially more succinct
than PLTL.

Proof. Let ψ′
n be the NLTL formula given by ψ′

n

def
=

GNψn. ψ′
n too states that “any two future positions that

agree on p1, . . . , pn also agree on p0”, so that it only has
PLTL equivalents of size Ω(2n).

Observe that a single occurence of N is sufficient for the
succinctness gap.

4. An automata-theoretic approach to NLTL

verification

In this section we address satisfiability and model check-
ing problems for NLTL. We start by an algorithm for satis-
fiability. This algorithm associates with an NLTL formula
φ an alternating Büchi automaton Aφ that accepts the mod-
els of φ. Then Aφ can also be used for model checking.

The literature contains many algorithms that build au-
tomata recognizing the models of temporal formulae. For

4A Büchi automaton for Gϕn must record all valuations that it sees and
then requires Ω(22

n
) states. Since PLTL formulae can be translated to

Büchi automata with a single exponential blowup, the claim follows.

linear-time logics, one can distinguish between two differ-
ent kinds of constructions. First there are methods based on
classical (non-deterministic) Büchi automata whose size is
exponential in the size of the formula (e.g. [26, 17]). Sec-
ondly, for pure future logics as LTL, there exist approaches
based on alternating Büchi automata of only polynomial
size [24]. All these methods offer (optimal) algorithms run-
ning in PSPACE since non-emptiness of a Büchi automa-
ton can be decided in logarithmic space, while it requires
polynomial space for alternating Büchi automata.

Our method produces an alternating Büchi automaton
of exponential size. Then our algorithms for satisfiability
and model checking run in EXPSPACE. We show in § 4.2
that these algorithms are optimal: satisfiability and model-
checking are EXPSPACE-complete for NLTL.

4.1. Alternating Büchi automata for NLTL formulae

Alternating automata. An alternating automaton with a
generalized Büchi acceptance condition is a tuple A =
〈Σ, S, ρ, S0,F〉 where Σ is a finite alphabet, S is a finite
set of states, ρ : S × Σ → B+(S) is a transition function
(B+(S) is the set of positive Boolean combinations over S
and also contains ⊥) whose semantics is described below,
S0 ⊆ S is the set of initial states and F = {F1, . . .} is a set
of sets of accepting states (Fi ⊆ S for any i).
A run R of A over an infinite word w ∈ Σω is an infi-
nite S-labeled tree (viz R = (τ, r) where τ is a tree and
r : Nodes(τ) → S assigns an element of S to each node
of τ). We further require that the root ε of τ is labeled
with some initial state and that R respects the transition re-
lation: that is, for any node x with children x1, . . . , xk, if x
has depth i then {r(x1), . . . , r(xk)} |= ρ(r(x), wi). Here
the formula θ = ρ(r(x), wi) describes admissible sets of
states in the obvious way. A run is accepting if, along ev-
ery branch, the set of states that are visited infinitely often
intersects every Fi non-vacuously.

W.l.o.g. the branching degree of accepting runs can be
bounded: if the transition relation only contains Boolean
formulae θ of the form

∨

j

∧k
i=1 sj,i, then an accepting run

with branching degree > k can be pruned to degree k and
remain accepting.

Construction of Aϕ. Let ϕ be an NLTL formula. We de-
fine CL(ϕ), the closure of ϕ, as the smallest set of formulae
containing >, X−1>, all subformulae of ϕ, X(ψ1Uψ2) for
any subformula ψ1Uψ2 of ϕ, X−1(ψ1Sψ2) for any subfor-
mula ψ1Sψ2 of ϕ, and the negations of all these formulae
(we identify ¬¬ψ with ψ). Classically, an atom A of ϕ is
a locally coherent subset of CL(ϕ) [17]. For NLTL the co-
herency conditions are:

• > ∈ A,

• if ψ ∈ CL(ϕ) then ψ ∈ A iff ¬ψ 6∈ A,

• if ψ1 ∧ψ2 ∈ CL(ϕ) then ψ1 ∧ψ2 ∈ A iff ψ1 ∈ A and
ψ2 ∈ A,

• if ψ1 ∨ ψ2 ∈ CL(ϕ) then ψ1 ∨ ψ2 ∈ A iff ψ1 ∈ A or
ψ2 ∈ A,

• if ψ1Uψ2 ∈ CL(ϕ) then ψ1Uψ2 ∈ A iff ψ2 ∈ A or
ψ1,X(ψ1Uψ2) ∈ A,

• if ψ1Sψ2 ∈ CL(ϕ) then ψ1Sψ2 ∈ A iff ψ2 ∈ A or
ψ1,X

−1(ψ1Sψ2) ∈ A,

• if X−1ψ ∈ CL(ϕ) then X−1ψ ∈ A implies X−1> ∈ A,

• if Nψ ∈ CL(ϕ) and ¬X−1> ∈ A then Nψ ∈ A iff
ψ ∈ A.

The set of atoms of ϕ is denoted Atom(ϕ). Since
|CL(ϕ)| ≤ 4|ϕ|, there are at most 24|ϕ| atoms. We say
that an atom is initial if it contains ¬X−1>; the set of initial
atoms is denoted InitAtom(ϕ).

Before formally defining Aϕ, we explain the intuition
behind its workings: assume that after reading the i first po-
sitions of some path π, Aϕ is in a state labeled by A. This
means that all ψ ∈ A hold at π, i (and only these since A
is coherent). The past-formulae in A have been observed
to hold by Aϕ, the future-formulae have been guessed and
will have to be checked later, the mixed past+future formu-
lae combine observations and guesses. When Aϕ moves
from π(i) to π(i + 1), it updates A while respecting the
valuation for π(i) and forks an alternative branch where the
observation of past-formulae restarts with an empty history.
The “update” branch goes on classically while the forked
branch proceeds as if reading πi with no past and verifies
all N properties contained in A.

Definition 4.1. Aϕ = 〈Σ, S, ρ, S0,F〉 is given by:

• Σ = 2AP ,

• S = Atom(ϕ),

• S0 = {A ∈ InitAtom(ϕ) | ϕ ∈ A},

• ρ(A, σ) =
∨

A′∈Succ(A,σ)

(

A′ ∧
∨

A′′∈Now(A′)

A′′
)

with:

- Now(A′)
def

= {A′′ ∈ InitAtom(ϕ) | ∀Nψ ∈ CL(ϕ),
Nψ ∈ A′ ⇔ Nψ ∈ A′′},

- for A and σ s.t. for all p ∈ AP , p ∈ A iff p ∈ σ:

Succ(A, σ)
def
= {A′ ∈ Atom(ϕ) | X−1> ∈ A′ and

∀Xψ ∈ CL(ϕ), Xψ ∈ A⇔ ψ ∈ A′ and
∀X−1ψ ∈ CL(ϕ), ψ ∈ A⇔ X−1ψ ∈ A′},

otherwise, Succ(A, σ)
def
= ⊥,

• if there is no formula ϕ of the form ψUψ′ in CL(ϕ), F
is {Atom(ϕ)}. Otherwise, let {ϕ1Uψ1, . . . , ϕkUψk}
be the set of all U-formulae in CL(ϕ). Then F =

{F1, . . . , Fk} with: Fi
def
= {A ∈ Atom(ϕ) |¬X−1> ∈

A or ψi ∈ A or ¬(ϕiUψi) ∈ A}.

Observe that the structure of ρ allows us to restrict our at-
tention to binary runs of Aϕ (where every node has exactly
two successors) s.t. one and only one child of each node is
labeled with an initial atom. In the following we identify an
accepting binary run (τ, r) with its labeling function r.

We can now state and prove the correctness of our
construction by formalizing the intuitions we gave before
Def. 4.1. Given an accepting run r, we define the level of
node x in r (written lr(x)) as the depth of the closest ances-
tor y of x that carries an initial atom (such an ancestor must
exist since ε carries an initial atom). Clearly lr(x) ≤ |x|.
We have:

Lemma 4.2. Let ϕ be an NLTL formula, ψ a formula in
CL(ϕ), and w a word in Σω . If there exists an accepting
binary run r of Aϕ overw, then for any node x with |x| = i,
lr(x) = i0 and r(x) = A, ψ ∈ A iff wi0 , i− i0 |= ψ.

Proof. By induction over ψ (full details can be found in
Appendix A).

Proposition 4.3. Let ϕ be an NLTL formula, then ϕ is ini-
tially satisfiable iff there exists an accepting run in Aϕ.

Proof. (⇐) Direct from Lemma 4.2.
(⇒) See Appendix B.

The corollary is that Aϕ recognizes exactly the set of
words over Σ for which ϕ is initially true.

Satisfiability checking. A formula ϕ is satisfiable if and
only if Fϕ is initially satisfiable, and this can be checked by
looking for accepting runs in AFϕ, then we have:

Theorem 4.4. Satisfiability for NLTL formulae can be de-
cided in EXPSPACE.

Proof. The size of AFϕ is exponential in ϕ and non-
emptiness of alternating Büchi automaton can be solved in
space polynomial in the size of the automaton [19].

Model checking. With Aϕ available, deciding whether
K |= ϕ can be reduced to a language inclusion question,
i.e. checking whether L(AK) ⊆ L(Aϕ). Here AK is sim-
ple K seen as a Büchi automaton (a classical automaton
with trivial acceptance condition). Thus one has:

Theorem 4.5. Model checking Kripke structures for NLTL

formulae can be decided in EXPSPACE.

As a corollary, we get that model checking for CTL∗

+Past+Now is in EXPSPACE too.

Remark 4.6. The program complexity of model checking
NLTL formulae is NLOGSPACE-complete, as for LTL

(it suffices to translate the NLTL formula into an initially
equivalent LTL formula).

The specification complexity is clearly EXPSPACE-
complete (the proof of EXPSPACE-hardness of model
checking could use a fixed Kripke structure).

4.2. EXPSPACE-hardness

The decision procedures for NLTL we just saw are opti-
mal in the following sense:

Proposition 4.7. Satisfiability and model checking for
NLTL are EXPSPACE-hard.

Proof. By reduction from a domino-tiling problem for grids
with exponential size. Let C = {c1, . . . , ck} be a set of
colors. A domino-type is a 4-tuple 〈ddown, dleft, dup, dright〉
of colors. Given a set T ⊆ C4 of domino-types, and two
integers m and n, “tiling the m × n-grid with T ” means
finding a mapping f : [0,m − 1] × [0, n − 1] → T s.t. for
all i, j

f(i, j)right = f(i+ 1, j)left if i < m− 1,
f(i, j)up = f(i, j + 1)down if j < n− 1.

The problem of deciding, given a set T of domino-types, a
natural numberm (written in unary), and two domino-types
dinit, dfinal ∈ T , whether there exists a natural n s .t . the
2m × n-grid can be tiled, with the additional conditions
that f(0, 0) = dinit and f(2m − 1, n − 1) = dfinal, is
EXPSPACE-complete [9].

Let I = (C, T,m, dinit, dfinal) be such an in-
stance. We build a Kripke structure KI as follows:
{b+1 , . . . , b

+
m, b

−
1 , . . . , b

−
m} are 2m atomic propositions, that

we will use to encode the value of a m-bits counter num-
bering the cells of one line of the grid. Each domino-type
d ∈ T is also an atomic proposition. KI is depicted on
figure 1.

Traversing KI from left-to-right picks values ± for the
bits b1, . . . , bm and a domino-type: this encodes the ab-
scissa 0 ≤ i ≤ 2m − 1 of a cell (i, j) and its coloring
(nb: b1 is the least significant bit). A tiling of the grid is
encoded by a path in KI , listing cells from left to right and
from bottom to top, with an exit to E when n lines have
been listed. Observe that, when cell (i, j) is listed, only i is
given explicitly.

We now write an NLTL formula stating that a path inKI

does indeed encode a tiling. This combines several subfor-
mulae, where b±i is an abbreviation for b+i ∨ b−i :

b+1

b−1

b+2

b−2

. . .

. . .

b+m

b−m

d1

d2

...

dp

E

Figure 1. The Kripke structure associated
with a tiling problem

(1) the path starts with a dinit numbered 0, and ends with a
dfinal numbered 2m − 1:

m
∧

i=1

X
i−1b−i ∧ X

mdinit

∧ F

(

m
∧

i=1

X
i−1b+i ∧ X

mdfinal ∧ X
m+1E

)

(2) the cells are listed in increasing order modulo 2m, i.e. b1
changes with each new cell, while bi+1 only changes if bi
switched from b+i to b−i :

G

[

(

b±1 ∧ ¬X
m+1E

)

⇒

(b+1 ⇔ X
m+1b−1) ∧

m−1
∧

i=1

(Xib+i+1⇔Xm+i+1b−i+1)
⇔ (Xi−1b+i ∧Xm+ib−i)

]

(3) two adjacent cells (except at end of line) have the same
color on the shared edge:

∧

d∈T

G

(

d⇒
∨

d′∈T
d′

left
=d

right

X
m+1d′ ∨ XE ∨

m
∧

i=1

X
ib−i

)

(4) two neighbor cells (i, j) and (i, j + 1) in a column have
the same color on the shared edge. This is where we use
past-time modalities and N. We first define the following
abbreviation:

φup := b±1 ∧

m
∧

i=1

(Xi−1b+i ⇔ F
−1(¬X

−1> ∧ X
i−1b+i))

φup is inspired by the ψn formula from § 3: φup states that
the value of the bits b1, . . . , bm coincide with the value they
had at the beginning of the path (assuming we are at some
b±1 and the path also starts at some b±1). Now, using N to
forget everything before cell (i, j), we can use ¬φupUφup

to find the next cell with same i, i.e. cell (i, j + 1):

G

(

b±1 ⇒

NX
m

∧

d∈T

(

d⇒ ¬φupU(E ∨ φup ∧
∨

d′∈T
d′

down
=dup

X
md′)

)

)

Finally,KI contains a path satisfying the NLTL formula iff
I has a solution to our tiling problem, hence model check-
ing NLTL formulas is EXPSPACE-hard.

Satisfiability for NLTL is also EXPSPACE-hard since
we can reduce model checking to satisfiability by encoding
the Kripke structure K in a temporal formula.

Note that EXPSPACE-hardness already occurs with a
single occurrence of N under the scope of one G. With stan-
dard encoding techniques, we could prove EXPSPACE-
hardness for the fragment without X,X−1, or for a fragment
with a fixed number of atomic propositions.

5. Model checking a path

That model checking NLTL formulae is EXPSPACE-
complete may look daunting at first sight, especially when
PLTL is only PSPACE-complete. But there exist situations
where NLTL can be handled efficiently. Below we show
that model checking NLTL formulae on linear Kripke struc-
tures (i.e., structures where nodes have only one successor),
can be done in polynomial-time. This result is interesting
because the polynomial-time algorithm is not trivial, and it
can be used e.g. for on-the-fly model checking.

But these questions also have a theoretical interest.
Model checking linear structures is called “model checking
a path” in [3]. We prove the problem is PTIME-complete
for NLTL while the precise complexity of model checking
a path for LTL and PLTL are still not known 5.

Theorem 5.1. Model checking an NLTL-formula φ along
an ultimately-periodic path can be done in polynomial-time.

Note that the path πL associated with a finite and linear
Kripke structure L is ultimately-periodic. In the sequel, a
loop of type (m, p) is a linear Kripke structure where the
initial part of πL has length m and the periodic part has
length p. The proof of Theorem 5.1 relies on the following
lemma.

Lemma 5.2. For any loop L of type (m, p), for any NLTL

formula φ with at most h(φ) nested past-time modalities,
and any k ≥ m+ p · h(φ), πL, k |= φ iff πL, k + p |= φ.

5In particular, it is not known whether model checking a path
against LTL formulae can be done in NLOGSPACE or is PTIME-
complete [3].

Proof. By induction on the structure of φ. We only con-
sider the cases where φ has N or a past-time modality at
its root. The other cases, Boolean operators or pure-future
modalities, are easy.

• Assume φ is some X−1φ1. Then h(φ) = h(φ1) + 1,
and k ≥ m + p.h(φ) implies k − 1 ≥ m + p.h(φ1).
Now πL, k |= φ iff πL, k − 1 |= φ1 iff (by ind. hyp.)
πL, k − 1 + p |= φ1 iff πL, k + p |= φ.

• Assume φ is some φ1Sφ2 so that h(φ) =
max(h(φ1), h(φ2)) + 1. We first prove the (⇒) direc-
tion: assume πL, k |= φ, then there exists some k′ ≤ k

s.t. πL, k
′ |= φ2, and for k′ < l ≤ k, πL, l |= φ1. If

k′ ≥ k − p, then by ind. hyp. πL, k
′ + p |= φ2 and

πL, l + p |= φ1 for k′ < l ≤ k, so that πL, k + p |= φ.
If k′ < k − p then by ind. hyp. πL, l |= φ1 for all
l = k, . . . , k + p so that again πL, k + p |= φ.

For the (⇐) direction assume πL, k + p |= φ, so that
there exists some k′ ≤ k + p with πL, k

′ |= φ2, and
for k′ < l ≤ k + p, πL, l |= φ1. If k′ ≤ k one directly
obtains πL, k |= φ. Otherwise k′ > k and by ind. hyp.
πL, k

′−p |= φ2 and πL, l−p |= φ1 for k′ < l ≤ k+p.
Again πL, k |= φ.

• Assume φ is some Nφ1. Here πL, k |= φ iff πk
L |= φ1,

and πL, k + p |= φ iff πk+p
L |= φ1. But since L has

type (m, p), the suffixes πkL and πk+p
L are isomorphic.

Hence πL, k |= φ iff πL, k + p |= φ.

Proof of Theorem 5.1. Given a loop L of type (m, p), and
an NLTL formula φ of past-height h, Lemma 5.2 allows
reducing any question “does πl

L, k |= ψ?” (where l, k ∈
N and ψ is a subformula of φ) to an equivalent “does
πl′

L, k
′ |= ψ?” where this time 0 ≤ l′ < m + p and

0 ≤ k′ < m + (h + 1)p. All these questions are solved
once and for all by filling a Boolean array V [l′, k′, ψ] in
such a way that V [l′, k′, ψ] = > iff πl′

L, k
′ |= ψ. Filling V

is done through dynamic programming techniques, starting
with the smallest subformulae ψ. For ψ of the form Nψ′,
we fill V [l′, k′, ψ] with the (previously computed) value of
V [l′′, 0, ψ′], where l′′ is l′ + k′ if l′ + k′ < m + p, or
l′ + k′ brought back to the interval [0,m + p) by sub-
tracting p enough times. Dealing with the other cases re-
quires something similar to the CTL model checking al-
gorithm, e.g. V [l′, k′,X−1ψ] receives true iff k′ > 0 and
V [l′, k′ − 1, ψ] = >. Eventually, the algorithm finishes in
time O(h(φ)× |φ| × |L|), which is O(|φ|2 × |L|).

It turns out polynomial-time is also a lower bound for
this problem.

Proposition 5.3. Model checking NLTL along one path is
PTIME-hard.

Proof. By reduction from CIRCUIT-VALUE, where it is
well known that only considering synchronous, alternat-
ing and monotone circuits is no loss of generality. We
illustrate the reduction on an example. Consider the cir-
cuit C from Fig. 2 and write EC for the set of edges link-
ing one gate to one of its inputs (in our example, EC =
{(n1, n2), (n1, n3), . . . , (n12, n14)}). We denote vC(n) the
(Boolean) value obtained by evaluating node n in the obvi-
ous way.

n10 ∨ n11∨ n12∨

n5
∧

n6
∧

n7
∧ n8∧

n9
∧

n2

∨
n3

∨
n4

∨

n1
∧

n13 0 n141level 0:

level 1:

level 2:

level 3:

level 4:

Figure 2. An instance of CIRCUIT-VALUE.

With C, we associate a loop LC listing all nodes in some
height-respecting order, as illustrated in the following pic-
ture where node names are also used as propositions.

n1LC : n2 n3 n13 n14· · ·

Let φnext be defined as follows:

φnext :=
∨

(n,n′)∈EC

(n′ ∧ F
−1(n ∧ ¬X

−1>)).

ThenLi
C , k |= φnext iff (ni, ni+k) ∈ EC . We now construct

the following formulae, for k > 0:

φ0 := n14

φ2k+1 := NF
(

φnext ∧ φ2k

)

φ2k+2 := NG
(

φnext ⇒ φ2k+1

)

An easy induction on p shows that, for every node ni at
some level p in C, vC(ni) = > iff LC , ni |= φp. Thus,
v(C) = vC(n1) = > iff LC |= φ4. Note that the reduction is
clearly logspace, with a NLTL formula of sizeO(|C|

2
).

6. Conclusions

We investigated NLTL, the linear-time temporal logic
with past augmented with N, a new modality that allows
forgetting the past.

Some specifications are easier and more natural in NLTL

than in PLTL (i.e., LTL +Past). That NLTL offers more
expressive power can be stated formally as a succinctness
gap between NLTL and PLTL. An interesting byproduct
of this study is a direct proof of the suspected succinctness
gap between LTL+Past and LTL.

With any NLTL formula ϕ, we associate an alternat-
ing Büchi automaton Aϕ that accepts the models of ϕ.
This provides automata-theoretic decision methods for sat-
isfiability and model checking of NLTL formulae. Aϕ

has exponential size, so that the decision methods are in
EXPSPACE, but we show the problems are EXPSPACE-
complete so that our decision methods are optimal.

References

[1] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit,
L. Petrucci, and Ph. Schnoebelen. Systems and Software Ver-
ification. Model-Checking Techniques and Tools. Springer,
2001.

[2] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Check-
ing. MIT Press, 1999.

[3] S. Demri and Ph. Schnoebelen. The complexity of proposi-
tional linear temporal logics in simple cases. Information
and Computation, 2002. To appear. Available at http:
//www.lsv.ens-cachan.fr/Publis/.

[4] E. A. Emerson. Temporal and modal logic. In J. v. Leeuwen,
editor, Handbook of Theoretical Computer Science, vol-
ume B, chapter 16, pages 995–1072. Elsevier Science, 1990.

[5] K. Etessami, M. Y. Vardi, and T. Wilke. First order logic
with two variables and unary temporal logic. In Proc. 12th
IEEE Symp. Logic in Computer Science (LICS ’97), Warsaw,
Poland, June–July 1997, pages 228–235. IEEE Comp. Soc.
Press, 1997.

[6] D. M. Gabbay. The declarative past and imperative future:
Executable temporal logic for interactive systems. In Proc.
Workshop Temporal Logic in Specification, Altrincham, UK,
Apr. 1987, volume 398 of Lecture Notes in Computer Sci-
ence, pages 409–448. Springer, 1989.

[7] D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the
temporal analysis of fairness. In Proc. 7th ACM Symp. Prin-
ciples of Programming Languages (POPL ’80), Las Vegas,
NV, USA, Jan. 1980, pages 163–173, 1980.

[8] T. Hafer and W. Thomas. Computation tree logic CTL∗

and path quantifiers in the monadic theory of the binary
tree. In Proc. 14th Int. Coll. Automata, Languages, and Pro-
gramming (ICALP ’87), Karlsruhe, FRG, July 1987, volume
267 of Lecture Notes in Computer Science, pages 269–279.
Springer, 1987.

[9] D. Harel. Algorithmics: The Spirit of Computing. Addison-
Wesley, 2nd edition, 1992.

[10] D. Harel and D. Peleg. Process logic with regular formulas.
Theoretical Computer Science, 38:307–322, 1985.

[11] J. A. W. Kamp. Tense Logic and the Theory of Linear Order.
PhD thesis, UCLA, Los Angeles, CA, USA, 1968.

[12] Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A decision
algorithm for full propositional temporal logic. In Proc. 5th
Int. Conf. Computer Aided Verification (CAV ’93), Elounda,
Greece, June 1993, volume 697 of Lecture Notes in Com-
puter Science, pages 97–109. Springer, 1993.

[13] O. Kupferman, N. Piterman, and M. Y. Vardi. Extended tem-
poral logic revisited. In Proc. 12th Int. Conf. Concurrency
Theory (CONCUR 2001), Aalborg, Denmark, Aug. 2001,
volume 2154 of Lecture Notes in Computer Science, pages
519–535. Springer, 2001.

[14] O. Kupferman and A. Pnueli. Once and for all. In Proc.
10th IEEE Symp. Logic in Computer Science (LICS ’95),
San Diego, CA, USA, June 1995, pages 25–35. IEEE Comp.
Soc. Press, 1995.

[15] F. Laroussinie and Ph. Schnoebelen. A hierarchy of tem-
poral logics with past. Theoretical Computer Science,
148(2):303–324, 1995.

[16] F. Laroussinie and Ph. Schnoebelen. Specification in
CTL+Past for verification in CTL. Information and Com-
putation, 156(1/2):236–263, 2000.

[17] O. Lichtenstein, A. Pnueli, and L. D. Zuck. The glory of
the past. In Proc. Logics of Programs Workshop, Brooklyn
College, NY, USA, June 1985, volume 193 of Lecture Notes
in Computer Science, pages 196–218. Springer, 1985.

[18] Z. Manna and A. Pnueli. The Temporal Logic of Reactive
and Concurrent Systems: Specification. Springer, 1992.

[19] S. Miyano and T. Hayashi. Alternating finite automata on
omega-words. Theoretical Computer Science, 32(3):321–
330, 1984.

[20] R. Rosner and A. Pnueli. A choppy logic. In Proc. 1st
IEEE Symp. Logic in Computer Science (LICS ’86), Cam-
bridge, MA, USA, June 1986, pages 306–313. IEEE Comp.
Soc. Press, 1986.

[21] A. P. Sistla and E. M. Clarke. The complexity of proposi-
tional linear temporal logics. J. ACM, 32(3):733–749, 1985.

[22] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementa-
tion problem for Büchi automata with applications to tempo-
ral logic. Theoretical Computer Science, 49(2–3):217–237,
1987.

[23] M. Y. Vardi. A temporal fixpoint calculus. In Proc. 15th
ACM Symp. Principles of Programming Languages (POPL
’88), San Diego, CA, USA, Jan. 1988, pages 250–259, 1988.

[24] M. Y. Vardi. Alternating automata and program verification.
In Computer Science Today. Recent Trends and Develop-
ments, volume 1000 of Lecture Notes in Computer Science,
pages 471–485. Springer, 1995.

[25] M. Y. Vardi. Reasoning about the past with two-way au-
tomata. In Proc. 25th Int. Coll. Automata, Languages, and
Programming (ICALP ’98), Aalborg, Denmark, July 1998,
volume 1443 of Lecture Notes in Computer Science, pages
628–641. Springer, 1998.

[26] M. Y. Vardi and P. Wolper. An automata-theoretic approach
to automatic program verification. In Proc. 1st IEEE Symp.
Logic in Computer Science (LICS ’86), Cambridge, MA,
USA, June 1986, pages 332–344. IEEE Comp. Soc. Press,
1986.

[27] T. Wilke. Classifying discrete temporal properties. In Proc.
16th Ann. Symp. Theoretical Aspects of Computer Science
(STACS ’99), Trier, Germany, Mar. 1999, volume 1563 of

Lecture Notes in Computer Science, pages 32–46. Springer,
1999.

Technical appendix

A. Proof of Lemma 4.2

First note that for any i ≥ i0, there exists some node x
in any binary accepting run r with |x| = i and lr(x) = i0.
We prove the following result:

∀x ∈ r, |x| = i and lr(x) = i0 implies ψ ∈ r(x) (1)
⇔ ∃x ∈ r s.t. |x| = i and lr(x) = i0 and ψ ∈ r(x) (2)
⇔ wi0 , i− i0 |= ψ (3)

Clearly the remark above implies that (1) ⇒ (2). The proof
that (2) ⇒ (3) and (3) ⇒ (1) is done by induction over ψ:

• ψ = p ∈ AP : if r is accepting, then x has two suc-
cessors satisfying ρ(x,wi) and then r(x) and wi agree
over AP .

• ψ = ψ1 ∧ ψ2: If ψ ∈ r(x), then ψ1, ψ2 ∈ r(x) (be-
cause r(x) is an atom), and then by i.h. wi0 , i − i0 |=
ψj for j = 1, 2, and then wi0 , i− i0 |= ψ1 ∧ ψ2. Then
(2) ⇒ (3). Now suppose wi0 , i− i0 |= ψ1 ∧ ψ2, then
wi0 , i − i0 |= ψj for j = 1, 2, and by i.h. the labeling
of any node x at depth i with lr(x) = i0 contains ψj

and then it contains ψ1 ∧ ψ2.

• ψ = ¬ψ1: If ψ ∈ r(x), then ψ1 6∈ r(x) and then (by
i.h.) wi0 , i− i0 6|= ψ1. The converse is similar.

• ψ = Xψ1: ((2) ⇒ (3)) Let x1 and x2 be the succes-
sors of x in r over w. Given the definition of ρ(x, σ),
one and only one xi is labeled by an initial atom. As-
sume r(x2) is initial. Then x1 belongs to Succ(x,wi),
and then ψ1 ∈ r(x1) which entails by i.h. ((2) ⇒ (3))
that wi0 , i − i0 + 1 |= ψ1 (x1 is not initial and is at
depth i+ 1) and then wi0 , i− i0 |= Xψ1.
((3) ⇒ (1)) is similar: Assume wi0 , i − i0 |= Xψ1,
then wi0 , i− i0 +1 |= ψ1. By i.h. any node x′ of depth
i+1 with lr(x

′) = i0 satifies ψ1 ∈ r(x′). Given a node
x at depth i with lr(x) = i0, x has two successors in r,
one of them is not initial, belongs to Succ(x′, wi), is at
depth i+1 and has a level equal to i0, and then it is la-
beled by an atom containing ψ1, and then r(x) 3 Xψ1

(by definition of Succ) and we have (3) ⇒ (1).

• ψ = ψ1Uψ2: ((2) ⇒ (3)) Assume ψ ∈ r(x). Con-
sider the infinite branch b from x which never visits
initial atoms (except possibly x), such a branch exists
due to the definition of ρ (at each step one successor
is labeled by an non-initial atom). This branch has to

visit infinitely many atoms satisfyingψ2 or ¬(ψ1Uψ2).
Moreover the definition of Succ ensures that an atom
labeled by ψ1Uψ2 is labeled by ψ2 or its successor
(along b) by ψ1Uψ2. This entails that a node on b is
labeled by ψ2 and every intermediary node is labeled
by ψ1 and then, (by i.h.) that wi0 , i− i0 |= ψ1Uψ2.
((3) ⇒ (1)) Assumewi0 , i−i0 |= ψ1Uψ2. Then there
exists j ≥ 0 s.t. wi0 , i−i0+j |= ψ2 and for any j′ < j

we have wi0 , i − i0 + j′ |= ψ1. This entails that there
exists a branch from x whose nodes are labeled with
ψ1Uψ2.

• ψ = X−1ψ1: ((2) ⇒ (3)) Assume ψ ∈ r(x). Then
X−1> ∈ r(x) and there exists y s.t. x is a child of
y and r(x) ∈ Succ(r(y), wi−1). Therefore ψ1 ∈ r(y)
and by i.h. wi0 , i−i0−1 |= ψ1, and then wi0 , i−i0 |=
X−1ψ1.
((3) ⇒ (1)) Assume wi0 , i − i0 |= X−1ψ1. Then
i0 < i. Moreover wi0 , i − i0 − 1 |= ψ1 and then by
i.h. the labeling of any node x′ of depth i − 1 with
lr(x

′) = i0 contains ψ1. Now any node x of depth i
with lr(x) < i has a predecessor at depth i − 1 and
lr(x

′) = lr(x) and then is labeled by ψ1, this entails
that the labeling x contains X−1ψ1.

• ψ = ψ1Sψ2: If x is initial, then ψ ∈ r(x) entails ψ2 ∈
r(x). Otherwise due to the definition of Succ, there
exists a node y along the branch from ε to x which
is labeled by ψ2 and all intermediary nodes between
y and x are labeled by ψ1, this gives wi0 , i − i0 |=
ψ1Sψ2. The converse is similar.

• ψ = Nψ1: ((2) ⇒ (3)) If x is labeled with an initial
atom, then it also contains ψ1 (by def. of an atom), and
then by i.h. wi0 , 0 |= ψ1, and then wi0 , 0 |= Nψ1. If x
is not initial, then its “brother” (remember that the run
is binary) is, and, by i.h., it is also labeled by ψ1. This
entails that wi, 0 |= ψ1 and then wi0 , i− i0 |= Nψ1 for
any i0 = 0, . . . , i.
((3) ⇒ (1)) Assume wi0 , i − i0 |= Nψ1. Then
wi, 0 |= ψ1, and by i.h. we have ψ1 ∈ r(x) if |x| = i

and lr(x) = i. Any node x′ at depth i which is not la-
beled by an initial atom (lr(x′) < i) has a predecessor
which has a child labeled by an initial atom (because r
is binary) similar to x and then x′ is labeled by Nψ (by
def. of Now).

B. Proof of Proposition 4.3

Only the (⇒) direction needs be proved.
Given a word w and an NLTL formula ϕ, we define an

Atom(ϕ)-labeled binary run rw
ϕ and we show that it is an

accepting run of Aϕ if w, 0 |= ϕ.

Definition of rw
ϕ . Given w ∈ Σω, ϕ ∈ NLTL, and

i, j ∈ N, we define the atom Cwj

ϕ (i) as the set of CL(ϕ)

formulae which hold for wj , i, that is: Cwj

ϕ (i)
def
= {ψ ∈

CL(ϕ) | wj , i |= ψ}
Now we define the Atom-labeled binary tree rwϕ where

every branch is infinite and which is labeled with a Cwj

ϕ (k)
as follows:

• rw
ϕ (ε)

def
= Cw0

ϕ (0),

• A node x of rw
ϕ labeled by Cwj

ϕ (k) has two children x1

and x2 such that:

– x1 is labeled by Cwj

ϕ (k + 1) and

– x2 is labeled by Cwj+k+1

ϕ (0).

It is easy to verify 6 that any node x of rw
ϕ of depth i is

labeled by Cwi0

ϕ (i− i0) with i0 = lrw
ϕ
(x). Then we have:

Lemma B.1. Given an NLTL formula ϕ and a word w ∈
Σω such that w, 0 |= ϕ, the Atom-labeled tree rw

ϕ is an
accepting run of Aϕ over w.

Proof. rw
ϕ (ε) is labeled by an initial atom containing ϕ,

then rw
ϕ (ε) ∈ S0. Now, given a node x of depth i la-

beled by Cwi0

ϕ (i − i0) with two successors x1 and x2 as
described above, the labeling of x1 and x2 satisfy the for-
mula ρ(Cwi0

ϕ (i− i0), wi) because:

• x1 is labeled Cwi0

ϕ (i + 1) which clearly belongs to

Succ(Cwi0

ϕ (i− i0)) and

• x2 is labeled by Cwi+1

ϕ (0) which belongs to

Now(Cwi0

ϕ (i+ 1)) by definition of Cw
ϕ .

It remains to show that every branch satisfies the acceptance
condition F :

• A branch which visits infinitely many (nodes labeled
with) initial atoms is accepting because ¬X−1> be-
longs to every set Fi.

• Other branches visit a finite number of second tran-
sitions (leading to some x2). Let x be a node on
such a branch b with no initial atom in its descen-
dants (in b). Assume x is at depth i and x is labeled
with Cwi0

ϕ (i − i0). The nodes along b are labeled by

Cwi0

ϕ (i− i0), Cwi0

ϕ (i− i0 + 1), Cwi0

ϕ (i− i0 + 2), etc.

By definition of Cwi0

ϕ (i − i0), for any ψ1Uψ2 ∈

Cwi0

ϕ (i − i0), there exists j ≥ i − i0 s.t. wi0 , j |= ψ2

and for any i − i0 ≤ j′ < j we have wi0 , j′ |= ψ1.

6it holds for the root, and the property is maintained for ρ(x, wi) suc-
cessors.

Therefore there exists infinitely many nodes on b la-
beled by an atom containing ψ2 whenever ψ1Uψ2 oc-
curs in infinitely many atoms, otherwise there are in-
finitely many nodes labeled with ¬(ψ1Uψ2). There-
fore the branch b satifies every acceptance condition
in F .

Therefore, if ϕ is initially satisfiable, there exsists an ac-
cepting run of Aϕ.

