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Abstract. We consider the problem of checking whether a finite (or
ultimately periodic) run satisfies a temporal logic formula. This problem
is at the heart of “runtime verification” but it also appears in many other
situations. By considering several extended temporal logics, we show that
the problem of model checking a path can usually be solved efficiently,
and profit from specialized algorithms. We further show it is possible to
efficiently check paths given in compressed form.

1 Introduction

Model checking, introduced in the early 80’s, has now become a widely used ap-
proach to the verification of all kinds of systems [CGP99,BBF+01]. The name
“model checking” covers a variety of techniques dealing with various subprob-
lems: how to model systems by some kind of Kripke structures?, how to express
properties in temporal logics or some other formalisms?, how to use symbolic
techniques for dealing with large state spaces?, and, most importantly, how to
algorithmically check that a model satisfies a property?

These techniques rest upon a solid body of foundational knowledge regarding
the expressive power of temporal logics and the computational complexity of
their model checking problems [Sch03].

In this paper, we consider the problem of model checking a single path.
This problem appears in several situations, most notably in runtime verifica-
tion [Dru00,Hav00,FS01]. There are situations where thousands of paths are
checked one by one, e.g. the Monte-Carlo approach for assessing the probability
that a random run satisfies some property [YS02,LP02]. Less standard situations
exist: [RG01] advocates using temporal logic for describing patterns of intrusive
behaviors recorded in log files. Such a log file, where a series of system events are
recorded, is just a long path on which the temporal formula will be evaluated.

We do not restrict to finite paths and also consider checking ultimately peri-
odic paths (given as finite “lasso-shaped” loop). Checking a path is much simpler
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than checking a Kripke structure, so much so that the problem may appear triv-
ial: using standard dynamic programming methods “à la CTL model checking”,
a path can obviously be checked in bilinear, i.e. O(|model| × |formula|), time.

This may explain why the problem, while ubiquitous, has not been isolated
and studied from a theoretical viewpoint. For example, it is not known whether
checking a simple temporal formula over a finite path can be done more efficiently
than with the “bilinear time” method , e.g. with memory-efficient algorithms in
SC, or with fast parallel algorithms in NC. Indeed this open problem was only
identified recently [DS02].

With this paper, we aim to show that the problem is worthy of more fun-
damental investigations. Of course, the problem is a generic one, with many
variants (which temporal logic? what kind of paths?) and here we only start
scratching its surface.

More specifically, we present results (some of them folklore) showing that

Checking a path is easier: As we show in this paper, model checking a path
is often much easier than checking a Kripke structure. We exhibit examples
of richly expressive temporal logics that allow polynomial-time algorithms
for checking a single path, while checking all paths of a Kripke structure
is highly untractable. It is even possible to achieve polynomial-time when
checking compressed paths (i.e. exponentially long paths that are given and
stored in compressed form).

Checking a path relies on specific techniques: These efficient algorithms
rely on specific aspects of the problem. Checking a path definitely comes with
its own set of notions, technical tricks, and conceptual tools. For example,
all our algorithms for checking ultimately periodic paths rely on a specific
reduction technique to checking some kind of short finite prefix of the infinite
path.

Outline of the paper. We define the basic problem of model checking LTL formu-
lae over finite or ultimately periodic paths (section 2). This problem is still not
satisfactorily solved, but we argue that its intrinsic difficulty is already present
in the case of finite paths (section 3). We then show that model checking a path
is much easier than model checking a Kripke structure by looking at various
rich temporal logics: the monadic first-order logic of order, the extension of LTL
with Chop, or the extension of LTL with forgettable past (section 4). We pro-
vide polynomial-time algorithms for the last two instances. Finally we look at
the problem of checking paths given in compressed form (section 5).

Related works. Model checking a path is a central problem in runtime verifica-
tion. In this area, the problem is seen through some specific practical applica-
tions, sometimes with an emphasis on online algorithms, with the result that the
fundamental complexity analysis has not received enough attention.

Dynamic programming algorithms for checking finite and ultimately periodic
paths are also used in bounded model checking [BCC+03]. In this area, the rel-
evant measures for efficiency are not the classical notions of running time and
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memory space, but have more to do with, say, the number of Boolean variables
introduced by the algorithm, or the pattern of dependencies between them.

Model checking a path has a lot in common with algorithmics on words
(witness Section 5). However, our concern with temporal logics and ultimately
periodic paths is not standard in that other area.

2 Linear-time temporal logic and paths

We assume familiarity with temporal logics (mainly LTL) and model checking:
see [Eme90,CGP99,BBF+01].

Syntax of LTL + Past. Let AP = {p0, p1, p2, . . .} be a countably infinite set
of atomic propositions. The formulae of LTL + Past , are given by the following
grammar:

ϕ, ψ ::= ¬ϕ | ϕ ∧ ψ | X ϕ | X
−1 ϕ | ϕ U ψ | ϕ S ψ | p0 | p1 | p2 | · · ·

S (Since) and X−1 (Previously) are the past-time mirrors of the well-known U

(Until) and X (Next). We shall freely use the standard abbreviations ⊤, ϕ⇒ ψ,

ϕ ∨ψ, Fϕ (
def
⇔ ⊤U ϕ), Gϕ (

def
⇔ ¬F¬ϕ), F−1ϕ (

def
⇔ ⊤ S ϕ) and G−1ϕ (

def
⇔ ¬F−1¬ϕ).

LTL, the well-known propositional linear-time temporal logic, is the frag-
ment where S and X−1 are not used, also called the pure-future fragment. While
LTL+Past is not more expressive than LTL [GPSS80,Rab02], and not harder to
verify [SC85], it can be (at least) exponentially more succinct than LTL [LMS02].

Semantics. Linear-time formulae are evaluated along paths. Formally, a path is
a sequence π = s0, s1, . . ., finite or infinite, of states, where a state is a valuation
s ∈ 2AP of the atomic propositions. |π| ∈ N∪{ω} denotes the length of π and, for
a position l < |π|, one defines when a formula holds at position i of π = (sl)l<|π|

by induction on the structure of formulae:

π, i |= p iff p ∈ si for p ∈ AP
π, i |= X ϕ iff π, i+ 1 |= ϕ (hence i+ 1 < |π|)
π, i |= X−1ϕ iff π, i− 1 |= ϕ (hence i > 0)

π, i |= ϕ U ψ iff ∃j ≥ i :

(
π, j |= ψ, and
∀i ≤ k < j : π, k |= ϕ

)
(hence j < |π|)

π, i |= ϕ S ψ iff ∃j ≤ i :

(
π, j |= ψ, and
∀j < k ≤ i : π, k |= ϕ

)
(hence j ≥ 0)

omitting the usual clauses for negation and conjunction. We say a non-empty
path π satisfies ϕ, written π |= ϕ, when π, 0 |= ϕ, i.e. when ϕ holds at the
beginning of π.

Since only propositions that appear in ϕ are relevant for deciding whether
π |= ϕ, we usually assume that paths only carry valuations for the finite number
of propositions that will be used later on them.
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Model checking. We are interested in the computational problem of model check-
ing a path against an LTL formula. This requires that the path argument be given
in some finite way. In classical model checking, where we evaluate a temporal
formula along all the paths of a finite Kripke structure (KS), the KS is the finite
input that describe an infinite set of infinite paths. Here we assume that the
given path is finite, or is ultimately periodic.

Ultimately periodic, or u.p., paths, are given via a pair (u, v) of two finite
paths, called a loop for short. A loop (u, v) denotes the infinite path π = u.vω,
called its unfolding, where an initial u prefix is followed by repeated copies of v.
For uniformity, we shall assume finite paths are given via loops too, only they
have empty v. We say loop (u, v) has type (m, p) when m is the length |u| of u
and p is the length of v.

Model checking a path. The generic computational problem we are considering
is:

PMC(L) (Path Model Checking for L).
Input: two finite paths u, v and a temporal formula ϕ of L.
Output: yes iff u.vω |= ϕ, no otherwise.

Here L can be any temporal logic (but it is not meaningful to consider branching-
time logics). We shall consider several problems: PMC(LTL), PMC(LTL +
Past), etc. We denote by PMCf(L) the restricted problem when only finite
paths are considered (i.e. when v = ε). A recurring pattern in our results is that
PMC(L) reduces to PMCf(L) (by default, we consider logspace reductions).

3 How efficient can path model checking be?

We mentioned in the introduction that the following holds:

Theorem 3.1. PMC(LTL) can be solved in time O(|uv| × |ϕ|).

Proof. Obvious since, over paths, CTL and LTL coincide. So that the well-known
bilinear algorithm for CTL model checking can be used. ⊓⊔

That polynomial-time algorithms also exist for LTL + Past is less obvious:

Theorem 3.2. PMC(LTL + Past) can be solved in time O(|uv| × |ϕ|
2
).

This can be obtained as a corollary of Theorem 4.5 but it is instructive to look
at a direct proof, since it illustrates a recurring pattern.

We start with the simpler case where the path is finite:

Proposition 3.3. PMCf(LTL + Past) can be solved in time O(|u| × |ϕ|).

Proof (Sketch). The obvious dynamic programming algorithm works: starting
from the innermost subformulae, we recursively fill a Boolean table T [i, ψ], where
i is a position in the finite path, and ψ is a subformula of ϕ, in such a way that
T [i, ψ] = ⊤ iff π, i |= ψ. ⊓⊔
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This algorithm is too naive for u.p. paths: one cannot label uniformly states
inside the loop. A state in the loop corresponds to different positions in the
unfolded path, and these positions have different pasts.

However it is only necessary to unfold the loop a small number of times,
something we present as a reduction from PMC(LTL+Past) to PMCf(LTL+
Past).

Let ϕ be an LTL+Past formula, and (u, v) a loop of type (m, p). In the sequel,
we write hF (ϕ) for the future temporal height of ϕ, i.e. its maximum number of
nested future-time modalities. Similarly, hP (ϕ) denotes the past temporal height
of ϕ. We write H(ϕ) for hF (ϕ) + hP (ϕ). E.g., for ϕ = FF−1XFp1 ∨ F−1G−1p2, we
have hF (ϕ) = 3, hP (ϕ) = 2 and H(ϕ) = 5.

Lemma 3.4 ([Mar02]). For all subformulas ψ of ϕ, and k ≥ m+ hP (ϕ)p

u.vω, k |= ψ iff u.vω, k + p |= ψ. (1)

This may be proved by structural induction on formula ψ.
We now reduce model checking of ϕ on the loop (u, v) to a finite path model

checking problem. We assume that p 6= 0 (otherwise the result is obvious), and
build the finite path π′ = uv′H(ϕ)+1 where v′ is like v except that v′0 carries a
new proposition q 6∈ AP (and we replace AP by AP ′ = AP ∪ {q}). Formally, v′

is given by:

|v′| = p v′0
def
= v0 ∪ {q} v′i

def
= vi for i > 0.

We also recursively build a set of formulae χk as follows:

χ0
def
= ⊤ χk

def
= F(q ∧ Xχk−1).

Obviously, π′, i |= χk iff i ≤ m+(H(ϕ)+1−k)p. Now ϕ is inductively given by:

p = p

¬ψ = ¬ψ ψ1 ∨ ψ2 = ψ1 ∨ ψ2

Xψ = Xψ ψ1Uψ2 = ψ1U(ψ2 ∧ χhF (ψ1Uψ2))

X−1ψ = X
−1ψ ψ1Sψ2 = ψ1Sψ2

Lemma 3.5. For all subformulae ψ of ϕ, for all i < m+ (H(ϕ)− hF (ψ))p, we
have:

u.vω, i |= ψ iff π′, i |= ψ.

A direct corollary is the reduction we announced:

Theorem 3.6. For any LTL + Past formula ϕ, and loop (u, v), one can build
in logspace a formula ϕ and a finite path π′ s.t.

u.vω |= ϕ iff π′ |= ϕ.

Since |π′| is in O(|uv||ϕ|), we obtain Theorem 3.2 by combining with Proposi-
tion 3.3.
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An open question and a conjecture. We do not know whether the upper bounds
given in Theorems 3.1 and 3.2 are tight. There is an obvious NC1 lower bound
that has nothing to do with model checking: evaluating a Boolean expression is
NC1-hard. But the gap between NC1 and PTIME is (assumed to be) quite large.

We have been unable to prove even LOGSPACE-hardness for PMC(LTL +
Past), or to find an algorithm for PMC(LTL) (even for PMCf(L(F)) that would
be memory efficient (e.g. requiring only polylog-space) or that would be consid-
ered as an efficient parallel algorithm (e.g. in NC).

We consider that the open question of assessing the precise complexity of
PMC(LTL) and PMC(LTL + Past) is one of the important open problems in
model checking [DS02, section 4]. In view of how Theorem 3.6 reduces PMC(. . .)
to PMCf(. . .), one thing we can tell about the open problem is that the difficulty
does not come from allowing u.p. paths.

Our conjecture is that PMC(LTL) is not PTIME-hard. This conviction is
grounded in our experience with all the PTIME-hardness proofs we can obtain
for richer logics (see next sections) and the way they always exploit some powerful
trick or other that LTL and LTL + Past do not allow.

4 Richly expressive temporal logics

Many temporal logics are more expressive, or more succinctly expressive, than
LTL [Eme90,Rab02]. However this increased expressivity usually comes with an
increased cost for verification, which explains why they are not so popular in the
model checking community.

In this section we consider a few such temporal logics. Since we focus on
logics with first-order definable modalities, the “rich expressiveness” should be
understood as “succinct expressiveness”.

Our first example is FOMLO , the first-order logic of order with monadic
predicates. This formalism is not really a modal logic, like LTL is, but it is
fundamental since it encompasses all natural temporal logics. We show that
model checking FOMLO on paths is PSPACE-complete, hence is much easier
on paths than on Kripke structures (where it is nonelementary [Sto74]).

We then look at two more specific extensions of LTL. LTL+Chop has a non-
elementary model checking problem on Kripke structures [RP86], but we show
it leads to a PTIME-complete path model checking problem. Another PTIME-
complete problem on paths appears with LTL + Past + Now , an extension of
LTL+Past that has an EXPSPACE-complete model checking problem on Kripke
structures [LMS02].

Fig. 1 summarizes our results. The obvious conclusion is that, when model
checking paths, there is no reason to restrict oneself to LTL: much more expres-
sive formalisms can be handled at (more or less) no additional price.

4.1 FOMLO, the first-order monadic logic of order

We will not recall here all the basic definitions and notations for FOMLO . Let us
simply say that we use qh(ϕ) to denote the quantifier-height of ϕ, that we write
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logic checking Kripke structures checking paths

FOMLO nonelementary PSPACE-complete

LTL PSPACE-complete PTIME-easy

LTL + Past PSPACE-complete PTIME-easy

LTL + Past + Now EXPSPACE-complete PTIME-complete

LTL + Chop nonelementary PTIME-complete

Fig. 1. Checking richly expressive logics on paths

ϕ(x1, . . . , xn) to stress that the free variables in ϕ are among {x1, . . . , xn}, and
that π, a1, . . . , an |= ϕ(x1, . . . , xn) denotes that path π with selected positions
a1, . . . , an ∈ N is a model of ϕ(x1, . . . , xn) when the xi’s are interpreted by the
ai’s.

Theorem 4.1. PMC(FOMLO) is PSPACE-complete.

PSPACE-hardness already occurs with finite paths of length two where there is
an obvious reduction from Quantified Boolean Formula (QBF).

Proving membership in PSPACE is more involved. But if we restrict to finite
paths, there is no difficulty since the naive evaluation of first-order formulae over
finite first-order structures only needs polynomial-space [CM77]. Therefore, the
difficult part in Theorem 4.1 is the proof that model checking FOMLO formulae
over ultimately periodic paths u.vω can be done in polynomial-space.

We now prove

Proposition 4.2. Telling whether u.vω |= ϕ for ϕ a closed FOMLO formula

can be done in space O(|uv| × |ϕ|2).

Assume u.vω is an u.p. path of type (m, p) with p > 0. We say two positions
a, b ∈ N are congruent, written a ≡ b, if a = b, or a ≥ m ≤ b and a mod p = b

mod p (i.e. they point to equal valuations on u.vω). Two tuples 〈a1, . . . , an〉
and 〈b1, . . . , bn〉 of natural numbers are k-equivalent, written 〈a1, . . . , an〉 ∼k
〈b1, . . . , bn〉, when ai ≡ bi for all 1 ≤ i ≤ n and (ai−aj 6= bi−bj) ⇒ |ai−aj | ≥ 2kp
for all 1 ≤ i ≤ j,≤ n.

Lemma 4.3. If 〈m, a1, . . . , an〉 ∼k 〈m, b1, . . . , bn〉 and qh(ϕ) ≤ k, then

u.vω, a1, . . . , an |= ϕ(x1, . . . , xn) iff u.vω, b1, . . . , bn |= ϕ(x1, . . . , xn).

Proof (Idea). A standard use of Ehrenfeucht-Fräıssé games on linear order-
ings [Ros82]. ⊓⊔

For a closed FOMLO formula ϕ we let ϕ̃ be the relativized variant obtained
from ϕ by replacing every quantification “∃x” in ϕ by “∃x < m+ p(2k − 2h−1)
where k is qh(ϕ) and h is the height of the “∃x” occurrence we replace.
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For example, assuming m = 10 and p = 3, the formula

∃x ∀y (x > y ∧ p0(y) ⇒ ∃z (y < z < x ∧ p1(z))) (ϕ)

is relativized as

∃x < 22 ∀y < 28 (x > y ∧ p0(y) ⇒ ∃z < 31 (y < z < x ∧ p1(z))). (ϕ̃)

A corollary of Lemma 4.3 is the following

Lemma 4.4. u.vω |= ϕ iff u.vω |= ϕ̃.

We can now evaluate whether u.vω |= ϕ in polynomial-space, proving Propo-
sition 4.2. Lemma 4.4 reduces this question to a bounded problem, where only
a finite prefix of u.vω has to be examined. That prefix still has exponential size
O(m+p2qh(ϕ)) but we do not have to build it. Rather, we only go over all values
for the position variables in ϕ̃, storing them in binary notation (say) to ensure
polynomial-space. Then it is easy to evaluate the predicates on these binary no-
tations: the only dyadic predicate is <, and the monadic predicates reduces to
simple arithmetical computations to find a congruent position in u.v.

4.2 LTL with forgettable past

“LTL with forgettable past” is LTL+Past +Now , i.e. LTL+Past where we add
a new unary modality N (for “from Now on”). The semantics of N is given by

π, i |= N ϕ iff π≥i, 0 |= ϕ.

We refer to [LMS02] for motivations on LTL + Past + Now : that logic can
be exponentially more succinct than LTL + Past , and its model checking prob-
lem is EXPSPACE-complete. LTL + Past + Now is included in Fig. 1 because
Theorem 4.5 was the first hint that PMC allows dealing efficiently with rich
logics.

Theorem 4.5 ([LMS02]). PMC(LTL + Past + Now) is PTIME-complete.

4.3 The Chop modality

“Chop”, introduced in [HKP80] and studied in [RP86], is a two-place modality
whose semantics is defined as follows:

π, 0 |= ϕ C ψ iff ∃k ≥ 0 s.t. π≥k+1 |= ψ and π≤k |= ϕ

where π≥k+1 is the suffix of π starting at (and including) position k + 1, and
π≤k is the prefix of π up to (and including) position k. It is useful in cases we
want to see subruns inside a run (e.g. sessions, or specific segments) and state
their temporal specifications [RP86].

Satisfiability for LTL+Chop is non elementary [RP86]. Hence model checking
LTL + Chop properties on Kripke structures is non elementary too (there exists
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a polynomial-space reduction from satisfiability to model checking, see [DS02,
Prop. 3.1]).

However, model checking a path is easier:

Proposition 4.6. PMC(LTL + Chop) can be solved in time O(|uv|2 × |ϕ|3).

The outline of the proof is similar to the case of LTL+Past . First, we observe
that, for a finite path π, the following holds:

Proposition 4.7. PMCf(LTL + Chop) can be solved in time O(|π|2|ϕ|).

Proof (Sketch). Again dynamic programming techniques suffice. We fill a Boolean
table T [i, j, ψ], for each positions i ≤ j in π, and subformula ψ of ϕ, in such a
way that

T [i, j, ψ] = ⊤ iff π[i,j] |= ψ

where π[i,j] = (π≤j)≥i. This can be done in quadratic time in the size of the
path, and linear time in the size of the formula. ⊓⊔

We now consider u.p. paths. The next lemma states that some transforma-
tions on paths do not affect the truth value of LTL + Chop formulae:

Lemma 4.8. Let ϕ ∈ LTL+Chop, and m,n ≥ |ϕ|. Let u, v be two finite paths,
and w be a (finite or infinite) path. Then

u.vm.w |= ϕ iff u.vn.w |= ϕ.

We now perform the reduction from PMC(LTL + Chop) to PMCf(LTL +
Chop). We first exclude the trivial case when v is empty. We keep the notations
of the proof of Theorem 3.6, and define new path and formulae: π′ = uv′|ϕ| and

ψ1 U ψ2 = ψ1 U(ψ2 ∧ χ|ψ1Uψ2|) ψ1 C ψ2 = ψ1 C(ψ2 ∧ χ|ψ2|)

For this path π′, we now have π′, i |= χk iff i ≤ m+ (|ϕ| − k)p.
With Lemma 4.8 we can prove the following by induction on the structure

of ψ:

Lemma 4.9. For all subformula ψ of ϕ, for all i < m+ (|ϕ| − |ψ|)p, we have:

u.vω, i |= ψ iff π′, i |= ψ.

It now suffices to observe that |π′| is in O(|uv| × |ϕ|), and we obtain Proposi-
tion 4.6 from Proposition 4.7.

It turns out that, as with LTL + Past + Now , we have a case where model
checking a path is PTIME-complete:

Theorem 4.10. PMC(LTL + Chop) is PTIME-complete.
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level 2:
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Fig. 2. An instance of Circuit-Value.

n1 n1 ∅ n2 n2 ∅ · · · n13 n13 ∅ n14 n14 ∅

Fig. 3. The path πC associated to our instance of Circuit-Value.

In fact, PTIME-hardness already occurs with finite paths, i.e. for PMCf(LTL+
Chop). We prove this by a reduction from the (Synchronous Alternating Mono-
tone) Circuit-Value Problem [GHR95, problem A.1.6]. We illustrate the re-
duction on a example and consider the circuit C of figure 2.

Let EC denote the set of links (pairs of gates) in C. With C we associate the
finite path πC given in figure 3.

Finally, we define the following sequence of formulae:

ϕ0
def
≡ n14

ϕ2k+1
def
≡

[∨
i at level 2k+1

(i,j)∈EC

i ∧ FGj
]

C (X∅ ∧ ϕ2k)

ϕ2k+2
def
≡ ¬

([∨
i at level 2k+2

(i,j)∈EC

i ∧ FGj
]

C (X∅ ∧ ¬ϕ2k+1)
)

Lemma 4.11. For any gate ni at level p in C, ni evaluates to true in C iff
πC , (3i− 2) |= ϕp.

Proof (Idea). By induction on p. The base case where p = 0 is obvious. For the
induction step we first consider the case where p = 2k + 1 is odd. Hence ni is a
disjunctive gate. The right-hand side of ϕ2k+1 requires that we “chop” the path
between two nodes labeled by a same nj , and that this node satisfies the formula
corresponding to the level below (hence gate nj evaluates to true by ind. hyp.).
The left-hand side of ϕ2k+1 ensures that gate nj is a child of the current ni (a
finite path satisfies some FGψ iff its last state satisfies ψ). Thus πC , 3i− 2 |= ϕp
iff a child of ni evaluates to true iff ni evaluates to true.

When p is even, a dual reasoning applies. ⊓⊔

Thus C evaluates to true iff πC , 1 |= ϕl, where l is the height of C. Hence
PTIME-hardness.
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5 Model checking compressed paths

In this section we show that it is possible to efficiently model check paths that
are given in compressed form, i.e. via some succinct encoding. One such encoding
is the exponent notation, e.g. writing paths as

u = ([(s1.s2.s3)
3(s4)

10]12(s5.s6)
7)1000.

5.1 Compressed words

Working directly on compressed words is a standard technique in some fields, e.g.
when handling long DNA strings in gene-mapping applications. Several encoding
schemes are possible, and the more interesting ones are those where a compressed
word can be exponentially more succinct than the described word.

Here we follow [PR99] and adopt the standard framework of straight-line
programs, or SLP’s: these are context-free grammars where the non-terminals
N1, . . . , Nk are ordered (N1 being the axiom), and where every non-terminal has
a single production of the form Ni −→ a for a terminal a, or Ni −→ NjNk
for some j, k > i [PR99]. For an SLP P , we write w(P ) for the unique word
described by P .

SLP’s are equivalent (polynomial-time inter-reducible) to Lempel-Ziv com-
pression schemes but are mathematically nicer. They are more general than the
exponent notation. The algorithms we give for SLP’s easily adapt to these other
compression schemes.

5.2 Model checking compressed paths

A compressed path is a pair (P1, P2) of two SLP’s, encoding the u.p. path
w(P1).w(P2)

ω. Since compressed paths are succinct descriptions, we should ex-
pect that model-checking paths given in compressed form is hard. This is indeed
the case with LTL model checking:

Theorem 5.1. Model checking LTL formulae on compressed paths is PSPACE-
complete.

However, the difficulty has more to do with the LTL formulae than with the
compressed paths, as our next result shows:

Theorem 5.2. Checking whether a compressed path is recognized by a Büchi
automaton is PTIME-complete.

Checking whether a compressed path (P1, P2) satisfies an LTL formula ϕ can be
done in time (|P1|+ |P2|)2

O(|ϕ|), hence for long paths and simple fixed formulae,
model-checking compressed paths is essentially “linear-time”.

The rest of the section proves the above two theorems. We observe the usual
pattern: u.p. paths are not harder than finite paths.
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checking paths checking compressed paths

LTL formulae PTIME-easy PSPACE-complete

Finite state automata NL-complete PTIME-complete

Fig. 4. Checking compressed paths

5.3 Compressed paths accepted by Büchi automata

Proposition 5.3. [PR99] Saying whether w(P ) is recognized by A (for P an

SLP, and A a finite-state automaton) can be done in time O(|P | × |A|
3
).

Proof. [PR99] describes a simple dynamical programming solution. For two
states r, s of A and non-terminal Xi of P , set T [r, s, i] = true iff w(Xi) la-
bels a path going from r to s in A. Obviously, if Xi −→ Xj Xk is a rule in P ,
then T [r, s, i] =

∨
u T [r, u, j] ∧ T [u, s, k]. Hence the table T [. . .] is easy to fill.

Then we can use T [. . .] to see whether w(P ), i.e. w(X1), labels an accepting
path. ⊓⊔

Corollary 5.4. Saying whether a compressed path (P1, P2) is recognized by A

(a Büchi automaton) can be done in time O((|P1| + |P2|) × |A|3).

Proof (Idea). This is a simple extension of the previous algorithm. For example,
one can build a second table T ′[. . .] s.t. T [r, s, i] = true iff a power of w(Xi)
labels a path going from r to s and visiting an accepting state of A. ⊓⊔

Proposition 5.5 ([MS03]). Saying whether w(P ) is recognized by a determin-
istic finite-state automaton A, is PTIME-hard (hence PTIME-complete).

This shows a situation where compressed words are harder than uncompressed
words since recognizability by a FSA is NL-complete for uncompressed words.

5.4 Compressed paths satisfying LTL formulae

The easy part of Theorem 5.1 is the upper bound:

Proposition 5.6. Deciding whether a compressed path satisfies an LTL formula
can be done in polynomial-space.

Proof (Idea). Model checking LTL formulae on products of concurrent Kripke
structures is PSPACE-complete [HKV02], and compressed paths can easily be
encoded in such products. ⊓⊔

PSPACE-hardness is more involved. Note it already occurs with finite paths:

Proposition 5.7. Deciding whether a finite compressed path satisfies an LTL
formula is PSPACE-hard.
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We now sketch the proof. It is by reduction from Quantified Boolean Formula
(QBF). Assume I is a QBF instance of the form ∃v1∀v2∃v3 . . .∀xn(

∧
i

∨
j li,j)

where every li,j is ±i,jvni,j
, i.e. a Boolean variable from V = {v1, . . . , vn} or its

negation.
With I we associate a compressed word that lists all valuations for the V -

variables in lexicographical order. This is given by the following SLP:

PI =





N1 = b1.N2.t1.e1.b1.N2.f1.e1

N2 = b2.N3.t2.e2.b2.N3.f2.e2

. . .

Nn = bn.tn.en.bnfn.en

Here letters ti and fi state that we vi is true and, resp., false. Letters bi and ei

are begin and end markers.
We now encode I via ϕI , the following LTL formula:

[b1 ∧ ([b2 ⇒ ([b3 ∧ . . . [bn ⇒
∧

i

∨

j

±i,j(tni,j
B en)]U en−1 . . .]B e2)]U e1)]B⊥

where ϕBψ, defined as (¬ψ)Uϕ, is short for “ϕ at least once before a ψ”. In
the above formula, b1 B⊥ encodes “there is a position where a value for v1 is
picked”, b2 U e1 encodes “for all positions where a value for v2 is picked before
we change the value for v1”, etc. When we look at a position where vn receives
a value, the current valuation for all of V can be recovered by writing “tkB en”
for of vk.

Finally, the QBF instance I is true iff w(PI) |= ϕI . Hence we have pro-
vided a logspace reduction from QBF to model-checking LTL formulae on finite
compressed paths.

6 Conclusions

We considered the problem of model checking a finite (or ultimately periodic)
path. This is a fundamental problem in runtime verification, and it occurs in
many other verification situations. This problem has not yet been the subject of
serious fundamental investigation,probably because it looks like it is trivial.

We argue that “model checking a path” should be recognized as an interesting
problem, and identified as such whenever it occurs. The main benefits one can ex-
pect are specialized algorithms that are more efficient than the usual algorithms
we use (algorithms that were designed for the general case of model checking
Kripke structures). We illustrate this with two kinds of specialized algorithms:
model checking a path can be done efficiently (sometimes in polynomial-time)
even when using richly expressive temporal logics that would usually be con-
sidered as highly intractable, and model checking a path can be done efficiently
(sometimes in polynomial-time) even when the path is given in compressed form.
We feel this opens the door to a whole line of investigations, aiming at finding
efficient algorithms for the whole variety of path model checking problems that
naturally occur in practice.
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From a more theoretical viewpoint, the basic problem of model checking
LTL formulae over finite or ultimately periodic paths should be considered as an
important open problem. It is not known whether the problem is PTIME-hard,
or whether it admits efficient parallel algorithms (e.g. in NC), or memory-efficient
algorithms (e.g. in SC). The gap between the known upper and lower bounds is
quite large, but we have been unable to narrow it.
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