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Abstract— TSMV is an extension of NuSMV, the open-source
symbolic model checker, aimed at dealing with timed versions
of (models of) circuits, PLC controllers, protocols, etc. The
underlying model is an extension of Kripke structures, where
every transition carries an integer duration (possibly zero). This
simple model supports efficient symbolic algorithms for RTCTL
formulae.

I. CHECKING MODELS WITH DURATIONS ON STEPS

TSMV extends NuSMV (the open-source version of
SMV [3]) and provides RTCTL model checking for “(Simply)
Timed Kripke Structures”, or “TKS’s”, i.e. models where
transitions carry an arbitrary duration.

RTCTL is a well-known timed extension of CTL that
allows quantitative constraints on modalities [4]. One can
write “timed” specifications like AG(req ⇒ AF≤100grant)
requiring that the grant always eventually arrives in at most
100 time units (t.u.) after the request.

With (Nu)SMV, one step in the Kripke structure equals
one time unit. With TSMV one can specify arbitrary natural
numbers (possibly 0) as durations of the steps.

The advantage of modeling with TKS’s is twofold. First,
it allows for succinct encoding of long steps. A transition
that takes 100 t.u. would be encoded with 99 intermediary
states in standard NuSMV. For such long steps, TSMV has
a special semantics where no intermediate state occurs [6].
This small change in semantics makes RTCTL model checking
provably easier [5]. Second, TKS’s may have zero-duration
transitions. These are convenient for modeling micro-steps
that are part of one single macro-step. They are also a very
convenient way of counting specific events or conditions along
a path (by assigning null durations to the other steps). In
this sense, TSMV supports a temporal logic with condition-
counting facilities.

TSMV has specific algorithms for verifying RTCTL spec-
ifications on TKS’s, as well as for computing minimum and
maximum delays between sets of states. These algorithms are
more or less insensitive to scaling-up of durations [6]. They
were easily implemented on top of NuSMV.

II. VERIFYING THE PCI LOCAL BUS

Campos et al. verified a SMV model of the PCI local bus
to illustrate their condition counting algorithms [2]. Here we

describe how TSMV handles the same model (available in the
NuSMV distribution): One simply adds the lines below.

One introduces an extra variable, duration, used to define
the duration of the current step. For counting the number of
transactions started between a request and a grant, we use:

VAR duration: 0..1;
ASSIGN next(duration)=case

start_transaction: 1;
1 : 0;

esac;

We compute the maximum number of transactions started
between a bus request by the processor and its granting with:

COMPUTE MAX[cpu.req, cpu.grant]

The answer is 2.
If we restrict our attention to the transactions started by the

processor, we modify the ASSIGN statement above and the
COMPUTE MAX instruction now returns 0. We can check that
transactions are only initiated once between two grants with
the following formula:

SPEC (AF=0 cpu.grant) &
(AG (cpu.grant -> AF=1 (cpu.grant)) )

Obviously this property is not satisfied in general, but it holds
if some fairness assumption on processor requests is made.
This is achieved with the following line:

FAIRNESS cpu.req

III. INSENSIBILITY TO SCALING UP

Thanks to efficient BDD manipulation (e.g. detection of in-
teresting durations, splitting of the transition relation [6]), our
algorithms are almost insensitive to scaling up of durations.
We illustrate this claim with scaled-up variants of the “bridge
crossing” problem. The execution time increases very slowly,
compared to other symbolic discrete-time model-checkers.

The bridge-crossing problem is a famous mathematical
puzzle with time critical aspects [7]. A group of four persons,
called P1, P2, P3 and P4, cross a bridge at night. It is dark and
one can only cross the bridge with a lamp. Only one lamp is



TSMV NuSMV Verus RAVEN
time memory time memory time memory time memory

bridge 0.02 s. 1.3 MB 0.13 s. 9.5 MB 7.14 s. 16.5 MB 4.01 s. 5.9 MB

bridge × 10 0.04 s. 1.3 MB 4.14 s. 18.5 MB 259.54 s. 39.2 MB 3 098 s. 371 MB

bridge × 20 0.07 s. 1.3 MB 22.44 s. 19.5 MB 573.05 s. 44.1 MB

bridge × 50 0.22 s. 9.0 MB 176.55 s. 28.0 MB 3 626 s. 55.0 MB

bridge × 100 0.45 s. 11.0 MB 844.25 s. 50.0 MB 17 870 s. 59.2 MB

TABLE I
SCALE UP (IN)SENSITIVITY

available and at most two persons can cross at the same time.
Therefore any solution requires that, after the first two persons
cross the bridge, one of them returns, carrying back the lamp
for the remaining persons. The four persons have different
maximal speeds: Here P1 crosses in 5 time units (t.u.), P2 in
10 t.u., P3 in 20 t.u. and P4 in 25 t.u. When a pair crosses the
bridge, they move at the speed of the slowest person in the
pair. Now, how much time is required before the whole group
is on the other side?

A person is described as an SMV module with his crossing
time as a parameter. His possible steps are to stay where he is,
or move to the other side. He can only cross when the lamp
is on his side (and then the lamp crosses with him). When
he crosses, the transition takes at least his crossing time. This
way, when four persons are synchronized, the crossing time
is any integer greater or equal to the maximum crossing time
of the crossing persons. The complete system is obtained by
combining four persons (four instances of the same person
module, with different crossing times) with a Boolean lamp
value keeping track of the position of the lamp, and adding
a further constraint (an INVAR in SMV) telling that at most
two persons cross in one move.

We can ask how much time is required for crossing:

COMPUTE MIN[initial, final]

initial and final being defined to suit our needs. The
answer (60 t.u.) is obtained in a few milliseconds.

The same example can be treated with e.g. NuSMV, Verus
or RAVEN. Since NuSMV and Verus only handle unit steps,
we use the method advocated in [1, p.106] and introduce
a counter forcing several t.u. between actual system moves.
With RAVEN, we can directly specify duration intervals for
each transitions, even though it internaly considers the semi-
continuous semantics. For this basic case, those tools are
slightly slower than TSMV.

When we define a model “bridge x 10” by replacing
5, 10, 20 and 25 with (resp.) 50, 100, 200, and 250, TSMV
computes the minimum delay of 600 t.u. in more or less the
same time it needed for the initial problem.

By contrast, the computation time for NuSMV, Verus
and RAVEN increases dramatically when we scale up the
durations. In fact, there is no way to avoid this: These
tools do not know about TKS’s and are bound to compute
all sets associated with different values of the counter for
intermediate states. Computing these sets is a tedious and
mostly repetitive task that cannot be avoided unless a notion
of TKS is introduced.
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