
HAL Id: hal-01194622
https://hal.science/hal-01194622

Submitted on 7 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A PTIME-Complete Matching Problem for
SLP-Compressed Words

Nicolas Markey, Philippe Schnoebelen

To cite this version:
Nicolas Markey, Philippe Schnoebelen. A PTIME-Complete Matching Problem for SLP-Compressed
Words. Information Processing Letters, 2004, 90 (1), pp.3-6. �10.1016/j.ipl.2004.01.002�. �hal-
01194622�

https://hal.science/hal-01194622
https://hal.archives-ouvertes.fr

A PTIME-complete matching problem

for SLP-compressed words

N. Markey a,b Ph. Schnoebelen b

aDépartement d’Informatique
Université Libre de Bruxelles

bLab. Spécification & Vérification
ENS de Cachan & CNRS UMR 8643

Abstract

SLP-compressed words are words given by simple deterministic grammars called
“straight-line programs”. We prove that the problem of deciding whether an SLP-
compressed word is recognized by a FSA is complete for polynomial-time.

Key words: Algorithms, pattern-matching, compressed strings, complexity.

1 Introduction

Data compression is a powerful and versatile (hence popular) technique for
reducing storage space. The issue of finding efficient algorithms working di-
rectly on compressed data received a lot of attention recently. In this field,
a paradigmatic family of problems are (searching and) matching problems
on compressed strings [10]. This is because strings are the most basic data
structure, while searching and matching are ubiquitous problems.

For strings, many compression schemes exist [11]. At a conceptual level, the
main compression schemes are SLP (for “Straight-Line Programs”), LZ (for
“Lempel-Ziv”), RLZ (for “Restricted Lempel-Ziv”) and LZW (Lempel-Ziv-
Welch). These four schemes allow exponential compression: compressed strings
may denote full-length texts of exponential length. They are more or less equiv-
alent since it is possible to translate in polynomial-time compressed strings

Email addresses: nmarkey@ulb.ac.be (N. Markey), phs@lsv.ens-cachan.fr
(Ph. Schnoebelen).

Preprint submitted to Elsevier Science 8 January 2004

from one scheme to another. Hence these compression schemes are successful
on the same instances, and polynomial-time algorithms for one scheme can be
transfered to the others.

Many matching problems on compressed strings can be solved in polynomial-
time [9]. But there are situations where polynomial-time is not good enough:
since compressed texts can be quite large, it is interesting to have efficient
parallel algorithms (i.e., algorithms in NC) or polynomial-time algorithms
that only use polylog-space (i.e., in SC) 1 .

It has recently been observed that some matching problems on compressed
strings admit NC algorithms [5,4,6]. However NC or SC algorithms are not
always possible 2 , and some matching problems on compressed strings are
known to be complete for polynomial-time [3,4].

When it comes to algorithms in NC or SC, the three main compression schemes
(SLP, LZ and LZW) are not equivalent. Regarding complexity below PTIME,
the available results are scarce. Some problems are PTIME-hard for LZ [5,9,4]
but not for SLP. The evidence seems to indicate that SLP-compressed words
are easier (that is, more amenable to efficient algorithms) than (R)LZ(W)-
compressed words.

In this note, we prove that deciding whether an SLP-compressed word is ac-
cepted by a (fixed) finite-state automaton (a FSA) is PTIME-complete. This
is the first example of a PTIME-hard problem for SLP-compressed words.

We also consider matching problems simpler than FSA-acceptance, namely
telling whether a given string occurs in the SLP-compressed word. For these
problems, we provide simple proofs showing they admit LOGCFL algorithms,
hence are low inside NC.

2 Preliminaries

We follow [9]. A straight-line program, or SLP, is a context-free grammar where
the non-terminals N1, . . . , Nm are ordered (Nm being the axiom), and where
every non-terminal has a single production of the form Ni → a for a terminal
a, or Ni → NjNk for some j, k < i. For an SLP P , we write w(Ni) for the
unique word described by Ni. Then w(P) stands for w(Nm).

1 We refer to [8] or [7] for more details on classes below PTIME.
2 Here and in the following we implicitly make the standard assumption that
PTIME does not collapse to NC or SC.

2

Proposition 1 [9] Saying whether w(P) is recognized by A (for P an SLP,
and A a finite-state automaton) can be done in time O(|P | × |A|3).

PROOF. [9] describes a simple dynamical programming solution. For two
states r, s of A and non-terminal Ni of P , set T [r, s, i] = true iff w(Ni) labels
a path going from r to s in A. Obviously, if Ni → Nj Nk is a rule in P , then
T [r, s, i] =

∨
u T [r, u, j] ∧ T [u, s, k]. Hence the table T [. . .] is easy to fill. Then

we can use T [. . .] to see whether w(P), i.e. w(Nm), labels an accepting path.

3 The main result

Theorem 2 Saying whether w(P) is accepted by a FSA A, is PTIME-complete.
Furthermore, PTIME-hardness already occurs for a fixed FSA.

In view of Proposition 1, only the second part of Theorem 2 has to be proved.

For this, we start by describing A5, the fixed FSA, and some of its properties.
We were inspired by [1] for this construction. A5 has 5 states numbered from
0 to 4 and is depicted in Fig. 1. The initial state is 0 and the only final state
is 1.

For two states s, t ∈ {0, 1, 2, 3, 4}, we write s
a
−→ t (s

b
−→ t, s

c
−→ t) when there

is an a-labeled (resp., b-labeled, c-labeled) arrow from s to t. We write s
inc

−→ t

when t = s + 1 mod 5: hence
inc

−→ rotates one step clockwise. Observe that

the relations
a
−→,

b
−→,

c
−→, and

inc

−→ are in fact bijections. Further observe that
inc

−→=
b
−→

a
−→ (we compose functions from left to right: f.f ′ denotes f ′◦f). Finally,

we let id denote the identity between states.

0

1

23

4

a

a

aa

a
b

b

b

b

b

c
c

c

c

c

Fig. 1. A5, a fixed FSA.

3

As the reader will easily check, the construction of A5 ensures that the fol-
lowing equalities hold:

a
−→ ·

b
−→ ·

c
−→ ·

b
−→ ·

b
−→ =

inc

−→ (1a)
a
−→ ·

b
−→

inc

−→
c
−→ ·

b
−→

inc

−→
b
−→ =

inc

−→ (1b)
a
−→

inc

−→
b
−→ ·

c
−→

inc

−→
b
−→ ·

b
−→ =

inc

−→ (1c)
a
−→

inc

−→
b
−→

inc

−→
c
−→

inc

−→
b
−→

inc

−→
b
−→ = id (1d)

We now prove Theorem 2 by reduction from NAND-CIRCUIT-VALUE. Let C
be a Boolean circuit made of nand gates with fan-in 2, some constant inputs,
and with one designated output gate g. Fig. 2 displays an example.

nand

nand nand

nand

nand

nand

nand

truefalse

g9:

g8: g7:

g6:

g5:

g4:

g3:

g2:g1:

Fig. 2. C, a Boolean circuit of nand gates.

Every gate gi evaluates to some v(gi) ∈ {true, false} in the obvious way, and
we let v(C) denote the value of the output gate. It is well-known that telling
whether v(C) = true is a PTIME-complete problem [7, problem A.1.5].

With a circuit like C, we associate a grammar PC that has one non-terminal
Ni for every gate gi. The rule for Ni depends on whether gi is a nand gate
inputing from gj and gk (note that j = k is possible) or it is an input gate
carrying true or false:

if gi := nand(gj, gk) then Ni → a Nj b Nk c Nj b Nk b (2)

if gi := true then Ni → b a (3)

if gi := false then Ni → ε (4)

Finally, if gm is the output gate in C, then the axiom of PC is Nm. 3

For a word w = a1 . . . am, we write
w
−→ for the composition

a1−→ · · ·
am−→ (with

ε
−→

being id).

3 Strictly speaking PC is not a SLP, but it is easy to provide an equivalent
linear-sized SLP. In particular, Eq. (4) needs not be used in view of false =
nand(true, true).

4

Lemma 3 For every gate gi in C:

(i) if v(gi) = true then
w(Ni)
−−→ =

inc

−→,

(ii) if v(gi) = false then
w(Ni)
−−→ = id.

PROOF. By induction over the height of the gate in the circuit. For the base

cases Eqs. (3) and (4) directly ensure (i) and (ii) (recall that
ba
−→ =

inc

−→).

For the inductive step, gi is some nand(gj, gk). There are four cases. As-
sume for example that v(gj) = true and v(gk) = false, so that v(gi) =

nand(true, false) = true and we have to prove
w(Ni)
−−→ =

inc

−→. By ind. hyp.
w(Nj)
−−→ =

inc

−→ and
w(Nk)
−−→ = id . Now equation (1c) exactly states that

w(Ni)
−−→ =

inc

−→,
given that Ni is defined by (2). The three other cases use the other equalities
in (1).

Corollary 4 v(C) = true iff
w(PC)
−−→ = inc iff w(PC) is accepted by A5.

Thus we have provided a logspace reduction from NAND-CIRCUIT-VALUE
to acceptance of SLP compressed words by the fixed FSA A5, proving the
second part of Theorem 2. A5 uses three letters for clarity but a two-letter

alphabet would have been sufficient in view of
c
−→ =

bbababab
−−−−→.

4 Efficient pattern-matching for SLP-compressed words

In this section we look at pattern-matching problems that are special cases of
FSA acceptance, trying to strengthen our PTIME-hardness result by extend-
ing it to a problem simpler than FSA acceptance.

It turns out that the problems we consider are in LOGDCFL and LOGCFL
respectively, hence they are in AC1 and admit fast parallel algorithms. Note
that these same problems are PTIME-complete for LZ-compressed words [4].
We see this as evidence that SLP-compressed words are “more manageable”
than LZ-compressed words even though they are not significantly longer.

We start with the simplest matching problem: does w(P) exactly match a
given string p?

Theorem 5 Deciding whether w(P) equals a string p is in LOGDCFL.

PROOF. [Sketch] We show that the problem can be solved by a deterministic

5

Turing Machine having access to an auxiliary unbounded pushdown storage
and working in logarithmic space and polynomial time. Then we conclude re-
lying on the characterization LOGDCFL = AuxPD-DSPACE(log n, pol n)
from [2,12].

The algorithm works as follows: Given an SLP P , one puts the axiom Nm

on the initially empty stack, and stores a pointer to the beginning of p. The
stack will be used to store the sequence of non-terminals that remain to be
developed. As long as the stack is not empty, we pop the first non-terminal,
Ni (say), from the top of the stack: either P has a rule Ni → Nj Nk, and we
add Nk and Nj, in that order, onto the stack; or the rule is Ni → a, and we
check that a is the current letter in p, in which case we advance the pointer
inside p.

The algorithm runs in time O(|p| · |P |), and needs space O(log |p|+log |P |) to
memorize the pointers inside p and inside P .

Next we consider combined patterns of the form p0 ? p1 ? · · · ? pm where the
pi are words and where ? means “any substring”. Such combined patterns
can express problems like “does p occur inside the text?” (by picking m = 2,
p0 = pm = ε and p1 = p), and “is p a subword of the text?” (for p of the form
a1 . . . an, one picks m = n + 1, p0 = pm = ε and pi = ai for 1 ≤ i ≤ n).

Theorem 6 Deciding whether w(P) matches a combined pattern p0 ? · · · ? pm

is in LOGCFL.

PROOF. [Sketch] We proceed as in the previous Theorem, as if we were
checking that w(P) equals p0 ? · · · ? pm. The difference is that, when we are
matching a ? inside the pattern, we just discard letters from w(P). This is
achieved by nondeterministically guessing the (occurrences of) non-terminals
we won’t have to develop when we pop them from the stack. Note that this
runs in polynomial-time since we can discard a useless (occurrence of a) non-
terminal as soon as possible, i.e. before expanding it. (Expanding it and dis-
carding its expansion would require exponential-time.) One concludes with the
characterization LOGCFL = AuxPD-NSPACE(log n, pol n) from [2,12].

References

[1] M. Beaudry, P. McKenzie, P. Péladeau, and D. Thérien. Finite monoids: From
word to circuit evaluation. SIAM J. Computing, 26(1):138–152, 1997.

[2] S. A. Cook. Characterizations of pushdown machines in terms of time-bounded
computers. Journal of the ACM, 18(1):4–18, 1971.

6

[3] S. De Agostino. P-complete problems in data compression. Theoretical
Computer Science, 127(1):181–186, 1994.

[4] L. Ga̧sieniec, A. Gibbons, and W. Rytter. Efficiency of fast parallel pattern-
searching in highly compressed texts. In Proc. 24th Int. Symp. Math. Found.
Comp. Sci. (MFCS’99), Szklarska Poreba, Poland, Sep. 1999, volume 1672 of
Lecture Notes in Computer Science, pages 48–58. Springer, 1999.

[5] L. Ga̧sieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms
for Lempel-Zip encoding. In Proc. 5th Scandinavian Workshop on Algorithm
Theory (SWAT’96), Reykjav́ık, Iceland, July 1996, volume 1097 of Lecture Notes
in Computer Science, pages 392–403. Springer, 1996.

[6] L. Ga̧sieniec and W. Rytter. Almost optimal fully LZW-compressed pattern
matching. In Proc. Data Compression Conference (DCC’99), Mar. 1999,
Snowbird, Utah, USA, pages 316–325. IEEE Comp. Soc. Press, 1999.

[7] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation:
P-Completeness Theory. Oxford Univ. Press, 1995.

[8] D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume A, chapter 2, pages 67–161.
Elsevier Science, 1990.

[9] W. Plandowski and W. Rytter. Complexity of language recognition problems
for compressed words. In J. Karhumaki, H. Maurer, G. Păun, and G. Rozenberg,
editors, Jewels are Forever, pages 262–272. Springer, 1999.

[10] W. Rytter. Algorithms on compressed strings and arrays. In Proc. 26th Conf.
Current Trends in Theory and Practice of Informatics (SOFSEM’99), Milovy,
Czech Republic, Nov. 1999, volume 1725 of Lecture Notes in Computer Science,
pages 48–65. Springer, 1999.

[11] J. A. Storer and T. G. Szymanski. Data compression via textual substitution.
Journal of the ACM, 29(4):928–951, 1982.

[12] I. H. Sudborough. On the tape complexity of deterministic context-free
languages. Journal of the ACM, 25(3):405–414, 1978.

7

