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Non-deterministic temporal logics for general flow systems ⋆

In this paper, we use the constructs of branching temporal logic to formalize reasoning about a class of general flow systems, including discretetime transition systems, continuous-time differential inclusions, and hybrid-time systems such as hybrid automata. We introduce Full General Flow Logic, GFL ⋆ , which has essentially the same syntax as the well-known Full Computation Tree Logic, CTL ⋆ , but generalizes the semantics to general flow systems over arbitrary time-lines. We propose an axiomatic proof system for GFL ⋆ and establish its soundness w.r.t. the general flow semantics.

Introduction

Recent work in set-valued dynamical systems [START_REF] Aubin | Viability kernels and capture basins: Lecture notes[END_REF][START_REF] Aubin | Dynamical qualitative analysis of evolutionary systems[END_REF], investigates a general class known as evolutionary systems. These are described by a set-valued map S which maps each state x ∈ X to the set S(x) of all possible future evolutions γ from initial state x, where γ : [0, ∞) → X, γ(0) = x. These systems are non-deterministic: from an initial state, there may be none, exactly one, or many possible futures. The defining condition of these systems is that the family of sets S(x) must be closed under the operations of taking a suffix of an evolution, and of taking the fusion of the two evolutions at a common state. It includes as examples the solution maps over real time of differential equations with inputs, and of differential inclusions and their impulse/hybrid extensions [START_REF] Aubin | Viability kernels and capture basins: Lecture notes[END_REF][START_REF] Aubin | Impulse differential inclusions: A viability approach to hybrid systems[END_REF]. In the discrete time case, these same closure properties come up in the study of sets computation sequences, in automata theory and the semantics of branching temporal logics such as CTL ⋆ [START_REF] Alur | Automatic symbolic verification of embedded systems[END_REF][START_REF] Stirling | Modal and temporal logics[END_REF][START_REF] Reynolds | An Axiomatization of Full Computation Tree Logic[END_REF]. The same closure properties appear again in Willems' Behavioural Systems theory [START_REF] Willems | Paradigms and puzzles in the theory of dynamical systems[END_REF], under the names time invariance and axiom of state, with the time domain the reals or the integers. In the analysis of evolutionary systems, there is particular interest in the area of Viability Theory [START_REF] Aubin | Impulse differential inclusions: A viability approach to hybrid systems[END_REF][START_REF] Aubin | Viability kernels and capture basins: Lecture notes[END_REF], where a central concept is that of an evolution being "viable in K until capturing target C", which means that the path starts at a state in K, and either remains in K for all time, or it reaches C in finite time, and remains within K until it does so. From a computer science perspective, this concept corresponds to the Until construct on paths in temporal logic.

The purpose of this paper is to generalize the class of evolutionary systems to give an adequate semantics for non-deterministic temporal logic that is uniform for discretetime transition systems, continuous-time differential inclusions, and hybrid systems, where the time domains of evolutions lie in the lexicographically ordered L = N × R +

• . There are three novelties in our work. First, we take a minimalist approach to the notion of a time-line: for the suffix and fusion-closure properties, the minimal structure needed on a linear order are translation or shift maps, which is weaker than a semi-group. Second, we don't take as primitive objects evolutions or paths defined on the entire time line; that perspective gives something of a "god's eye" view of the system, looking forward from now to eternity. Instead, our basic object of a path describes a boundedtime segment of a possible evolution of or signal within a system; it starts somewhere, at relative time 0 with some value x ∈ X, and then progresses with an ordering given by the underlying time-line L to end somewhere, at some time-point τ 0, with a value x ′ ∈ X. We then build up a theory of infinitary extensions with unbounded time domains. Third, we don't restrict to paths γ : T → X with bounded interval time domains T = [0, τ ] ⊆ L, but rather allow "gaps" in T . Over L = N × R +

• , finite hybrid trajectories are functions taking values in some X, with time domains

T ⊆ L of the form T = i<N [ (i, 0), (i, ∆ i ) ], with ∆ i ∈ R +
• the duration of the i-th interval. Within T , time (i + 1, 0) is the immediate discrete successor of time (i, ∆ i ), but in the underlying line L, there is a continuum-length open interval "gap" in between.

The body of the paper is as follows. Section 2 covers preliminaries on set-valued maps and linear orders, and develops some basic theory of paths with "gappy" time domains. We introduce general flow systems in Section 3, and give examples in discrete, continuous and hybrid time. In Section 4, we give an infinitary completion construction, and relate our model class to evolutionary systems and behavioural systems. Section 5 introduces Full General Flow Logic, GFL ⋆ , with basically the same syntax as the wellknown Full Computation Tree Logic, CTL ⋆ , developed for discrete-time models, but semantics w.r.t. general flow systems over arbitrary time. In Section 6, we propose an axiomatic proof system for GFL ⋆ and sketch soundness w.r.t. general flow semantics.

Preliminaries: set-valued maps, time-lines and paths

When we write Y ⊂ X for sets X, Y , we will mean Y is a proper subset of X, and so

Y ⊆ X iff Y ⊂ X or Y = X. We write r : X ; Y to mean r : X → 2 Y is a set-valued map, with set-values r(x) ⊆ Y for every x ∈ X (possibly r(x) = ∅); equivalently, r ⊆ X × Y is a relation. Let [ X ; Y ] := 2 X×Y
denote the set of all maps, partially ordered by ⊆, so r ⊆ r ′ iff r(x) ⊆ r ′ (x) for all x ∈ X, with least element the empty map ∅. Every map r : X ; Y has a converse r -1 : Y ; X given by x ∈ r -1 (y) iff y ∈ r(x). The domain of a set-valued map is dom(r) := {x ∈ X | r(x) = ∅}, and the range is ran(r) := dom(r -1 ) ⊆ Y . A map r : X ; Y is total on X if dom(r) = X. We distinguish several sub-classes of maps. We write r : X → Y to mean r is a (total) function, with values written r(x) = y. We also distinguish partial functions, and write r : X Y to mean that r is single-valued on its domain dom(r) ⊆ X, and write r(x) = y when x ∈ dom(r), and r(x) = UNDEF when x / ∈ dom(r). Let (L, <, 0) be a linear order with least element 0 and no largest element, and the reflexive closure of <. 

exists an l ∈ L such that a < l < b. A linear order L is called discrete if succ L is a total function (dom(succ L ) = L), and is dense if succ L if dom(succ L ) = ∅.
Given two linear orders (L, <) and (L ′ , < ′ ), a function g : L → L ′ is called: strictly orderpreserving if (∀l, k ∈ L), l < k implies g(l) < ′ g(k); and an order isomorphism if it bijective and both g and g -1 are strictly order-preserving. Definition 1. Let (L, <, 0) be a linear order with least element 0 and no largest element. We call L a (future) time line if L is shift invariant, in the sense that if for each a ∈ L, there exists an order isomorphism σ -a : [a, ∞) → L, with inverse σ +a := (σ -a ) -1 : L → [a, ∞), and σ -0 = id L . We call the functions σ -a left ashift maps, and the inverses σ +a right a-shift maps.

The discrete time line N, and the dense continuum time line R +

• := [0, ∞), are considered with their usual orderings. The hybrid time space N × R +

• is linearly ordered lexicographically: i.e. (i, t) < lex (j, s) iff i < j or i = j and t < s. The least element is 0 := (0, 0). This ordering does not admit any natural addition operation to make it a linearly ordered semi-group, but its shift invariance is witnessed by the following order isomorphisms: for each a = (k, r) ∈ L, define σ -a : [a, ∞) → L by σ -a (i, t)

:= (0, t -r) if i = k and σ -a (i, t) := (i -k, t) if i > k, for l = (i, t) ∈ [a, ∞). Then σ +a : L → [a, ∞) satisfies σ +a (i, t) = (k, t + r) if i = 0 and σ +a (i, t) = (i + k, t) if i > 0. The full hybrid time line N × R +
• is everywhere dense. In the "gappy" time domains T ⊂ L considered below, the partial function succ T may be defined at some time points in T and not at others, so T is a "hybrid" of discrete and dense. X | dom(γ) ∈ BT(L) }, and define IPath(L, X) to be the subset interval paths with dom(γ) ∈ BI(L). For γ ∈ Path(L, X), define b γ := b dom(γ) to be the largest element in dom(γ), so that γ(0) ∈ X is the start-value of γ and γ(b γ ) ∈ X is the end-value of γ. Proposition 1. For L any time line, the set BT(L) is closed under the following operations: for T, T ′ ∈ BT(L) and t ∈ L,

• intersection: T ∩ T ′ ∈ BT(L); in particular, [0, t] ∩ T ∈ BT(L) if t ∈ T ; • left t-shift: σ -t ([t, b T ] ∩ T ) ∈ BT(L) if t ∈ T ; • union with right t-shift: T ∪ σ +t (T ) ∈ BT(L) if t b T .
The subset BI(L) of bounded initial closed intervals is closed under the first two operations, and is also closed under union with right shift restricted to t = b T .

For X any value space, the following operations are well-defined in Path(L, X):

for γ, γ ′ ∈ Path(L, X) and t ∈ dom(γ), • t-end prefix: γ| t ∈ Path(L, X), where γ| t := γ ↾ [0,t]∩ dom(γ) • t-start suffix: t |γ ∈ Path(L, X), where ( t |γ)(l) := γ(σ +t (l)) for all l ∈ dom( t |γ) := σ -t ([t, b γ ] ∩ dom(γ)) • fusion: γ * γ ′ ∈ Path(L, X), provided that γ ′ (0) = γ(b γ ) , where (γ * γ ′ )(l) := γ(l) for l ∈ dom(γ) and (γ * γ ′ )(l) := γ ′ (σ -b γ (l)) for l ∈ σ +b γ (dom(γ ′ )).
For each value x ∈ X, define the trivial path θ x : [0, 0] → X by θ x (0) = x. In Path(L, X), the trivial path θ x functions as a point-wise identity with respect to fusion:

θ x * γ = γ iff γ starts at value x = γ(0), and γ * θ x = γ iff γ ends at value x = γ(b γ ).
Definition 3. Let (L, <, 0) be a time line and X a value space. Define a partial order on Path(L, X) from the underlying linear order on L (re-using notation) by: γ

< γ ′ iff γ ⊂ γ ′ and t < t ′ for all t ∈ dom(γ) and t ′ ∈ dom(γ ′ ) -dom(γ). If γ < γ ′ , we say the path γ ′ is a (proper) extension of γ, or γ is a proper prefix of γ ′ .
In general, the path extension ordering < is a proper subordering of the subset relation, but when restricted to the set IPath(L, X), it collapses to the subset relation. The following proposition characterizes the path extension partial order in terms of the fusion operation. Proposition 2. For L a time line, X a value space, and for all γ, γ ′ ∈ Path(L, X), γ < γ ′ iff γ ′ = γ * γ ′′ for some γ ′′ ∈ Path(L, X) with γ ′′ = θ x and γ ′′ (0) = γ(b γ ).

We now return to the hybrid time line L = N × R +

• for a more detailed discussion of some of its paths. Define DS := IPath(N, R +

• ) to be the set of all (finite) duration sequences; i.e. ∆ ∈ DS is a finite sequence of values ∆ i := ∆(i) ∈ R +

• for i < N for N = length(∆) ∈ N. For duration sequences ∆ ∈ DS, define HT (∆) to be the hybrid time domain determined by ∆:

HT (∆) := i<length(∆) [ (i, 0), (i, ∆ i ) ] HT := { HT (∆) ∈ BT(L) | ∆ ∈ DS } HPath(X) := { γ ∈ Path(N × R + • , X) | dom(γ) ∈ HT } (1) 
For hybrid paths γ ∈ HPath(X), define the duration sequence of γ by ds(γ) = ∆ iff dom(γ) = HT (∆) for ∆ ∈ DS, and define the discrete length of γ by dl(γ) := length(ds(γ)) ∈ N. Also define the total duration of γ by td(γ) := i<dl(γ) ∆ i .

Proposition 3. For all γ, γ ′ ∈ HPath(X),

γ lex γ ′ iff dl(γ) dl(γ ′ ) and (∀i < N := dl(γ) -1 ) γ i = γ ′ i and γ N γ ′ N
With hybrid paths, we have to deal with the product structure on the time line. We also encounter product structure on the value space. Let π X : (X × Y ) → X and π Y : (X × Y ) → Y be the standard coordinate projection functions on a product of sets X ×Y . These can be lifted to give projection functions on paths π X : Path(L, X ×Y ) → Path(L, X) and to projections on functions π

X : [ L → (X × Y ) ] → [ L → X ], by defining (π X ζ)(t) := π X (ζ(t)) for t ∈ dom(ζ) and ζ ∈ Path(L, X × Y ) or ζ : L → (X × Y );
and symmetrically for π Y in the other coordinate.

General flow systems

The general dynamical system model we develop here is essentially Aubin's model of an evolutionary system, generalized to arbitrary time lines L, and "deconstructed", so that the basic objects are bounded length paths, having dom(γ) ⊆ [0, b γ ]. Definition 4. Let (L, <, 0) be a time line, and let X = ∅ be an arbitrary value space. A general flow system over X with time line L is a map Φ : X ; Path(L, X) satisfying, for all x ∈ dom(Φ), for all γ ∈ Φ(x), and for all t ∈ dom(γ):

(GF0) initialization: γ(0) = x (GF1) suffix-closure: t |γ ∈ Φ(γ(t)) (GF2) fusion-closure: γ| t * γ ′ ∈ Φ(x) for all γ ′ ∈ Φ(γ(t)) • Φ has interval paths if ran(Φ) ⊆ IPath(L, X); • Φ has hybrid paths if ran(Φ) ⊆ HPath(X) and L = N × R + • ; • Φ is reflexive if θ x ∈ Φ(x) for all x ∈ dom(Φ); • Φ is blocked at x if Φ(x) = {θ x } ,
and non-blocking if not blocked at any x ∈ X; • Φ is prefix-closed if γ| t ∈ Φ(x) for all x ∈ dom(Φ), γ ∈ Φ(x) and t ∈ dom(γ); • Φ is deterministic if for all x ∈ dom(Φ), the set Φ(x) is linearly ordered by <.

In terms of Behavioural Systems theory [START_REF] Willems | Paradigms and puzzles in the theory of dynamical systems[END_REF], the suffix-closure condition (GF1) corresponds to the time invariance property, while the fusion-closure condition (GF2) corresponds to the so-called "axiom of state" principle, that "the state should contain sufficient information about the past so as to determine the future behaviour", because the various possible extensions of a trajectory at time t are exactly those which would have been possible if we had observed only the state at time t, and not the past of the trajectory prior to that point. Proposition 4. Let (L, <, 0) be a time line, let X = ∅ be a value space, and let Φ : X ; Path(L, X) be a general flow system over X with respect to L. Then:

(1.) The set dom(Φ) ⊆ X is closed under reachability by Φ-paths: if x ∈ dom(Φ) and γ ∈ Φ(x), and t ∈ dom(γ), then γ(t) ∈ dom(Φ). (2.) Φ is reflexive iff Φ is prefix-closed. (3.) Φ is non-blocking iff for all x ∈ dom(Φ), γ ∈ Φ(x), there is a γ ′ ∈ Φ(x) : γ < γ ′ . Example 1. If g : L 1 → L 2 is
an order embedding, and Φ : X ; Path(L 1 , X) is a general flow system, then the map Φ g : X ; Path(L 2 , X) is also a general flow, where for x ∈ dom(Φ g ) := dom(Φ), define

Φ g (x) := {η ∈ Path(L 2 , X) | ∃γ ∈ Φ(x) : dom(η) = g(dom(γ)) ∧ (∀t ∈ dom(η) ) η(t) = γ(g -1 (t)) .
Example 2. A (basic) state transition system is a structure (X, R) where X = ∅ is the state space, and R : X ; X is any set-valued map (the one-step transition relation). The map R determines a general flow system with interval paths over time-line

L = N: Φ R (x) := {γ ∈ IPath(N, X) | γ(0) = x ∧ (∀i < b γ -1 ) γ(i + 1) ∈ R(γ(i)) }. It is easily verified that Φ R (x) = {θ x } iff x / ∈ dom(R).
Hence Φ R is non-blocking iff the map R is total on X, and Φ R is deterministic iff the map R is a partial function.

Example 3. A differential inclusion is a structure (X, F ) where X ⊆ R n is a finite dimensional vector space with the Euclidean norm, and

F : X ; R n is a set-valued map. Define AC(X) := {γ ∈ IPath(R + • , X) | γ absolutely continuous on [0, b γ ] }.
Solutions to the inclusion ẋ(t) ∈ F (x(t)) starting at a state x are defined by:

Sol F (x) := γ ∈ AC(X) | γ(0) = x ∧ d dt γ (l) ∈ F (γ(l)) a.e. for l ∈ [0, b γ ] .
It is immediate that Sol F is reflexive and is suffix-closed and fusion, hence is a general flow system with interval paths over L = R +

• . For the non-blocking property, to ensure the existence of non-trivial solutions from each x ∈ cl(dom(F )), one needs to impose some regularity assumptions (e.g. Lipschitz or Marchaud conditions) on the map F [START_REF] Aubin | Impulse differential inclusions: A viability approach to hybrid systems[END_REF][START_REF] Aubin | Viability kernels and capture basins of sets under differential inclusions[END_REF][START_REF] Aubin | Set-Valued Analysis[END_REF]. If F : X → R n is actually a function and the differential equation

ẋ(t) = F (x(t)) has a unique maximal solution η : [0, c x ) → X starting from each x ∈ X, with c x ∈ R + • ∪ {∞}, then Sol F (x) = { η| t | t ∈ [0, c x ) } is linearly ordered, hence deter- ministic at every x ∈ X. Example 4. A hybrid automaton [15, 2, 14, 1] is a structure H = ( Q, E, X, F, D, R ): • Q is a finite set of control modes; • E : Q ; Q is the discrete transition relation; • X ⊆ R n is the continuous state space; • F : Q → [ X ; R n ]
maps each q ∈ Q to a set-valued vector field F (q) : X ; R n with differential inclusion solution map Sol q := Sol F (q) : X ; IPath(R + • , X); • D : Q ; X maps each q ∈ Q to a set D q := D(q) ⊆ X, the domain of mode q; • R : E → [ X ; X ] maps (q, q ′ ) ∈ E to a reset map R q,q ′ := R(q, q ′ ) : X ; X. Define a map Traj H : (Q × X) ; HPath(Q × X) by:

Traj H (q, x) := { γ ∈ HPath(Q × X) | (0) γ(0, 0) = (q, x) ∧ (∀i < dl(γ) ) for ∆ i := ds(γ)(i) ∧ q i := π Q γ i (0) (1) π X γ i ∈ Sol q i (π X γ i (0)) ∧ ran(γ i ) ⊆ {q i } × D q i ∧ (2) (q i , q i+1 ) ∈ E ∧ π X γ i+1 (0) ∈ R q i , q i+1 π X γ i (∆ i ) if i < dl(γ) -1
Paths in Traj H are called (finite) trajectories of H. Direct from the definition, we can see that dom(Traj

H ) = D = {(q, x) ∈ Q × X | x ∈ D q }.
We will say a hybrid automaton H is well-constituted if all of the following hold:

(A) Q = ∅, and E : Q ; Q is total; (B) X ⊆ R n
is a non-empty finite dimensional vector space with the Euclidean norm;

(C) D : Q ; X is total, so D q = ∅ for each q ∈ Q; (D) for each q ∈ Q, domain D q ⊂ dom(Sol q ) and Sol q is not blocked at any x ∈ D q ; (E) for each transition pair (q, q ′ ) ∈ E, the reset relation R q,q ′ : X ; X satisfies the constraints dom(R q,q ′ ) = ∅ and dom(R q,q ′ ) ⊆ D q and ran(R q,q ′ ) ⊆ D q ′ . Any assumptions will do on the set-valued vector fields F (q) : X ; R n , provided they give non-trivial solution paths in Sol q on the mode domains D q . Proposition 5. Let H = ( Q, E, X, F, D, R ) be a hybrid automaton. Then the trajectory map

Traj H : (Q × X) ; HPath(Q × X) is a general flow system over Q × X with time line N × R + • . If H is well-constituted then Traj H is also prefix-closed.
The conditions on H being well-constituted rule out all "trivial" ways that Traj H may become blocked: Sol q is not blocked at any x ∈ D q ⊆ dom(Sol q ); since E is total, every q ∈ Q has a discrete successor; and for each discrete transition (q, q ′ ) ∈ E, the transition guard set dom(R q,q ′ ) is non-empty and contained in D q , and under the reset relation, the image set ran(R q,q ′ ) lies in D q ′ . So in attending to the possibility of blocking, we need to focus only on states x ∈ D q that are not in any transition guard set, so no discrete transition is possible from (q, x), and states x ∈ D q from which every non-trivial q-solution leaves D q "immediately after now", so there are no hybrid trajectories from (q, x) with non-trivial continuous evolution in mode q.

Proposition 6. If a hybrid automaton H is well-constituted, and

Out q := x ∈ D q | (∀γ ∈ Sol q (x))(∀t ∈ dom(γ), t > 0 )(∃s < t) γ(s) / ∈ D q Grd q := q ′ ∈E(q) dom(R q,q ′ )
then Traj H is non-blocking on its domain D iff Out q ⊆ Grd q for each q ∈ Q.

The sets Out q and the condition Out q ⊆ Grd q are identified in [START_REF] Lygeros | Dynamical properties of hybrid automata[END_REF], for systems with deterministic continuous dynamics. In virtue of the continuity of paths in Sol q (x), the set Out q is contained in the topological boundary: Out q ⊆ bd(D q ) := cl(D q )int(D q ). An immediate corollary is that for well-constituted systems H, Traj H will be non-blocking on D if for all q ∈ Q, either (bd(D q ) ∩ D q ) ⊆ Grd q , or D q is open.

We can also show the impulse differential inclusion model of hybrid systems from [START_REF] Aubin | Impulse differential inclusions: A viability approach to hybrid systems[END_REF] to be an example of a general flow system over the hybrid time line; this example and others will be discussed in a separate paper.

Infinitary extensions of general flow systems

From Proposition 4, we know that if a general flow Φ is non-blocking, then for each x ∈ dom(Φ) and γ ∈ Φ(x), there exists an infinite sequence of paths {γ n } with γ 0 = γ and γ n ∈ Φ(x) and γ n < γ n+1 for all n. Motivated by this fact, we view "maximal extensions" or "completions" of paths as infinitary objects, arising as limits of infinite ordered sequences of finitary bounded paths. In this paper, we take limits over ordered sequences of order type (ordinal) ω, the order type of N, but we want to leave open the possibility, for later work, of dealing with sequences of transfinite length, with ordinals greater than ω (for formalizing the notion of a continuation of a Zeno hybrid trajectory that has discrete stages ω, ω + 1, ω + 2, . . . up to some limit ordinal ν > ω). We need access to maximal length paths in order to formalize the Until construct in temporal logic, but we also want to "go to infinity" in order to be able to directly compare our class of dynamical systems with those developed in terms of functions over the whole time line L = N or L = R +

• ; in particular, Aubin's model of an evolutionary system [START_REF] Aubin | Dynamical qualitative analysis of evolutionary systems[END_REF][START_REF] Aubin | Viability kernels and capture basins: Lecture notes[END_REF], and also Willem's behavioural systems model [START_REF] Willems | Paradigms and puzzles in the theory of dynamical systems[END_REF]. Definition 5. For any path set P ⊆ Path(L, X), define the ω-extension of P by:

Ext ω (P) := { η : L X | (∃ γ : ω → Path(L, X) ) (∀k < ω) [ γ k := γ(k) ∧ γ k ∈ P ∧ γ k < γ k+1 ∧ η = k<ω γ k Define EPath ω (L, X) := Ext ω ( Path(L, X) ); EIPath ω (L, X) := Ext ω ( IPath(L, X) ).
Paths η ∈ Ext ω (P) will be called ω-paths of P.

Thus the ω-extension Ext ω (P) contains all the partial functions η : L X that can arise as the union or limit of an ω-length strictly extending sequence of paths in the set P. The path extension ordering < on bounded paths induced by the linear order on L can be lifted to ω-paths. For paths η, η ′ ∈ Path(L, X) ∪ EPath ω (L, X), we extend Definition 3 to define η < η ′ if η ⊂ η ′ and t < t ′ for all t ∈ dom(η) and t ′ ∈ dom(η ′ )dom(η). If η < η ′ then dom(η) must be a bounded subset of L.

For a general flow system, we want to pick out the ω-paths η ∈ Ext ω (Φ(x)) that are maximal in the sense that there are no real paths of the system in Φ(x) extending η. Definition 6. Given a general flow system Φ : X ; Path(L, X), define the maximized ω-extension of Φ to be the set-valued map E ω Φ : X ; EPath ω (L, X) given by:

(E ω Φ)(x) := { η ∈ Ext ω (Φ(x)) | (∀γ ∈ Φ(x) ) η ≮ γ }
A system Φ will be called ω-extendible if for every x ∈ dom(Φ) and every γ ∈ Φ(x), there exists η ∈ (E ω Φ)(x) such that γ < η.

In general, dom(E ω Φ) ⊆ dom(Φ); Φ is ω-extendible iff dom(E ω Φ) = dom(Φ). In reasoning about the behaviour of an ω-extendible system Φ, we can safely replace quantification over all possible paths in Φ(x), with quantification over (E ω Φ)(x), the maximal ω-paths; this is crucial for the semantics of the temporal Until construct.

Proposition 7. For any general flow

Φ : X ; Path(L, X), (1.) Φ is ω-extendible iff Φ is non-blocking. (2.) If Φ non-blocking, then Φ is deterministic iff E ω Φ is a partial function.
The non-trivial direction is: Φ is non-blocking implies Φ is ω-extendible; the proof uses Zorn's Lemma to obtain a maximum of any strictly extending sequence of ω-paths.

We are now in a position to formalize the relationship between Aubin's model of an evolutionary system [START_REF] Aubin | Dynamical qualitative analysis of evolutionary systems[END_REF][START_REF] Aubin | Viability kernels and capture basins: Lecture notes[END_REF], and the general flow systems defined here. An evolutionary system, over time lines L = R +

• or L = N, is a map Ψ : X ; [ L → X ] such that, for whole line paths η : L → X, η(0) = x for all η ∈ Ψ (x) and Ψ is closed under the suffix and fusion operations (the natural extensions to unbounded paths of the operations in Proposition 1), in the same sense as which general flow systems with bounded paths are closed under these operations, as required by clauses (GF1) and (GF2) of Definition 4.

Proposition 8. Let the time line be either

L = N or L = R +
• , and X = ∅. Ψ : X ; [ L → X ] is an evolutionary system in the sense of Aubin iff there exists an interval path general flow system Φ : X ; IPath(L, X) that is non-blocking and satisfies Ψ = E ω Φ.

Thus evolutionary systems are a subclass of non-blocking general flow systems. In Willem's Behavioural Systems model [START_REF] Willems | Paradigms and puzzles in the theory of dynamical systems[END_REF], with time lines

L = N or L = R + • , a behaviour is a set of functions B ⊆ [ L → X ].
It can also be established that B is a time-invariant and complete state behaviour iff there exists an interval path, nonblocking general flow system Φ : X ; IPath(L, X) such that B = ran(E ω Φ).

When L = N, then all ω-paths η ∈ EPath ω (N, X) have infinite time domain, so we will always have (E ω Φ)(x) = Ext ω (Φ(x)) for any non-blocking general flow Φ.

When L = R + • , we know that every ω-path η ∈ EIPath ω (R + • , X) must have dom(η) = [0, c) for some c ∈ R + • ∪ {∞}. For a non-blocking flow Φ, suppose η ∈ Ext ω (Φ(x)) is any ω-path. Then c = ∞ automatically gives η ∈ (E ω Φ)(x). If c < ∞,
then we will have a maximally extended ω-path η ∈ (E ω Φ)(x) exactly when η| t ∈ Φ(x) for all t ∈ [0, c) but the limit as t → c of η(t) does not exist, or does exist but is not in dom(Φ); i.e. η has finite escape time. The analysis for the ω-extensions of general bounded paths η ∈ EPath ω (R +

• , X) is similar. For the differential inclusion systems in Example 3, the Marchaud conditions on F in [START_REF] Aubin | Viability kernels and capture basins of sets under differential inclusions[END_REF][START_REF] Aubin | Impulse differential inclusions: A viability approach to hybrid systems[END_REF] constitute a property stronger than non-blocking: they imply that dom(η) = [0, ∞) for all η ∈ (E ω Sol F )(x), so there are no ω-paths with finite escape time.

When L = N×R + • is the hybrid time line, we can characterize the maximal ω-paths of a non-blocking system as follows.

Proposition 9. For any X = ∅ and non-blocking general flow Φ : X ; HPath(X), every ω-path η ∈ (E ω Φ)(x) is of one of two forms: (i) η = γ * υ where γ ∈ Φ(x) and υ : {0} × [0, c) → X with c ∈ R +

• ∪ {∞} and υ = n<ω γ n and each γ n ∈ Φ(υ(0, 0)) has dl(γ n ) = 1, hence η has finite discrete length dl(η) = dl(γ) ∈ N, and total duration td(η) = td(γ) + c, which may be finite or infinite, depending on c; or (ii) η = n<ω γ n where dl(γ n ) < dl(γ n+1 ), hence η has infinite discrete length, and total duration td(η) = n<ω td(γ n ), which may be finite or infinite;

The non-blocking/ω-extendibility property here allows for two cases among extensions of hybrid paths that are typically considered "pathological": Zeno extended hybrid paths η ∈ (E ω Φ)(x) that have infinite discrete length but finite total duration td(η) < ∞; and livelocked extended hybrid paths η ∈ (E ω Φ)(x) that have finite discrete length dl(η) = k + 1 and finite total duration. Livelocked η are maximal with the last path segment having dom(η k ) = [0, c); this Φ path would "die" at klocal time t = c (hybrid time (k, c)) if it ever got there, but it never can, as for every extension of η k to domain [0, c], the resulting hybrid path is not in Φ(x). For a nonblocking hybrid automaton H, the general flow Traj H will exhibit livelock on an extended trajectory η ∈ (E ω Traj H )(x) with dl(η) = k + 1 iff the last path segment η k : [0, c) → (Q × X) is such that, for q k := π Q η k (0) and x k := π X η k (0), there exists a solution path γ ∈ Sol q k (x k ) such that dom(γ) = [0, b γ ], with b γ > c and γ ↾ [0,c) = π X η k , that eventually leaves the mode domain D q , but never passes through Grd q on the way: γ(c) / ∈ D q and γ(t) ∈ D q -Grd q for all t ∈ [0, c).

5 Full General Flow Logic GFL ⋆ : syntax and semantics

We now turn to the syntax and semantics of a logic we call Full General Flow Logic, GFL ⋆ , which generalizes to general flow models the semantics of Full Computation Tree Logic, CTL ⋆ , introduced by Emerson and Halpern in 1983 [START_REF] Emerson | Sometimes" and "Not Never" revisited: on branching versus linear time[END_REF] for formalizing reasoning about executions of concurrent programs in discrete time. The syntax here is a labelled variant of that of CTL ⋆ , allowing for semantic models consisting of a finite family of non-blocking general flow systems.

Definition 7.

A signature is a pair Σ = (Sys, Prp), where Sys is a finite set of system labels, and Prp is a countable set of atomic propositions. The temporal logic language L(Σ) consists of the set of all formulae ϕ generated by the grammar:

ϕ ::= p | ¬ ϕ | ϕ 1 ∨ ϕ 2 | ϕ 1 U a ϕ 2 | ∀ a ϕ
for atomic propositions p ∈ Prp, and system labels a ∈ Sys.

The other propositional (Boolean) connectives and logical constants true, ⊤, and false, ⊥, are defined in a standard way, and the path quantifiers ∀ a have classical negation duals ∃ a , as follows:

ϕ 1 ∧ ϕ 2 def = ¬ (¬ ϕ 1 ∨ ¬ϕ 2 ) ϕ 1 → ϕ 2 def = ¬ ϕ 1 ∨ ϕ 2 ϕ 1 ↔ ϕ 2 def = (ϕ 1 → ϕ 2 ) ∧ (ϕ 2 → ϕ 1 ) ∃ a ϕ def = ¬ ∀ a ¬ ϕ ⊤ def = p ∨ ¬ p for any p ∈ Prp ⊥ def = ¬⊤ (2) 
The temporal operators, U a , for a ∈ Sys, refer to the ω-path space of a non-blocking general flow system Φ a . The formula ϕ U a ψ, read "ϕ until ψ, for a-type paths", will hold along any ω-path η of type a if at some time in the future (along η) the formula ψ holds, and at all intermediate times (along η) between now and then, ϕ holds. The universal quantifier ∀ a applied to a path formula produces a state formula, and ∀ a (ϕ U a ψ) holds at a state x if every ω-path η ∈ (E ω Φ a )(x) satisfies the path formula ϕ U a ψ. Dually, ∃ a (ϕ U a ψ) holds at a state x if there exists an ω-path η ∈ (E ω Φ a )(x) which satisfies the path formula ϕ U a ψ. The until construct on paths can be formulated in several distinct ways; we shall take as primitive the strictest version of until, and then define weaker variants in terms of it. In particular, an important difference between the logic here, and the usual presentation of CTL ⋆ developed for discrete time paths, is that instead of taking the next-time discrete successor operator as a syntactic and semantic primitive, we use a known method to define next-time in terms of the strictest until [START_REF] Burgess | Axioms for tense logic I: "Since" and "Until[END_REF][START_REF] Gabbay | Temporal Logic: Mathematical Foundations and Computational Aspects[END_REF]. Our semantics covers arbitrary time lines, so in general the immediate successor map is only a partial function on the domain of a path, and in the case of interval paths in a dense time line, may be everywhere undefined.

Definition 8.

A general flow logic model (logic model, for short) of signature Σ = (Sys, Prp) is a structure M = (X, L, S, P), where:

• X = ∅ is the state space, of arbitrary cardinality;

• L is a function mapping each symbol a ∈ Sys to a time line L a := L(a);

• S is a function mapping each symbol a ∈ Sys to an non-blocking general flow system Φ a := S(a) : X ; Path(L a , X) over the space X, with time line L a ; • P : Prp ; X maps each p ∈ Prp to a set P(p) ⊆ X of states. The ω-path space of a model M is defined by EPath(M) := a∈Sys EPath ω (L a , X).

Let GF(Σ) denote the class of all general flow logic models of signature Σ, and for the case of a single time line L, let GF(L, Σ) denote the subclass of all logic models M such that L(a) = L for all a ∈ Sys. For the further special case where |Sys| = 1 and Prp is countably infinite, let TR(N) denote the subclass of all discrete time logic models M with one general flow Φ R : X ; IPath(N, X) from a total transition relation R : X ; X (also called R-generable models [START_REF] Emerson | Deciding Full Branching Time Logic[END_REF][START_REF] Emerson | Sometimes" and "Not Never" revisited: on branching versus linear time[END_REF][START_REF] Reynolds | An Axiomatization of Full Computation Tree Logic[END_REF]). For the case of deterministic systems, let DF(L) denote the subclass of all logic models where the time line L is the non-negative half of a linearly ordered abelian group, and the one general flow Φ : X ; IPath(L, X) is deterministic, total, interval path, and non-blocking [START_REF] Coulthard | Temporal Logics of Dynamical Systems in Discrete and Dense Time[END_REF]. Definition 9. For ϕ ∈ L(Σ) and ω-path η ∈ EPath(M), the relation "ψ is satisfied along path η in model M", written M, η |= ψ, is defined by induction on the structure of formulae, with p ∈ Prp and a ∈ Sys:

M, η |= p iff η(0) ∈ P(p) M, η |= ¬ ψ iff M, η ψ M, η |= ψ 1 ∨ ψ 2 iff M, η |= ψ 1 or M, η |= ψ 2 M, η |= ψ 1 U a ψ 2 iff η ∈ EPath ω (L a , X) and ∃ t ∈ dom(η) with t > 0 : M, t |η |= ψ 2 and ∀s ∈ (0, t) ∩ dom(η) : M, s |η |= ψ 1 M, η |= ∀ a ψ iff ∀ξ ∈ (E ω Φ a )(η(0)) : M, ξ |= ψ
For formulas ϕ ∈ L(Σ), the ω-path denotation set ϕ M ⊆ EPath(M), and the state denotation set ϕ M st ⊆ X, are defined by: ϕ

M := { η ∈ EPath(M) | M, η |= ϕ } ϕ M st := { x ∈ X | ∃η ∈ EPath(M) : M, η |= ϕ and x = η(0) }
For a logic model M ∈ GF(Σ), class of logic models C ⊆ GF(Σ), and for formulas ϕ ∈ L(Σ), we say: The while...always operator is a negation dual of until: ϕ A a ψ def = ¬(ϕ U a (¬ ψ)) , which can be read as "if a type-a path, then while ϕ, always ψ". The semantics are:

• ϕ is satisfiable in M, if ϕ M st = ∅; • ϕ is true in M, written M |= ϕ , if M, η |= ϕ for every η ∈ EPath(M); • ϕ is C-valid, written |= C ϕ , if M |= ϕ for every M ∈ C. Define Valid(C) := {ψ ∈ L(Σ) | |= C ψ } to
M, η |= ϕ A a ψ iff if η ∈ EPath ω (L a , X) then ∀ t ∈ dom(η) with t > 0 , if (∀s ∈ (0, t) ∩ dom(η)) M, s |η |= ϕ then M, t |η |= ψ
Other one-place operators are defined as 3 a ϕ def = ⊤U a ϕ, a ϕ def = ⊤A a ϕ, ⊙ a ϕ def = ⊥U a ϕ, and a ϕ def = ¬ϕA a ⊥, where 3 a ϕ type-a paths along which ϕ will eventually be true in the future;

a ϕ type-a paths along which ϕ will always be true in the future, plus non-type-a paths; ⊙ a ϕ type-a paths along which time 0 has a discrete successor, and ϕ is true then;

a ϕ type a-paths along which ϕ is true immediately after now, plus non-type-a paths.

In particular, the next-time operators, ⊙ a , come out as: M, η |= ⊙ a ϕ iff 

ϕ U •• a ψ def = ϕ ∧ ϕ U a (ϕ ∧ ψ) ϕ U •• a ψ def = ϕ ∧ ϕ U a ψ (3) 
We briefly illustrate the expressivity of the logic in two areas.

Viability Theory: In the recent work of Aubin and co-workers in Viability Theory [START_REF] Aubin | Viability kernels and capture basins of sets under differential inclusions[END_REF][START_REF] Aubin | Impulse differential inclusions: A viability approach to hybrid systems[END_REF][START_REF] Aubin | Viability kernels and capture basins: Lecture notes[END_REF], the key concept is of paths being "viable in K until capturing target C". Define:

ϕ V a ψ def = ( ⊤ U a ⊤ ∧ ϕ ∧ a ϕ ∧ a 3 a ⊤ ) ∨ ϕ U •• a ψ (4) 
The formula ϕ V a ψ is satisfied by an ω-path η ∈ EPath ω (L a , X) iff either ϕ is true now and at all times in the future along η, and the time domain of η is unbounded, or there is a finite time along η at which ψ becomes true, and ϕ is true at all times between now and then (inclusive). Thus η is either viable forever in the set ϕ M or viable in ϕ M until it captures the target set ψ M in finite time. Applying the path quantifiers ∃ a and ∀ a restricts to ω-paths of the system E ω Φ a , and this can be used to formalize in the logic the two-place state set operators known as the viability kernel with target and the invariance kernel with target.

Dynamical properties of hybrid automata:

Given a hybrid automaton H, assume that H is well-constituted, and define a logic model M H X with state space X ⊆ R n the continuous state space of H. Let the system label set Sys H X := Q, and for each q ∈ Q, the time line is L(q) := R +

• and the general flow systems are S(q) = Φ q := Sol q . Assume the atomic proposition set Prp H includes constants D q and G q for each q ∈ Q, and the valuation P : Prp H ; X satisfies P(D q ) = D q , and P(G q ) = Grd q .

• Traj H is non-blocking iff M H X |= q∈Q ( ( q ¬ D q ) → G q ) • If Traj H is non-blocking, then Traj H has no livelock iff M H X |= q∈Q ∀ q ( ( D q ∧ 3 q ¬ D q ) → ( D q U q ( G q ∧ 3 q ¬ D q ) ) ) We can, of course, also form a logic model M H with state space Q × X, and have a single system label Sys H := {0} with the general flow system Φ 0 := Traj H , and formalize with the operators U 0 and ∀ 0 quite sophisticated temporal and dynamic properties of H as a single system. We can also reason about multiple systems over a common state space, and express comparative properties.

  For elements a, b ∈ L, the set [a, b] := {l ∈ L | a l b} is a closed, bounded interval in L, and (a, b) := {l ∈ L | a < l < b} is an open bounded interval; similarly for half-open/half-closed bounded intervals [a, b) and (a, b]. For right unbounded intervals, we write [a, ∞) := {l ∈ L | a l}. Any subset T ⊆ L gives a linear order (T, < T ), where < T :=< ∩(T × T ). Define a partial function succ L : L L, for a, b ∈ L, by succ L (a) := b iff a < b and there does not

Definition 2 .

 2 Let (L, <, 0) be a time line. A bounded time domain in L is a proper subset T ⊂ L with least element 0 and a largest element b T such that T is a finite union of closed intervals in L, of the form T = i<N [a i , b i ], where N ∈ N and a 0 = 0 and a i b i < a i+1 for i < N -1, and b N -1 = b T . Let BT(L) ⊂ 2 L denote the set of all bounded time domains in L. Also define BI(L) := {T ∈ BT(L) | (∃b ∈ L) T = [0, b] } to be the subset of interval time domains. Over any set (signal space) X = ∅, define the set of L-paths in X, by Path(L, X) := { γ : L

  be the set of all C-valid formulas, and define CTL ⋆ := Valid( TR(N) ) and GFL ⋆ := Valid( GF(Σ) ).

  for T := dom(η) and 0 ∈ dom(succ T ) and k := succ T (0) and M, k |η |= ϕ Different versions of until come by varying the constraints on end-values of the bounded paths that satisfy ϕ until they satisfy ψ :

Definition 10. Given a class of logic models C ⊆ GF(Σ), the validity problem for C is to determine, for any given formula ϕ ∈ L(Σ), whether or not ϕ ∈ Valid(C). The validity problem for C is decidable if there is a recursive procedure for determining membership of Valid(C) that finitely terminates on all input formulae ϕ ∈ L(Σ).

Proposition 10. [START_REF] Emerson | Deciding Full Branching Time Logic[END_REF][START_REF] Emerson | Complexity of tree automata and modal logics of programs[END_REF] The validity problem is decidable CTL ⋆ (the class TR(N) of discrete time models), with complexity double exponential time in the length of the formula.

We conjecture that the validity problem is decidable for the class DF(R +

• ) of deterministic, total, interval path, non-blocking flows described by functions φ : X ×R → X satisfying the group action laws. These models are studied in [START_REF] Coulthard | Temporal Logics of Dynamical Systems in Discrete and Dense Time[END_REF], where they are used to give semantics for until and since (the time-reversal or past tense correlate) in the language of Linear Temporal Logic (LTL), with no path quantifiers, and the validity problem for that logic is decidable.

Axiomatisation and soundness

We seek formal deductive proof systems for GFL ⋆ := Valid(GF(Σ)), or for the validity set of distinguished subclasses of general flow models. The soundness or adequacy of a proof system Λ for a semantically characterized formula set such as GFL ⋆ , is the property that if ϕ is provable in Λ, then ϕ ∈ GFL ⋆ . For soundness proofs, the larger the class of semantic models, the stronger the result (so we do rather well here on that score). The technically much more challenging task is to establish completeness of a proof system Λ, which in our case is the property: if ϕ ∈ GFL ⋆ , then ϕ is provable in Λ. Proofs of completeness proceed via the contrapositive, and in that form, are essentially a model realization problem: if ϕ is Λ-consistent (i.e. the formula ¬ ϕ is not provable in Λ), then there exists a logic model M ∈ GF(Σ) in which ϕ is satisfiable. Generally speaking, the smaller the class from which the realization models are drawn, the stronger or tighter the completeness result.

An axiomatic proof system Λ consists of a recursive list of axioms, usually given by taking all instances in the language of some finite set of formula schemes, together with a finite list of inference rules, of the form: if ϕ is provable in Λ, then ψ is provable in Λ. A formula is provable in Λ if it is an axiom of Λ or is derivable from provable formulas by a finite sequence of applications of inference rules. We write ⊢ Λ ϕ to mean that ϕ is provable in the system Λ.

A sound and complete axiomatic proof system for the logic CTL ⋆ remained an open problem for almost 20 years, and was solved by Reynolds quite recently [START_REF] Reynolds | An Axiomatization of Full Computation Tree Logic[END_REF]. That axiomatization lays side by side a list of axioms for path formulae, obtained from axiomatizing LTL together with a list of axioms for universal quantification over paths. In addition, Reynolds' proof system includes the axiom ⊥U⊤, which asserts that the underlying time line is discrete, or equivalently, the discrete successor map is total. It also includes an additional inference rule, which is an induction rule for "recursively unwinding" Until formulae in terms of the next-time operator. The axiomatic proof system we present for GFL ⋆ consists of Reynolds' system for CTL ⋆ , minus those last two "discrete" items, the axiom and rule.

Let Λ be the proof system having as axioms all formulae of L(Sig) that are instances of propositional tautologies, or are instances of the schemes (P1) -(P6) and (Q1) -(Q5) below, and having as rules of inference the propositional rule of Modus Ponens (MP) along with three monotonicity rules:

Proposition 11. (Soundness of Axiomatisation) For every formula ϕ ∈ L(Sig),

The verification of soundness of an axiom scheme ϕ consists of showing that M |= ϕ for every model M ∈ GF(Σ), and for an inference rule of the form if ⊢ Λ ϕ then ⊢ Λ ψ , one needs to show that if M |= ϕ, then M |= ψ, for all models M ∈ GF(Σ).

We give some verbal explanation for a selection of the axioms. The first axiom, (P1), asserts that the union over a of all type-a paths is equal to the whole ω-path space of the model. To understand (P5), suppose γ is an a-path satisfying ϕ U a ψ. Then there must be some positive time t along γ at which the suffix path t |γ satisfies ψ and at all strictly intermediate points along γ the suffix paths satisfy ϕ. In particular at all those strictly intermediate points, the suffix paths satisfy ϕ and ϕ U a ψ, meaning that γ satisfies (ϕ ∧ ϕ U a ψ) U a ψ. The axiom (P6) is sound because of the fusion closure of the ω-path space since the antecedent contains embedded Until operators. The axioms (Q1-Q5) all follow directly from the meaning of the universal (and existential) quantification. The three rules all express the monotonicity of the operators with respect to subset inclusion.

Summary and discussion

In this paper, we propose and develop a quite general class of dynamical system models we call general flow systems which include and extend the broad class of evolutionary systems identified by Aubin, and the complete state behaviours of Willems. The advance specifically consists in modelling hybrid time paths as entities in their own right. We take the syntactic constructs of the non-deterministic and branching temporal logic CTL ⋆ originally developed for discrete time models, and re-interpret them in a semantics over general flow systems and with respect to arbitrary time lines. We propose a first candidate for an axiomatic proof system for the class of general flow models, and establish the soundness or adequacy of the proof system.