
HAL Id: hal-01194617
https://hal.science/hal-01194617

Submitted on 7 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Checking Timed Automata with One or Two
Clocks

François Laroussinie, Nicolas Markey, Philippe Schnoebelen

To cite this version:
François Laroussinie, Nicolas Markey, Philippe Schnoebelen. Model Checking Timed Automata with
One or Two Clocks. Proceedings of the 15th International Conference on Concurrency Theory (CON-
CUR’04), 2004, London, UK, Unknown Region. pp.387-401, �10.1007/978-3-540-28644-8_25�. �hal-
01194617�

https://hal.science/hal-01194617
https://hal.archives-ouvertes.fr

Model Checking Timed Automata
with One or Two Clocks

F. Laroussinie1, N. Markey1,2, and Ph. Schnoebelen1

1 Lab. Spécification & Vérification
ENS de Cachan & CNRS UMR 8643

61, av. Pdt. Wilson, 94235 Cachan Cedex, France
email: {fl,markey,phs}@lsv.ens-cachan.fr

2 Département d’Informatique – CP 212
Université Libre de Bruxelles

Bd du Triomphe, 1050 Bruxelles, Belgique
email: nmarkey@ulb.ac.be

Abstract. In this paper, we study model checking of timed automata
(TAs), and more precisely we aim at finding efficient model checking
for subclasses of TAs. For this, we consider model checking TCTL and
TCTL≤,≥ over TAs with one clock or two clocks.
First we show that the reachability problem is NLOGSPACE-complete
for one clock TAs (i.e. as complex as reachability in classical graphs)
and we give a polynomial time algorithm for model checking TCTL≤,≥

over this class of TAs. Secondly we show that model checking becomes
PSPACE-complete for full TCTL over one clock TAs. We also show that
model checking CTL (without any timing constraint) over two clock TAs
is PSPACE-complete and that reachability is NP-hard.

1 Introduction

Model checking is widely used for the design and debugging of critical reactive
systems [Eme90,CGP99]. During the last decade, it has been extended to real-
time systems, where quantitative information about time is required.

Timed models. Real-time model checking has been mostly studied and developed
in the framework of Alur and Dill’s Timed Automata (TAs) [ACD93,AD94], i.e.
automata extended with clocks that progress synchronously with time. There
now exists a large body of theoretical knowledge and practical experience for
this class of systems. It is agreed that their main drawback is the complexity
blowup induced by timing constraints: most verification problems are at least
PSPACE-hard for Timed Automata [Alu91,CY92,ACD93,AL02].

Real-time automata are TAs with a unique clock which is reset after every
transition. This subclass has been mostly studied from the language theory point
of view [Dim00], but it is also considered in [HJ96] for modeling real-time sys-
tems. Clearly this subclass is less expressive than classical TAs with an arbitrary

number of clocks but still it is natural and convenient for describing behavior of
simply timed systems. For example, it may be useful to model systems where
timing constraints are local, i.e. depend only of the time elapsed since the last
transition. The use of a real valued clock offers a convenient and abstract concept
of time. Moreover such kinds of restricted TAs are more natural and more ex-
pressive than models based on discrete Kripke Structures where some durations
are associated with transitions (see for example Timed Transition Graphs [CC95]
or Durational Kripke Structures [LMS02]).

Timed specifications. In order to express timing aspects of computations, we
consider extensions of the classical temporal logic CTL. The idea is to use tim-
ing constraints tagging temporal modalities [AH92]. For example, the formula
EF<10 A states that it is possible to reach a state verifying A (“EF A”) in less
than 10 time units. Timing constraints can have three main forms: “≤ c” and
“≥ c” set a lower or upper bound for durations, while “= c” requires a precise
value. TCTL is the extension of CTL with all three types of constraints, while
TCTL≤,≥ is the fragment of TCTL where the “=c” constraints are forbidden.

Our contribution. In this paper, we aim at finding subclasses of Timed Automata
that admit efficient model checking algorithms. For this purpose we consider one
clock TAs (1C-TAs) which extend real-time automata because the clock is not
required to be reset after each transition. First we show that reachability problem
is NLOGSPACE-complete for 1C-TAs (i.e. as efficient as reachability in classical
graphs) and we give a polynomial time algorithm for model checking TCTL≤,≥

over 1C-TAs. These results are surprising because adding simple timing con-
straints induces generally a complexity blowup. Note efficient model checking
TCTL≤,≥ over 1C-TAs requires to use an ad-hoc algorithm: the classical region
graph technique or the symbolic algorithms based on DBMs [Dil90] are not poly-
nomial over this subclass.
Secondly we show that model checking becomes PSPACE-complete for full TCTL
over 1C-TAs. Then we address the case of TAs with two clocks (2C-TAs), since it
is well known that three clocks lead to PSPACE-hardness for reachability [CY92].
We show that model checking CTL (without any timing constraints) over 2C-
TAs is already PSPACE-complete and that reachability is NP-hard.

These results emphasize the good properties of 1C-TAs and real-time au-
tomata, leading to efficient timed model checking.

Related work. Quantitative logics for Timed Automata are now well-known and
many results are available regarding their expressive power, or the satisfiability
and model checking problems [AH94,ACD93,AH93,AFH96,Hen98]. That exact
durations may induce harder model checking complexity was already observed
in the case of LTL and Timed Automata [AFH96]. Complexity of timed model
checking is considered in [CY92] where it is shown that three clocks are suffi-
cient to have PSPACE-hardness for the reachability problem. In [AL02], model
checking is studied for several timed modal logics. In [ACH94] the expressive
power of clocks in TAs is studied from the language theory point of view.

2 Timed automata

Let N and R denote the sets of natural and non-negative real numbers, respec-
tively. Let C be a set of real valued clocks. We use B(C) to denote the set of
boolean expressions over atomic formulae of the form 3 x ∼ k with x ∈ C, k ∈ N,
and ∼∈ {<,≤, >,≥,=}. Constraints of B(C) are interpreted over valuations for
C clocks, that are functions from C to R. The set of valuations is denoted by R

C .
For every v ∈ R

C and d ∈ R, we use v + d to denote the time assignment which
maps each clock x ∈ C to the value v(x) + d. For every r ⊆ C, we write v[r ← 0]
for the valuation which maps each clock in r to the value 0 and agrees with v

over C r r. Let AP be a set of atomic propositions.

Definition 2.1. A timed automaton (TA) is a 6-tuple A = 〈QA, C, qinit,→A,

InvA, lA〉 where QA is a finite set of control states, C is a finite set of clocks and
qinit ∈ QA is the initial state. The set→A ⊆ QA×B(C)×2C×QA is a finite set of
action transitions: for (q, g, r, q′) ∈ →A, g is the enabling condition (or guard) of
the transition and r is the set of clocks to be reset with the transition (we write

q
g,r
−→A q′). InvA : QA → B(C) assigns a constraint, called an invariant, to any

control state. Finally lA : QA → 2AP labels every control state with a subset of
AP.

A state (or configuration) of a timed automaton A is a pair (q, v), where
q ∈ QA is the current control state and v ∈ R

C is the current clock valuation.
The initial state of A is (qinit, v0) where v0 is the valuation mapping all clocks in
C to 0.

There are two kinds of transition. From (q, v), it is possible to perform the

action transition q
g,r
−→A q′ if v |= g and v[r ← 0] |= InvA(q′) and then the

new configuration is (q′, v[r ← 0]). It is also possible to let time elapsing, and
reach (q, v + t) for some t ∈ R whenever the invariant is satisfied. Formally
the semantics of a TA A is given by a Timed Transition System (TTS) TA =
(S, sinit,→TA

, l) where:

– S = {(q, v) | q ∈ QA and v ∈ R
C s.t. v |= InvA(q)} and sinit = (qinit, v0).

– →TA
⊆ S × S and we have (q, v)→TA

(q′, v′) iff
• either q′ = q, v′ = v + t and v + t′ |= InvA(q) for any t′ ≤ t — we write

(q, v)
δ(t)
−→ (q, v + t) —,

• or ∃q
g,r
−→A q′ and v |= g, v′ = v[r ← 0] and v′ |= InvA(q′) — we write

(q, v)→a (q′, v′).
– l : S → 2AP labels every state (q, v) with the subset of AP lA(q).

An execution of A is an infinite path in TA. Let s = (q, v) be an A-configuration.

An execution ρ from s can be described as an infinite sequence s = s0
δ(t0)
−−→→a

s1
δ(t1)
−−→→a · · · for some ti ∈ R. Such an execution ρ goes through any configura-

tion s′ reachable from some si by a delay transition of duration t ∈ [0; ti] — we
write s′ ∈ ρ. Let Exec(s) be the set of all executions from s.

3 Considering diagonal constraints x − y ∼ k does not matter for the complexity.

The standard notions of prefix, suffix and subrun apply for paths in TTS.
Given ρ ∈ Exec(s), any finite prefix σ leading to a configuration s′ (denoted

s
σ
7→ s′) has a duration, Time(s

σ
7→ s′), defined as the sum of all delays along σ.

Let Pref(ρ) be the set of all prefixes of ρ.
Given ρ ∈ Exec(s) and s′, s′′ ∈ ρ, we say that s′ precedes strictly s′′ along

ρ (written s′ <ρ s
′′) iff there exists a finite subrun σ in ρ s.t. s′

σ
7→ s′′ and σ

contains at least one non null delay transition or one action transition (i.e. σ

is not reduced to
δ(0)
−→). Note that a configuration may have several occurrences

along ρ and then it may be that s <ρ s or s <ρ s
′ and s′ <ρ s.

The size of a TA is |QA| + |C| +
∑

(q,g,r,q′)∈→A
|g| +

∑

q |InvA(q)| where the

size of a constraint is its length (constants are encoded in binary). We use |→A|
to denote the number of transitions in A.

3 Timed CTL

TCTL is the quantitative extension of CTL where temporal modalities are sub-
scripted with constraints on duration [ACD93]. Formulae are interpreted over
TTS states.

Definition 3.1 (Syntax of TCTL). TCTL formulae are given by the following
grammar:

ϕ,ψ ::= P1 | P2 | . . . | ¬ϕ | ϕ ∧ ψ | EϕU∼c ψ | AϕU∼c ψ

where ∼ can be any comparator in {<,≤,=,≥, >}, c any natural number and
Pi ∈ AP.

Standard abbreviations include >,⊥, ϕ ∨ ψ,ϕ ⇒ ψ, . . . as well as EF∼c ϕ (for
E>U∼c ϕ), AF∼c ϕ (for A>U∼c ϕ), EG∼c ϕ (for ¬AF∼c ¬ϕ) and AG∼c ϕ (for
¬EF∼c¬ϕ). Further, the modalities U, F and G without subscripts are shorthand
for U≥0 , F≥0 and G≥0 . The size |ϕ| of a formula ϕ is defined in the standard
way, with constants written in binary notation.

Definition 3.2 (Semantics of TCTL). The following clauses define when a
state s of some TTS T = 〈S, sinit,→, l〉 satisfies a TCTL formula ϕ, written
s |= ϕ, by induction over the structure of ϕ (semantics of boolean operators is
omitted).

s |= EϕU∼c ψ iff ∃ ρ ∈ Exec(s) with ρ = σ · ρ′ and s
σ
7→ s′ s.t.

Time(s
σ
7→ s′) ∼ c , s′ |= ψ and ∀ s′′ <ρ s

′, s′′ |= ϕ

s |= AϕU∼c ψ iff ∀ρ ∈ Exec(s),∃σ ∈ Pref(ρ), s.t. s
σ
7→ s′,

Time(s
σ
7→ s′) ∼ c, s′ |= ψ and ∀ s′′ <ρ s

′, s′′ |= ϕ

Thus, in EϕU∼c ψ, the classical until is extended by requiring that ψ be
satisfied within a duration (from the current state) verifying the constraint “∼c”.

Given a TA A = 〈Q, C, qinit,→A, InvA, lA〉 and a TCTL formula ϕ, we write
A |= ϕ when sinit |= ϕ.

4 Complexity of Timed Model checking

Given a TA A, the TTS TA may have an infinite number of states and then
standard model checking techniques cannot be applied directly. Indeed the decid-
ability of verification problems over TAs is based on the region graph technique:
The infinite state space of configurations is partitioned in a finite number of
regions (equivalence classes of a relation over valuations) which have the “same
behavior” w.r.t. the property to be checked, then a standard model checking
algorithm can be applied over this finite abstraction. The region graph mainly
depends on the number of clocks and the constants occurring in the guard. One
of the main drawbacks of timed model checking is that the size of the region
graph is exponential in the number of clocks and the (encoding of) constants.
Several data-structures have been proposed to verify non-trivial timed systems
(for ex. DBM see [Dil90,Bou04]).

Reachability problem of timed automata is known to be PSPACE-complete
[AH94]. In [CY92], reachability in TA is shown to be PSPACE-complete even
when the number of clocks is 3 or when the constants occurring in the guard
belong to {0, 1}.

For TCTL, model checking is PSPACE-complete [ACD93]. And it is EXP-
TIME-complete for many variants of timed µ-calculus [AL02]; Checking timed
bisimilarity is also an EXPTIME-complete problem. Note that all these results
hold for a R or N as time domain and these results still hold when considering
a parallel composition of TAs instead of a single one [AL02].

In this paper, we consider two subclasses of TAs whose complexity for timed
verification is not known: we will study TAs with one clock (1C-TAs) or two
clocks (2C-TAs). Clearly these subclasses are more expressive than real-time
automata where the unique clock is reset after any transition and than extensions
of Kripke structures with integer durations.

We will assume that in 1C-TAs, the guards are given by two constants defin-
ing the minimal (resp. maximal) value for x to perform the transition: it is always
possible to reduce, in polynomial time, any 1C-TA to an equivalent automaton
verifying such a property.

5 Model checking one clock timed automata

For a 1C-TA, a valuation is just a real value: the time assignment associated
with the automaton clock x. First we consider the reachability problem: “Given
a TA and a control state q, is it possible to reach a configuration (q, v) from the
initial state?”

Proposition 5.1. Reachability in 1C-TAs is NLOGSPACE-complete.

Proof. The NLOGSPACE-hardness comes from complexity of reachability in
classical graphs. Now we give a NLGOSPACE algorithm. A 1C-TA configuration
is a control state and a value for the clock x. It is sufficient to consider only the
integer value of x and to know if the fractional part is zero or not, but the integer

value cannot be stored directly in a logarithmic space algorithm and we have to
use a more concise encoding.

Let A be a 1C-TA. Let B be the set of integer values used in the guards
and zero. We use b0, b1, . . . , bk to range over B and assume 0 = b0 < b1 < · · ·
and |B| = k + 1. The set B defines a set IB of 2(k + 1) intervals λ0, λ1, . . . with

λ0
def
= [b0; b0], λ1

def
= (b0; b1), λ2

def
= [b1; b1], · · · , λ2k+1

def
= (bk,∞). We will encode

the configuration (q, x) by the pair (q, n(x)) s.t. x ∈ λn(x). Since k ≤ 2 · |→A|, it
is possible to store n(x) in logarithmic space.

First the algorithm counts the number of different constants in guards of A:
This is done by verifying that the constants occurring in the i-th transition are
different from the constants used in the j-th transition with j < i (this test is
done by enumerating each bit of the constant c to be checked and verify the
equivalence, it requires a space in O(log(log(c)))).

Then given a pair (q, n), the algorithm non-deterministically guesses another
(q′, n′) and verifies that (q′, λn′) is reachable from (q, λn), i.e. either q = q′ and

n′ = n + 1 (this is a delay transition), or there exists a transition q
g,r
−→ q′ s.t. g

is satisfied by any value in λn and n′ = n (resp. n′ = 0) if r = ∅ (resp. r = {x}).
Assume g = m1 ≤ x ≤ m2, then checking λn |= g can be done by counting
the number n1 of different constants less than m1 and the number n2 of those
greater than m2. Finally λn |= g iff n

2 ≥ n1 and n
2 ≤ k − n2 (resp. n−1

2 ≥ n1

and n+1
2 ≤ k − n2) if n is even (resp. n is odd). These operations requires only

a logarithmic space. ut

This result entails that analysing a 1C-TA is not more complex than analysing
an untimed graph from the complexity theory. After this positive result, we now
consider model checking for 1C-TA and TCTL≤,≥:

Theorem 5.2. Model checking TCTL≤,≥ over 1C-TAs is P-complete.

Proof. P-hardness follows from the case of CTL model checking. We present a
polynomial algorithm to construct, for any state q and subformula ξ of Φ, an
union of intervals Sat[q, ξ] over R containing the valuations for x s.t. x ∈ Sat[q, ξ]
iff (q, x) |= ξ. Assume Sat[q, ξ] =

⋃

j=1,...,k〈αj , βj〉 with 〈∈ {[, (} and 〉 ∈ {],)};
We will see that it is sufficient to consider αj , βj ∈ N∪{∞}. We choose αj < βj
and βj < αj+1 if j+1 ≤ k in order to keep its size (i.e. the number of intervals)
small; Indeed we will show that |Sat[q, ξ]| ≤ 2 · |ξ| · |→A|. We denote by CstA ⊆
N∪{∞} the set of all constants occurring in A (either in guards or in invariants)
plus 0.

We only present here the labeling procedure for the modality EϕU≤c ψ: the
case of boolean operators and atomic propositions is straightforward and the
procedures for other modalities are given in Appendix A.

Assume ξ = EϕU≤c ψ. Assume also that Sat[q, ϕ] and Sat[q, ψ] have been
already constructed. In order to compute Sat[q, ξ], we build a (finite) graph
G = (VG,→G, lG) where every node v ∈ VG corresponds to a set of configurations
(q, λ) where λ is an interval over R s.t. (1) these configurations verify either ψ
or ϕ ∧ ¬ψ, (2) for any guard g in an A-transition, λ |= g or λ |= ¬g. This last

requirement implies that the same sequences of action transitions are enabled
from any configuration of (q, λ).

Every G-transition will correspond to an action transition of A or an abstract
delay transition (leading to another node with different properties): G can be
seen as a kind of region graph. The definition of intervals λ depends on Sat[q, ϕ]
and Sat[q, ψ] and also on guards of A. Let B be the finite set CstA∪{αj , βj | ∃q ∈
QA s.t. 〈αj ;βj〉 ∈ Sat[q, ϕ] ∪ Sat[q, ψ]}. We enumerate B as b0, b1, . . . with bi <

bi+1. We define VG as the pairs (q, λ) where (1) λ is of the form [bi; bi] or (bi; bi+1),
and (2) we have λ ⊆ Sat[q, ψ] or λ ⊆ Sat[q, ϕ] ∩ Sat[q, ψ]. The G-transitions are:

– actions: (q, λ)→G (q′, λ′) if there exists q
g,r
−→ q′ in A such that λ |= g, λ′ = λ

(resp. λ′ = [0; 0]) if r = ∅ (resp. r = {x}), and λ′ |= InvA(q′).
– abstract delays: (q, λ) →G (q,Succ(λ)) if Succ(λ) |= InvA(q), where Succ is

the function: Succ([bi, bi]) = (bi; bi+1) and Succ((bi; bi+1)) = [bi+1; bi+1] if
bi+1 <∞ and Succ((bi;∞)) = (bi;∞) otherwise.

Note that |G| ≤ (QA · 2 · |B|) · (2 + | →A |). We can now restrict G to the
nodes satisfying EϕUψ by a standard algorithm and then clearly the nodes in
VG represent all A configurations satisfying EϕUψ. We now have to see when
there exists a path leading to a ψ-state and being short enough (i.e. ≤ c) to
witness ξ. For this we can compute for any node (q, λ) ∈ VG a duration function

δ
ψ
q,λ : λ→ R s.t. δψq,λ(t) is the duration of a shortest path from (q, t) to some state

verifying ψ (along a path satisfying ϕ). The crucial point is that such a duration
function over λ has a special structure: it is first constant and then decreases
with the slope −1. The constant part corresponds to configurations for which a
shortest path starts by a sequence of action transitions where the clock is reset
at least once before any time elapsing (and clearly this also holds for previous
positions in λ), and the decreasing part corresponds to positions from which a
delay transition occurs before reseting x along a shortest path. These functions
can easily be encoded as pairs (c1, c2) with c1 ≥ c2, with the following meaning:

δ
ψ

q,[bi;bi]
(t)

def
= c1

δ
ψ

q,(bi;bi+1)
(t)

def
=

{

c1 if bi < t ≤ bi+1 − (c1 − c2)
c2 − (t− bi+1) if bi+1 − (c1 − c2) < t < bi+1

Of course, it is also possible to have a pure constant function over λ (then
c1 = c2) or a pure decreasing function (then c1 = c2 + (bi+1 − bi)). See Figure 1
for more intuition.

The structure of the duration functions allows us to compute them by adapt-
ing the Bellman-Ford algorithm for single source shortest path over G. This al-
gorithm is given in Appendix A. The idea is to compute the δψq,λ’s by successive
approximations. Consider a shortest path (SP) π in TA starting from (q0, x0),
leading to a state verifying ψ with intermediary states satisfying ϕ. The path

π can be described as a sequence of
δ(ti)
−−→→a. Such a path in TA is associated

with a path in G where the delay transitions
δ(ti)
−−→ are replaced by a sequence

of abstract delay transitions. Clearly along a SP, a node (q, λ) occurs at most

0 b1 b2 b3 b4
x

c1

c2

δ
ψ

q,(b2,b3) = (c1, c2)

Fig. 1. Example of duration functions

once: given a configuration (q, x) with x ∈ λ, either a SP starts as the previous
positions x′ < x in λ and it starts by action transitions that can be performed
from (q, x), or the SP starts by delaying until Succ(λ) and in both cases it is
not necessary to come back to (q, λ) later. Assume the size of a SP in G is k,
then k is bounded by |VG|+1 and then it is discovered after the k-th step of the
algorithm.

Once the δ
ψ
q,λ’s have been computed, it remains to see which intervals or

part of intervals contain positions whose distance to ψ is less than c. This step
may lead to cut an interval in two parts (still at an integer point) and add new
constants in B; in Appendix A we show that the size of Sat[q, ξ] is bounded
by |Sat[q, ψ]| + (|Sat[q, ϕ]| + 2 · |→A|) and the number of new constants in B is
bounded by |→A |.

From the previous procedure and those in Appendix A, we can deduce that
|Sat[q, ϕ]| ≤ 2 · |ϕ| · |→A|. This entails that the most complex procedure (E U<)
runs in O(|ξ|2 · |QA|

2 · |→A|
3). This globally provides a complexity of O(|Φ|3 ·

|QA|
2 · |→A|

3) for the full labeling procedure. More precisely we could show that
the algorithm is in O(|Φ| · |QA|

2 · |→A| ·(CstA+N∼c
Φ)2) where N∼c

Φ is the number
of Φ subformulae of the form EU∼c or AU∼c . ut

When considering exact durations in subscripts, model checking becomes
PSPACE-hard, i.e. as hard as model checking TAs with several clocks:

Theorem 5.3. Model checking TCTL on 1C-TAs is PSPACE-complete.

Proof. Membership in PSPACE follows from the general result for TAs [ACD93].
PSPACE-hardness is shown by reducing QBF instance to a model checking prob-
lem over 1C-TA.

Consider a QBF instance Φ
def
= Q0p0Q1p1 . . . Qn−1pn−1 · ϕ: Qi ∈ {∃,∀}, any

pi is a boolean variable for i = 0, . . . , n − 1, and ϕ is a propositional formula
over the pi’s.

To reduce the QBF instance Φ to a model checking problem, we consider the
1C-TA AΦ depicted in Figure 2 and the formulae Φi with i = 0, . . . , n defined

q0 q1 q2 . . . qn−1 qF

p0

p0

p1

p1

pn−1

pn−1

x=0

x=0

x=21

x:=0

x=20
x:=0

x=0

x=0

x=22

x:=0

x=21
x:=0

x=0

x=0

x=2n

x:=0

x=2n−1
x:=0

b⊥0 ,x≤1 b>0 ,x≤1

x=1,x:=0

x=1,x:=0

x=0

b⊥1 ,x≤2 b>1 ,x≤2

x=2,x:=0

x=2,x:=0
x=0

. . .

b⊥n−1,x≤2n−1 b>n−1,x≤2n−1

x=2n−1,x:=0

x=2n−1,x:=0

x=0

Fig. 2. 1C-TA AΦ associated with QBF instance Φ

as:

0 ≤ i < n : Φi
def
=







EF=2i

(

(pi ∨ pi) ∧ Φi+1

)

ifQi = ∃

AF=2i

(

(pi ∨ pi) ∧ Φi+1

)

ifQi = ∀

Φn
def
= ϕ[pi ← EF=2n−1 b

>
i]

Now we show that Φ is valid iff (q0, 0) |= Φ0. Indeed, interpreting Φ0 over
(q0, 0) makes that every formula Φi with i = 1, . . . , n is interpreted over some
configurations in a set Si located at duration

∑

j<i 2
j from (q0, 0). More precisely

Si is composed by (pi−1, l) and (pi−1, l) with l ∈ {1, . . . , 2i−1}. A configuration
in Si can be seen as a boolean valuation for p0, . . . , pi−1: The truth value of pi−1

is > iff the control state is pi−1 and the value of pk (k < i − 1) is given by the
k-th bit of the binary encoding of l − 1. Moreover this valuation is preserved
in the two possible successor configurations in Si+1 at duration 2i from the
current position. The alternation of existential EF and AF allows to simulate the
alternation of quantifiers over the pi’s in Φ.

Finally Φn is interpreted over configurations of Sn which define valuations
for p0, . . . , pn−1. The configurations of the form (pn−1, l) (resp. (pn−1, l)) with
l ∈ {1, . . . , 2n−1} are located at distance 0, . . . , 2n−1−1 (resp. 2n−1, . . . , 2n−1) to
qF . Consider such a configuration (pn−1, l) and assume (pn−1, l) |= EF=2n−1 b

>
k :

Reaching (qF , 0) takes 2n−1 − l, it remains to spend 2n−1 + l − 1 in the loop
b⊥k b

>
k · · · and clearly b>k holds after this duration iff the k-th bit of l− 1 is 1. ut

Note that the automaton depicted in Figure 2 is a real-time automaton (x is
reset after every transition) and then we can deduce the following corollary:

Corollary 5.4.

– Reachability in real-time automata is NLOGSPACE-complete.

– Model checking TCTL≤,≥ over real-time automata is P-complete.

– Model checking TCTL over real-time automata is PSPACE-complete.

6 Model checking two clocks timed automata

When a timed automaton has two clocks, there is a complexity blow-up for
model checking. First we have the following result for reachability:

Proposition 6.1. Reachability problem in 2C-TAs is NP-hard.

Proof. This follows from a simple encoding of the SUBSET-SUM problem [GJ79,
p. 223]: assume we are given a set {a1, . . . , ap} of integers and a goal b, one asks
whether there exists a subset J ⊆ {1, . . . , p} s.t.

∑

j∈J aj = b. This problem is
known to be NP-complete.

This problem is obviously equivalent to the reachability problem for state G
in the automaton shown on figure 3.

G

x=a1,x:=0

x=0

x=a2,x:=0

x=0

x:=0
y=b∧x=0

Fig. 3. Encoding of SUBSET-SUM in a 2C-TA

This complexity blow-up compared to the one clock case increases when
considering model-checking:

Theorem 6.2. The model checking problems for CTL, TCTL≤,≥ or TCTL on
2C-TAs are PSPACE-complete

Proof. The PSPACE-membership comes from PSPACE model checking algo-
rithm for TCTL over classical TAs. It is sufficient to show PSPACE-hardness

for the CTL case. Let Φ
def
= O0p0, O1p1 · · ·On−1pn−1 · ϕ be a QBF instance

(Oi ∈ {∃,∀} and ϕ is boolean formula over the pi’s). Consider the 2C-TA de-
picted in Figure 4.

Let Φ be the following CTL formula:

Φ
def
=

(

O0q0U
(

q1 ∧ (O1q1U(q2 ∧ . . .U(qn ∧ ϕ)))
))

with ϕ
def
= ϕ[pi ← EFpi]. A path from q0 to qn defines a boolean valuation for

the pi’s: performing the transition qi
x=2i,x:=0
−−−−−−→ qi+1 (resp. qi

x=0
−−→ qi+1) assigns

> (resp. ⊥) to pi. And in the configuration (qn, 0, vy), the valuation is encoded
in the value vy (the total amount of time used to reach qn). Then the branch
qn → si → si,1 · · · allows us to check the value of the i-th bit of vy, that is
exactly the truth value of pi. ut

Note that this last result is proved for a very simple subclass: the automaton
used in proof of Theorem 6.2 has a clock which is reset after each transition.
Despite this, model checking (untimed) CTL leads to PSPACE-hardness.

q0 q1 q2 . . . qn−1 qn

x=20,x:=0

x = 0

x=21,x:=0

x = 0

x=2n−1,x:=0

x = 0

s0 . . .

x = 0

si . . .
x = 0

. . .

. . .

sn−1 . . .

x = 0

. . . si si,1 si,i si,i+1 si,n pi.

x=20,x:=0

x = 0

x=21,x:=0

x = 0

x=2i−1,x:=0

x = 0

x=0

x=2i+1,x:=0

x = 0

x=2n−1,x:=0

x = 0

x = 0 ∧
y=2n−1

x=21,x:=0

x = 0

x=2n−1,x:=0

x = 0

Fig. 4. The 2C-TA AΦ associated with the QBF instance Φ

7 Conclusion

1C-TAs 2C-TAs TAs
real-time aut. [ACD93,CY92]

Reachability NLOGSPACE-C NP-hard PSPACE-C

TCTL≤,≥ model checking P-complete PSPACE-C PSPACE-C

TCTL model checking PSPACE-complete PSPACE-C

Fig. 5. Summary of the results

Figure 5 gives an overview of the results presented in the paper and a com-
parison with the results for classical Timed Automata. The main results concern
one-clock automata. First the reachability problem in 1C-TAs is as efficient as
the reachability in classical graphs. Moreover model checking can be done effi-
ciently if the property is expressed with TCTL≤,≥ logic. This result is surprising
because usually, in TCTL model checking, the timing constraints are handled by
adding a new clock in the system and we also have seen that any model check-
ing problem, even for the untimed CTL, is PSPACE-hard over simple 2C-TAs.
Moreover note that the efficiency requires an ad hoc algorithm to handle timing
constraints.

In timed model checking, an important challenge consists in developing data
structures enabling to manage complexity blow-up due to timing constraints

and to parallel composition of components; indeed it would be very interesting
to have the benefits of DBMs for the timing constraints and those of BDDs for
the control state explosion, but today no convincing solution exists. Our results
motivate research for algorithms and data structures for simply timed systems
composed by a unique clock and a parallel composition of processes. Of course,
analysing such systems is PSPACE-hard due to the composition, nevertheless
efficient data structures for handling such systems could be more easily defined
due to the simple timing constraints.

References

[ACD93] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-time.
Information and Computation, 104(1):2–34, 1993.

[ACH94] R. Alur, C. Courcoubetis, and T. A. Henzinger. The observational power of
clocks. In Proc. 5th Int. Conf. Theory of Concurrency (CONCUR’94), Upp-
sala, Sweden, Aug. 1994, volume 836 of Lecture Notes in Computer Science,
pages 162–177. Springer, 1994.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[AFH96] R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality.
Journal of the ACM, 43(1):116–146, 1996.

[AH92] R. Alur and T. A. Henzinger. Logics and models of real time: A survey. In
Real-Time: Theory in Practice, Proc. REX Workshop, Mook, NL, June 1991,
volume 600 of Lecture Notes in Computer Science, pages 74–106. Springer,
1992.

[AH93] R. Alur and T. A. Henzinger. Real-time logics: Complexity and expressive-
ness. Information and Computation, 104(1):35–77, 1993.

[AH94] R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM,
41(1):181–203, 1994.

[AL02] L. Aceto and F. Laroussinie. Is your model checker on time? On the complex-
ity of model checking for timed modal logics. Journal of Logic and Algebraic
Programming, 52–53:7–51, 2002.

[Alu91] R. Alur. Techniques for Automatic Verification of Real-Time Systems. PhD
thesis, Stanford Univ., August 1991. Available as Tech. Report STAN-CS-91-
1378.

[Bou04] P. Bouyer. Forward analysis of updatable timed automata. Formal Methods
in System Design, 24(3):281–320, 2004.

[CC95] S. Campos and E. M. Clarke. Real-time symbolic model checking for discrete
time models. In T. Rus and C. Rattray, editors, Theories and Experiences for
Real-Time System Development, volume 2 of AMAST Series in Computing,
pages 129–145. World Scientific, 1995.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
1999.

[CY92] C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems
in real-time systems. Formal Methods in System Design, 1(4):385–415, 1992.

[Dil90] D. L. Dill. Timing assumptions and verification of finite-state concurrent
systems. In Proc. Int. Workshop Automatic Verification Methods for Finite
State Systems (CAV’89), Grenoble, June 1989, volume 407 of Lecture Notes
in Computer Science, pages 197–212. Springer, 1990.

[Dim00] Catalin Dima. Real-time automata and the Kleene algebra of sets of real
numbers. In Proc. of STACS 2000, 17th Annual Symposium on Theoretical
Aspects of Computer Science, Lille, France, February 2000, volume 1770 of
Lecture Notes in Computer Science, pages 279–289, 2000.

[Eme90] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume B, chapter 16, pages 995–1072.
Elsevier Science, 1990.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to
the Theory of NP-Completeness. Freeman, 1979.

[Hen98] T. A. Henzinger. It’s about time: real-time logics reviewed. In Proc. 9th Int.
Conf. Concurrency Theory (CONCUR’98), Nice, France, Sep. 1998, volume
1466 of Lecture Notes in Computer Science, pages 439–454. Springer, 1998.

[HJ96] Dang Van Hung and Wang Ji. On the design of hybrid control systems
using automata models. In Proc. 16th Conf. Found. of Software Technology
and Theor. Comp. Sci. (FST&TCS’96), Hyderabad, India, Dec. 1996, volume
1180 of Lecture Notes in Computer Science, pages 156–167. Springer, 1996.

[LMS02] F. Laroussinie, N. Markey, and Ph. Schnoebelen. On model checking dura-
tional Kripke structures (extended abstract). In Proc. 5th Int. Conf. Foun-
dations of Software Science and Computation Structures (FOSSACS’2002),
Grenoble, France, Apr. 2002, volume 2303 of Lecture Notes in Computer Sci-
ence, pages 264–279. Springer, 2002.

A (End of) proof of Theorem 5.2

ξ = EϕU≤c ψ: We use a kind of Bellman-Ford algorithm to compute the δψ, it
uses the natural min operation over duration functions: min((c1, c2), (c

′
1, c

′
2))

def
= (min(c1, c

′
1),min(c2, c

′
2)). The duration functions dψq,λ are first initialized

to 0 if λ ⊆ Sat[q, ψ] or to ∞ otherwise (no path leading to ψ states has been
yet discovered) and then we use the following procedure:

For i = 1 to |VG| − 1 do

For any (q, λ)→G (q′, λ′) do

if
(

q=q′ ∧ λ′=Succ(λ) ∧ λ = (bj ; bj+1) ∧ d
ψ
q,λ′ = (c′, c′)

)

Then // delay transition - 1

d
ψ
q,λ = min(dψq,λ, (bj+1 − bj + c′, c′))

else if
(

q=q′ ∧ λ′=Succ(λ) ∧ λ = [bj ; bj] ∧ d
ψ
q,λ′ = (c′, c′′)

)

Then // delay transition - 2

d
ψ
q,λ = min(dψq,λ, (c

′, c′))

else // action transition

if (λ′=λ ∨ λ′=[0; 0])

Then d
ψ
q,λ = min(dψq,λ, d

ψ
q,λ′)

Then it remains to build Sat[q, ξ] from the duration functions δψq and the

threshold c: x ∈ Sat[q, ξ] iff δ
ψ
q,λ(x) ≤ c. This may lead to cut an interval in

two parts. A crucial point of the algorithm is to merge as much as possible
these (fragments of) G intervals, and we have to show that the size of Sat[q, ξ]
can be bounded enough to ensure a polynomial algorithm. We are going to
bound (1) the number of intervals of Sat[q, ξ] coming from a given interval
of Sat[q, ϕ] and (2) the number of new constants (not present in B) that can
appear due to the cuts.
Consider an interval I of Sat[q, ϕ]. This interval corresponds to a finite se-
quence of G-nodes (q, λ1), · · · , (q, λk) s.t. λi+1 = Succ(λi). The threshold
“≤ c” may cut these intervals and provide non-adjacent intervals in Sat[q, ξ].
We can distinguish two cases of cuts: (1) the cut is done between two inter-
vals, or (2) the cut is done inside an interval. In both cases the cut is due
to a unique constraint in a transition (x < or x >) which can only cut this
interval. Since a transition may contain at most two such constraints, the
size of Sat[q, ξ] will be bounded by |Sat[q, ψ]|+(|Sat[q, ϕ]|+2 · |→A|). Indeed:

1. Consider a cut between two intervals λj and λj+1. Assume λj = [bi; bi]

and λj+1 = (bi, bi+1). Moreover assume δ
ψ
q,λj

= (c0, c0) and δ
ψ
q,λj

=

(c1, c2). If there is a cut in bi, then c0 < c < c1. The shortest paths
enabled from bi do not exist from (bi, bi+1) and then these SPs start by
a sequence of action transitions and one of them (performed before any
delay and reset) have a guard x ≤ bi. This transition can only cut in bi
the intervals of Sat[q, ϕ]. The case λj = (bi; bi+1) and λj+1 = [bi+1, bi+1]
is similar.

2. Consider a cut inside an interval λj = (bi; bi+1). Then the cut occurs in

the decreasing part of δψq,λj
= (c1, c2) and we have c1 > c > c2. The cut

occurs in bi+1−(c−c2), and introduces a new (integer) constant. For the
valuations in the decreasing part, i.e. between bi+1 − (c1 − c2) and bi+1,
the shortest paths have delay transitions before any reset. This required
delay is due to a guard of the form x > k or x ≥ k along the SP. Such
a constraint induces the cut and only this one (in configurations of the
form (·, λj)).

Therefore a guard m < x < M may induce at most two cuts in Sat[q, ξ],
then |Sat[q, ξ]| ≤ |Sat[q, ψ]| + |Sat[q, ϕ]| + 2 · |→A|. And it creates at most
one new integer constant (this also holds for the other modalities) and this
entails B ≤ CstA + |→A| · |ξ|. Finally the complexity of the procedure is in
O(|VG| · |→G|), with |VG| ≤ |QA| · 2 · |B| and |→G| ≤ (|→A|+ 1) · |VG|. This
provides an algorithm in O(|QA|

2 · |→A|
3 · |ξ|2) for E U≤c .

ξ = EϕU≥c ψ: For building Sat[q,EϕU≥cψ], we use the same idea as for EϕU≤cψ

formula based on the graph G = (VG,→G, lG) but here we label nodes by
ϕ∧¬ψ, ϕ∧ψ and ¬ϕ∧ψ. We restrict ourself to nodes satisfying EϕUψ and
we introduce a new atomic proposition PSCC+(ϕ) in order to label every node
(q, λ) in G belonging to a strongly connected set of nodes satisfying ϕ and
where at least one edge is an abstract delay transition. Labeling states for
PSCC+(ϕ) can be done in time O(|G|) once they are labeled for ϕ.
We can now solve the original problem. There are two ways a state can
satisfy ξ:

– Either a path with loops is required so that a long enough duration is
reached: such a state verifies the CTL formula EϕUPSCC+(ϕ) since any G
state satisfies EϕUψ. This can be done in O(|VG|+ |→G|).

– Or a simple path is enough. Then we can use a (simple) variant of the
earlier shortest paths method, this times geared towards longest acyclic
paths (LAP). For this we just remove states labeled by PSCC+(ϕ), consider
states satisfying ¬ϕ∧ψ as final states and remove loops with null dura-
tions. The algorithm runs in O(|VG|+ |→G|) and we keep (sub-)intervals
whose LAP is above the threshold c.

Finally we build Sat[q, ξ] by merging the states of G satisfying EϕU≥c ψ. As
for labeling EϕU≤c ψ, the procedure may add new constants (in the second
case) and split intervals of Sat[q, ϕ] into several intervals in Sat[q, ξ] but
we can argue as in the previous case and show that the size of Sat[q, ξ] is
bounded by |Sat[q, ϕ]| + 2 · |→A|. The procedure runs in O(|VG| + |→G|),
with |VG| ≤ |QA| · 2 · |B|, B ≤ CstA + |→A| · |ξ| and |→G| ≤ (|→A|+ 1) · |VG|.
This gives an algorithm in O(|QA| · |→A|

2 · |ξ|).

ξ = AϕU≤c ψ: We reduce to the previous cases using the following equivalences

AϕU≤c ψ ≡ AF≤c ψ ∧ ¬E(¬ψ)U(¬ψ ∧ ¬ϕ)

AF≤c ψ ≡ AFψ ∧ ¬E¬ψU>c >.

ξ = AϕU≥c ψ: We use the equivalence AϕU≥c ψ ≡ AG<c (AϕU>0 ψ). And it is
easy to write a labeling procedure for AϕU>0 ψ over the same G-graph used
for EϕU≥c ψ: A node verifies AϕU>0 ψ iff it verifies AG≤0 ϕ, AϕUψ and after
the first abstract delay transition AϕUψ has to hold.

Strict subscripts: The modalities with < c or > c are treated as the previous
ones.

