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Abstract. We consider timed games extended with cost information,
and prove computability of the optimal cost and of ε-optimal memoryless
strategies in timed games with one clock. In contrast, this problem has
recently been proved undecidable for timed games with three clocks.

1 Introduction

An interesting direction of real-time model checking that has recently received
substantial attention is to extend and re-target timed automata technology to-
wards optimal scheduling and planning [1, 15, 9]. In particular, as part of this
effort, the notion of priced timed automata [6, 5] has been promoted as a useful
extension of the classical model of timed automata [4]. In this extended model
each location q is associated with a cost cq giving the cost of a unit of time spent
in q. Thus, each run of a priced timed automaton has an accumulated cost, based
on which a variety of optimization problems may be formulated.

Several of the established results concerning priced timed automata are con-
cerned with reachability questions. In [3] cost-bounded reachability was shown
decidable. [6] and [5] independently show computability of the cost-optimal reach-
ability for priced (or weighted) timed automata using different adaptations of
the so-called region technique. In [13, 15] the notion of priced zone is developed
allowing efficient implementation of cost-optimal reachability as witnessed by the
competitive tool UPPAAL Cora [16]. Also the problem of computing optimal in-
finite schedules (in terms of minimal limit-ratios) has been shown computable [8].
Finally cost-optimal reachability has been shown decidable in a setting with mul-
tiple cost-variables [14].

In this paper we consider the more challenging problem of the computation
of cost-optimal winning strategies for priced timed game automata, i.e. a game
where the controller tries to win at minimal cost and opponent tries to maxi-
mize the cost. Consider the priced timed game with the single clock x depicted
in Fig. 1. Here the (circle) locations c1 and c2 are controllable whereas (square)
locations u1 and u2 are uncontrollable with cost-rates being 3, 4, 1 and 1, respec-
tively. All four locations have x ≤ 1 as invariant. Besides transitions between



these four locations, additional transitions are indicated to (triangle) locations
for which the optimal costs of winning (for any value of x) are assumed to have
already been computed (we call those cost functions outside cost functions in
the sequel). Obviously, c1 and c2 have winning strategies for all values of x by
uniformly exiting to their respective outside locations (triangle), cout1 and cout2 .
However, this strategy is, clearly, suboptimal for both locations. Alternatively,
consider the superior strategy for c2 depicted in Fig. 2. that guarantees cost no
larger than depicted in the corresponding cost function. Then it can be shown
that this strategy guarantees the optimal cost.
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Fig. 1. Sample PTGA with outside cost func-
tions.
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Fig. 2. An optimal strategy in c2,
and the associated cost function.

In [12] the problem of computing cost-optimal winning strategies has been
studied and shown computable for acyclic priced timed games. Furthermore,
in [11] it is proven that computing optimal winning strategies for one-clock PTGA
with stopwatch cost (i.e. cost are either zero or one) is decidable. [2] and [10]
provide partial solutions to the general case of non-acyclic games: under the
assumption of certain non-Zenoness behaviour of the underlying priced timed
automata it is shown that it suffices only to consider strategies guaranteed to
win within some given number k of steps, or alternatively to unfold the given
game k times and reduce the problem to solving an acyclic game. To see how
restricted these results are, it may be observed that the priced timed game in
Fig. 1 does not belong to any of the above classes. In fact, in [11] it has recently
been shown that the problem of determining cost-optimal winning strategies for
priced timed games is not computable. Most recently, it has been shown that
this negative result holds even for priced timed (game) automata with no more
than three clocks [7].

In this paper we completely solve the computation of cost-optimal winning
strategies for arbitrary priced timed (game) automata with one clock : we of-
fer an algorithm for computing optimal costs, explain why optimal strategies
need not always exist, whereas memoryless ε-optimal strategies exist and can be
computed.



2 Definitions

We write x for the (unique) clock variable, and X = {x}. A clock constraint for
clock x is an expression of the form x ∈ I where I is an interval over the reals
with integer (or infinite) bounds which can have strict or non-strict bounds. As a
shortcut, we may use expressions like x ≥ 5 instead of x ∈ [5, +∞[. The set of all
clock constraints is denoted B(X ). That a valuation v : X → R+ satisfies a clock
constraint g is defined in a natural way (v satisfies x ∈ I whenever v(x) ∈ I),
and we then write v |= g. We denote by v0 the valuation that assigns zero to
clock x, by v + t (t ∈ R+) the valuation that assigns v(x) + t to x ∈ X .

A cost function is a piecewise affine function f : R+ → R+ ∪ {+∞} with
negative slopes. We also require that if {+∞} ∈ f((n, n+1)) for some integer n,
then f((n, n+1)) = {+∞}, and that f is continuous over all intervals (n, n+1).
We write CF for the set of all cost functions.

We define an extended notion of priced timed games, with outside cost func-
tions and urgent locations. Those extra features will be needed throughout the
proof. A 1-clock priced timed game with outside cost functions (PTGf for short)
is a tuple G = (Qc, Qu, Qf , Qurg, Qinit, fgoal, T, η, P ) where

– Qc is a finite set of controllable locations, Qu is a finite set of uncontrollable
locations. Those sets are disjoint, and we define Q = Qc ∪Qu;

– Qf is the set of final locations (it is disjoint from Q).
– Qurg ⊆ Qu indicates urgent uncontrollable locations;
– Qinit ⊆ Q is the set of initial locations;
– fgoal : Qf → CF assigns to each final location a cost function;
– T ⊆ Q× B(X )× 2X × (Q ∪Qf ) is the set of transitions ;
– η : Q→ B(X ) defines the invariants of each location;
– P : Q ∪ T → N is the cost (or price) function.

Standard (1-clock) priced timed games [2, 10] are PTGf with Qurg = ∅ and, for
any q ∈ Qf , fgoal(q)(R+) = {0} or {+∞}.

In the following, G will always refer to a PTGf , and we will not always rewrite
the corresponding tuple. Similarly, G′ will denote a PTGf whose components
are “primed”.

We assume (w.l.o.g., see [6]) that the clock is bounded, i.e., there exists an
integer M such that for every location q ∈ Q, η(q)⇒ x ≤M .

Let G be a PTGf . The semantics of G is given as a labeled timed transition
system T = (S, Sinit,→) where S ⊆ (Q ∪Qf )× R+ is the set of states3, Sinit =
Qinit×{v0} is the set of initial states, and the transitions relation→ ⊆ S×R+×S
is defined as:

1. (discrete transition) (q, v)
c
−→ (q′, v′) if q /∈ Qf and there exists (q, g, R, q′) ∈

T such that v(x) |= g, v′ = [R← 0]v, v′(x) |= η(q′), and c = P (q, g, R, q′);

2. (delay transition) (q, v)
c
−→ (q, v + t) if q /∈ Qurg ∪ Qf , and ∀0 ≤ t′ ≤ t,

v + t′ |= η(q), and c = t · P (q).

3 Formally, S ⊆ (Q ∪ Qf ) × (R+)X , but we identify v with v(x) here.



A run of G is a (finite) path in the underlying transition system. Given
T, U ⊆ S, we write4 RunG(T, U) for the set of runs of G issued from t ∈ T and
ending in u ∈ U . Given a run ̺ and a position v ∈ ̺ along that run, the prefix of ̺
ending in v is denoted by ̺|v. A run is maximal if either it is infinite, or no discrete
transition is possible (even after a delay transition). A maximal run is accepting

if it is finite and ends in a final location. Let ̺ = s0
c0−→ s1

c1−→ · · ·
cn−1

−−−→ sn

be a run. Its cost, denoted cost(̺), is either
∑n−1

i=0 ci if ̺ is not accepting, or
∑n−1

i=0 ci + fgoal(qn)(vn(x)), where (qn, vn) = sn if ̺ is accepting. An accepting
run is winning if it has finite cost.

Example. Reconsider the example depicted in Fig. 1. Here, a sample winning

run is ̺ = (c1, 0)
0
−→ (u1, 0)

0.4
−−→ (u1, 0.4)

0
−→ (c2, 0.4)

0.4
−−→ (c2, 0.5)

0
−→ (cout2 , 0.5)

which has cost cost(̺) = 0.4× 1 + 0.1× 4 + fgoal(c
out

2 )(0.5) = 1.9. �

A strategy is then a function σ : RunG(Q × R+, Qc × R+) → {λ} ∪ Q ∪ Qf .
Informally, a strategy tells in all controllable locations, what has to be done, and
the special symbol λ indicates to delay. A strategy σ is memoryless if σ(̺) = σ(̺′)
as soon as ̺ and ̺′ end in the same state.

Let σ be a strategy in G, and ̺0 a run in G ending in (q0, x0). A run ̺ =

(q0, x0)
c0−→ (q1, x1)

c1−→ · · ·
cn−1

−−−→ (qn, xn) is a (σ, ̺0)-run if for all delay- (or

discrete-) transitions (qi, xi)
ci−→ (qi+1, xi+1) where qi ∈ Qc, we have

– ∀x ∈ [xi, xi+1[, σ(̺0 · ̺|x) = λ,
– σ(̺0 · ̺|xi

) = qi+1.

where ̺0 · ̺ denotes the (usual) concatenation. In that case, we say that ̺
is compatible with σ after ̺0 (or that it is an outcome of σ after ̺0). We
write RunG,σ(̺0, U) for the set of such runs ending in U .

A strategy σ is said accepting after (run) ̺0 whenever all maximal runs in
RunG,σ(̺0) are accepting. If a strategy is not accepting from ̺0, we set its cost
in G after ̺0, CostG(σ, ̺0), to +∞. Otherwise its cost in G after ̺0 is given as:
CostG(σ, ̺0) = sup{cost(̺) | ̺ ∈ RunG,σ(̺0, Qf ×R+)}. Obviously, for any two
runs ̺0 and ̺1 ending in (q, x), the sets {CostG(σ, ̺0) | σ strategy in G} and
{CostG(σ, ̺1) | σ strategy in G} are equal. An accepting strategy σ after ̺0 is
winning if CostG(σ, ̺0) is finite. We define for every state s of G, the optimal
cost of winning from s as inf{CostG(σ, ̺0) | σ strategy in G} for some run ̺0

ending in s. We denote it OptCostG(s). If OptCostG(s) < +∞, the state s is said
winning in G. In that case, for every ε > 0, for every run ̺0 ending in s, there
exists a winning strategy σ s.t. OptCostG(s) ≤ CostG(σ, ̺0) < OptCostG(s) + ε,
and we say that σ is ε-optimal from ̺0. A strategy σ is optimal from ̺0 if
CostG(σ, ̺0) = OptCostG(s) where ̺0 ends in state s.

A strategy σ in G is (ε, N)-acceptable (with ε > 0, and N ∈ N) whenever:
(1) it is memoryless, (2) it is ε-optimal, (3) there exist N (consecutive) intervals
(Ii)1≤i≤N partitioning [0, 1] such that for every location q, for every 1 ≤ i ≤ N ,
for every integer α < M , the function x 7→ CostG(σ, (q, x)) is affine on every
interval α + Ii, and the function x 7→ σ(q, x) is constant on α + Ii.

4 In the sequel, we might omit the subscripts G when they are clear from the context.



3 Main result

The main result of this paper is that optimal cost is computable and that almost-
optimal memoryless strategies always exist and can be effectively computed. This
is summarized by the following theorem:

Theorem 1. Let G be a PTGf . Then for every location q in G, the function
x 7→ OptCostG((q, x)) is computable and piecewise-affine. Moreover, for every
ε > 0, there exists (and we can effectively compute) a strategy σ in G such
that σ is memoryless and ε-optimal in every state.

We will even prove a stronger result, which is that there exists N ∈ N such
that for every ε > 0, we can effectively compute an (ε, N)-acceptable strategy σ.
The rest of this paper is devoted to a proof of this result.
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There are PTGf for which no optimal strategies exist, as exemplified by
Fig. 3: from q0, the optimal cost is 1, but a winning strategy consists in delaying
in q0 for some duration δ > 0, yielding a cost of 1 + 9δ. This is why we compute,
in the general case, ε-optimal strategies. In the same way, as witnessed by Fig 4,
it might be the case that optimal strategies exist but require some amount of
memory: in the example of Fig 4, state (q0, x = 0) is winning with optimal cost 2,
but no memoryless strategy can achieve that cost for sure.

4 Simplifying Transformations

In this section, we first explain how to restrict to simpler games while preserving
the same optimal costs, and we then show how we can inductively compute
optimal cost on those simpler games. We also explain how to compute almost-
optimal strategies for those simpler games, and how to “lift” those strategies to
the original game.

Our transformations consist in two steps: (i) we restrict to PTGf where the
clock is bounded by 1 (denoted [0, 1]-PTGf ) (Section 4); (ii) we restrict to a
[0, 1]-PTGf without resetting transition (Section 4). For each transformation,
we prove that:

– the optimal cost in each state of the original game is identical to the optimal
cost in some corresponding state in the transformed game,



– we can derive an ε-optimal strategy in the original game from some ε′-
optimal strategy in the transformed game.

Section 5 is then devoted to computing the optimal cost and an almost-optimal
strategy in the simpler game. For the sake of simplicity, we assume here that there
are no discrete costs on transitions. A slight adaptation of the transformation
for removing resets can be given for handling discrete costs as well.

Restricting to a PTGf bounded by 1. The idea of this construction is to
reset the clock each time it reaches 1, and to record in the discrete structure
what should be the real integer part of the value of the clock (the clock will only
store the fractional part of its real value).

Let G be a PTGf . We build another PTGf G′ such that for every q′ ∈ Q′,
η′(q′) implies 0 ≤ x ≤ 1, and G′ is correct for computing optimal cost, in a sense
which will be made clear later.

As we have assumed that PTGf are bounded, we set M the constant bound-
ing G, and we define:

{

Q′
x = {q[α,α+1] | q ∈ Qx and 0 ≤ α < M} for every x ∈ {c, u, f, urg}

Q′
init = {q[0,1] | q ∈ Qinit}

The set of transitions T ′ is composed of the following transitions (if g is a guard,
g − α denotes the same guard translated by −α):











































q[α,α+1]
(g−α)∩(0≤x<1)
−−−−−−−−−−→ q′[α,α+1] if (q

g
−→ q′) ∈ T and α + 1 < M

q[M−1,M ]
(g−α)∩(0≤x≤1)
−−−−−−−−−−→ q′[M−1,M ] if (q

g
−→ q′) ∈ T

q[α,α+1]
(g−α)∩(0≤x<1)
−−−−−−−−−−→

x:=0
q′[0,1] if (q

g
−−−→
x:=0

q′) ∈ T and α + 1 < M

q[M−1,M ]
(g−α)∩(0≤x≤1)
−−−−−−−−−−→

x:=0
q′[0,1] if (q

g
−−−→
x:=0

q′) ∈ T

q[α−1,α]
x=1
−−−→
x:=0

q[α,α+1] if 0 < α < M

The invariant η′ is defined by η′(q[α,α+1]) = (0 ≤ x ≤ 1) ∧ (η(q) − α) if q ∈ Q.
The cost function P ′ is defined by P ′(q[α,α+1]) = P (q). The function f ′

goal is
defined by f ′

goal(q[α,α+1])(x) = fgoal(q)(x + α) for every 0 ≤ x ≤ 1.

Note that all guards and invariants of G′ are included in [0, 1], we say that
G′ is a [0, 1]-PTGf .

We define f the function which maps every state (q, x) of G onto the state
(q[α,α+1], x−α) of G′ such that 0 ≤ x−α ≤ 1 and x < M integer implies x = α.
We now state the following correctness result.

Proposition 2. For every state (q, x) in G, OptCostG(q, x) = OptCostG′(f(q, x)).
Moreover, for every ε > 0 and N ∈ N, given an (ε, N)-acceptable strategy in G′,
we can compute an (ε, N)-acceptable strategy in G, and vice-versa.



Removing resetting transitions from SCCs. We have restricted to games
with a single clock. A strong property of this model is that each time a resetting
transition is taken, then the very same state is visited (because the valuation is
each time v0). The construction for removing resetting transitions takes advan-
tage of this property.

Let G be a PTGf with n resetting transitions. From the previous reduction,
we may assume that all the invariants and guards in G imply that 0 ≤ x ≤ 1.
We build a PTGf G′, made of n+1 copies of G, such that no strongly connected
component (SCC for short) of G′ contains a resetting transition.

We thus define Q′
c = Qc × {0, ..., n}, Q′

u = Qu × {0, ..., n}, and Q′
f = (Qf ×

{0, ..., n}) ∪ {r}. A location (q, i) ∈ Q′
u is urgent iff q ∈ Qurg. We let Q′

init =
Qinit × {0}. The outside cost functions are given by f ′

goal((q, i)) = fgoal(q), and
fgoal(r) = +∞. The invariant is given by η′((q, i)) = η(q) for q ∈ Q. Transitions
are defined as follows:















((q, i)
g
−→ (q′, i)) ∈ T ′ if (q

g
−→ q′) ∈ T and i ≤ n

((q, i)
g
−−−→
x:=0

(q′, i + 1)) ∈ T ′ if (q
g
−−−→
x:=0

q′) ∈ T and i < n

((q, n)
g
−→ r) ∈ T ′ if (q

g
−−−→
x:=0

q′) ∈ T and i = n

Last, we set P ′((q, i)) = P ′(q) for every q ∈ Q, and the price of each transition
of T ′ defined above is the price of the corresponding transition in T .

Proposition 3. For every state (q, x) in the game G, OptCostG((q, x)) equals
OptCostG′(((q, 0), x)). Moreover, for every ε′ > 0 and N ′ ∈ N, given an (ε′, N ′)-
acceptable strategy in G′, we can compute a (2ε′, N ′)-acceptable strategy in G.

We have thus reduced our problem to computing optimal cost and almost-
optimal winning strategies in G′. In G′, this can be done by first computing it
in the nth copy of G, and then in the (n− 1)th copy of G, etc.

5 Computing almost-optimal strategies

We have restricted our problem to [0, 1]-PTGf without resets. We can also easily
restrict to such PTGf containing only one SCC: if we can compute the optimal
costs and an (ε, N)-acceptable strategy on an SCC, we will be able to handle
the general case by working first on the deepest SCC, and then replace it by the
corresponding outside function (and an (ε, N)-acceptable strategy).

Thus, we now assume that we only work on a [0, 1]-PTGf without resets and
based on an SCC. We prove the following result, which will imply Theorem 1.

Theorem 4. Let G be a [0, 1]-PTGf without reset such that (Qc ∪Qu, T ) is an
SCC (or contains only one location). Then:

H1. OptCostG(q, x) is computable for every q ∈ Q and every x ∈ [0, 1];
H2. for every location q ∈ Q, x ∈ [0, 1] 7→ OptCostG(q, x) is a cost function

whose finitely many segments either have slope −c where c ∈ P (Q), or are
fragments of the outside cost functions of G;



H3. there exists an integer N such that, for any ε > 0, we can compute an
(ε, N)-acceptable strategy in G for every q ∈ Q and every x ∈ [0, 1].

The rest of this section is devoted to the proof of this theorem, which is by
induction on the number of non-urgent locations in G. First we prove the base
case of the induction, that is when the game is only composed of urgent locations,
or of a single controllable location.

– Proving properties H1 and H2 in the case where G contains only one location
is handled straightforwardly, by combining the outside cost functions of G
with the cost rate of the location. Property H3 requires more care. Let q be
a (controllable) location with a bunch of outside cost functions {fgoal(q

′) |
q′ ∈ Qf}. Define the function s : x → min{fgoal(q

′, x) | q′ ∈ Qf}. Then
OptCostG(q, x) = infx≤x′≤1 P (q) · (x′− x) + s(x′). Let ε > 0. We then define
the strategy σ as follows:

σ(q, x) =























q′ if OptCostG(q, x) = fgoal(q
′)(x)

λ if OptCostG(q, x) < s(x) and either s(1) < +∞
or x ≤ 1− ε/(2P (q))

q′ if OptCostG(q, x) < s(x), s(1) = +∞, 1− ε/(2P (q)) < x < 1,
and limx→1− fgoal(q

′)(x) = limx→1− s(x)

It is not difficult to check that σ is (ε, N)-acceptable for some N which is
independent of ε.

– The case where G contains an SCC with only urgent (thus uncontrollable)
locations is also straightforward, since the opponent can force the game to
never reach a final location, and the optimal cost is then +∞. If the game
is composed of a single urgent location, then this is also easy.

We now assume that G is an SCC composed of at least two locations, n of
which are non-urgent. We select one of the non-urgent locations having least
cost, and denote it with qmin, and, depending on the nature (controllable or not)
of qmin, we explain how we prove that Theorem 4 holds for G if it holds for SCCs
having at most (n− 1) non-urgent locations.

Case: qmin is controllable. For handling this case, we will prove that the
rough intuition that there is no need to delay twice in qmin, but we better delay
longer in qmin is indeed correct.

From the game G, we construct a game G′, made of two copies of G, such
that each SCC of the new game contains one location less (see Fig. 5). We define
Q′

c = (Qc \ {qmin})× {0, 1} ∪ {qmin}, Q′
u = Qu × {0, 1}, Q′

f = Qf × {0, 1} ∪ {r},
Q′

urg = Qurg × {0, 1}, Q′
init = Qinit × {0}, f ′

goal((q, i)) = fgoal(q) if q ∈ Qf , and
f ′
goal(r) = +∞, η′((q, i)) = η(q), η′(qmin) = η(qmin), P ′((q, i)) = P (q) for every

(q, i) ∈ Q′
c ∪Q′

u. The set of transitions is

T ′ = {(q, i)
g,R
−−→ (q′, i) | q

g,R
−−→ q′, and q, q′ 6= qmin}

∪ {(q, 0)
g,R
−−→ qmin, (q, 1)

g,R
−−→ r | (q

g,R
−−→ qmin) ∈ T}

∪ {qmin
g,R
−−→ (q′, 1) | (qmin

g,R
−−→ q′) ∈ T}.



G
G′

qmin

q (q,0)

qmin

(q,1)

+∞
r

Fig. 5. Case qmin (in grey) controllable

We prove the following lemma, which establishes properties H1 and H2.

Lemma 5. For every (q, x) ∈ (Q r {qmin}) × [0, 1], we have OptCostG(q, x) =
OptCostG′((q, 0), x). For every x ∈ [0, 1], OptCostG(qmin, x) = OptCostG′(qmin, x).

It remains to prove property H3. We fix the integer N ′ for G′. We fix some
ε > 0, and take ε′ = ε

3 . We take σ′ an (ε′, N ′)-acceptable strategy in G′. We
then define σ as follows:

σ(q, x) =

{

σ′((q, 1), x) if CostG′(σ′, ((q, 1), x)) ≤ OptCostG′(qmin, x)
σ′((q, 0), x) otherwise

(1)
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uout
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Fig. 6. Running example after unwinding.
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Fig. 7. Optimal costs.

Example. Returning to the running example of Fig. 1 with u1 and u2 urgent,
performing the above transformation with respect to c1 gives the PTGf depicted
in Fig. 6. The optimal cost functions are depicted in Fig. 7 and the resulting
winning strategy for c2 is, according to (1), the strategy of (c2, 1) when x ≤ 1.1

3
and (c2, 0) otherwise. �

Obviously, the strategy σ is memoryless. We need to establish that the func-
tion x 7→ CostG(σ, (q, x)) consists of at most N pieces, and that σ is ε-optimal.

Proposition 6. Strategy σ is winning and there exists a fixed (independant of ε)
integer N such that σ is (ε, N)-acceptable.



G G′

G′′

qmin

Fig. 8. When it is uncontrollable, qmin is made urgent (in dash line here).

Case: qmin is uncontrollable. The intuition is that the opponent will prefer
delays in other locations than qmin whenever possible. We attempt to enforce
this by a transformation of the game where location qmin is urgent, as depicted
in Fig. 8. Formally, given a [0, 1]-PTGf without resets G, we define G′ with
Q′

urg = Qurg ∪ {qmin} and Q′
u = Qu\{qmin}.

Obviously enough, since we restrict the possible moves for the opponent in G′,
we have for every state (q, x), OptCostG′(q, x) ≤ OptCostG(q, x).

However, the converse inequality is not correct over [0, 1], and we will need a
more complex construction to handle this case. We now explain how to iteratively
compute the optimal costs in G. Fig. 9 gives an overview of the computation
described below.

evu

fi

−P (qmin)

e

fi

e′ = uv′u′

f ′
i

Fig. 9. Successive computations when qmin is uncontrollable

Clearly, we can compute OptCostG(qmin, 1) (indeed, OptCostG(qmin, 1) =
OptCostG′(qmin, 1), since when x = 1, time cannot elapse any more and the same
moves are available in G′ and in G). This initializes our iterative computation.

Now, assume we can compute OptCostG(qmin, e) for some e ∈ [0, 1]. We can
apply the induction hypotheses H1—H3 to G′. In particular, f : x ∈ [0, e] 7→
OptCostG′(qmin, x) is a cost function satisfying the requirements of item H2.
Writing f1, ..., fn for the successive affine functions constituting f , we pick the
smallest index i such that for every j > i, function fj has slope less than or
equal to −P (qmin). If i > 0, we note [u, v] the domain of fi (see Fig. 9).

Lemma 7. If i = 0, for all (q, x) ∈ Q× [0, e], OptCostG(q, x) = OptCostG′(q, x).
If i > 0, for all (q, x) ∈ Q× [v, e], OptCostG(q, x) = OptCostG′(q, x).

We now explain how to compute OptCostG(qmin, x) for x ∈ [u, v]; we prove
the following lemma:



Lemma 8. If i > 0, then for all (q, x) ∈ Q×[u, v], we have OptCostG(qmin, x) =
(v − x)P (qmin) + f(v).

The optimal cost in states (q, x) with x ∈ [u, v] can then be computed by
considering the PTGf G′′, restricted to x ∈ [u, v], and obtained from G′ by
making qmin a goal location with cost function equal to x 7→ OptCostG(qmin, x),
which is then viewed as an outside cost function, see Fig. 9.

We can then repeat the procedure above on the interval [0, u] (i.e. by set-
ting e = u): compute f ′ : x 7→ OptCostG′(qmin, x) with x ∈ [0, u], select an
interval [u′, v′] where f ′

i has slope larger than or equal to −P (qmin), and so on,
replace that part with an affine function with slope −P (qmin), and continue with
the interval [0, u′]. We now explain why this process terminates: since they have
slopes strictly greater than −P (qmin), fi and f ′

i are fragments of outside cost
functions, according to hypothesis H2. If they have different slopes, then they are
obviously parts of two different fragments of outside cost functions. If they have
the same slopes, then they are fragments of two different parts of outside cost
functions, since they are joined by affine functions with slopes less than (or equal
to −P (qmin)). Since there are only finitely many affine functions constituting the
outside cost functions, our procedure terminates.

At each step of the procedure above, we can also compute (ε, N)-acceptable
strategies, and merge them.

6 Conclusion

In this paper we have proven that optimal cost for arbitrary priced timed games
with one clock is a computable problem, and that ε-optimal memoryless strate-
gies may effectively be obtained. The complexity of our procedure is quite high,
running in 3-EXPTIME, while the best known lower bound for this problem is
PTIME. Our future works of course include tightening these bounds.

As a consequence of our result it may be shown that the iterative semi-
algorithm proposed in [10] always terminates for priced timed games with one
clock. Cost functions costiG are inductively defined, which for any location q ∈ Q
and any clock value v, give the optimal cost of winning from the state (q, v) within
at most i steps (we count the number of steps in a run ρ by the number of delay-
and-action fractions). Now Theorem 4 ensures that we can find a fixed N such
that for any ε > 0 we can compute an (ε, N)-acceptable strategy. In particular
this guarantees that we can find ε-optimal strategies which are guaranteed to
win within N · |Q| steps for any ε > 0. Consequently, 〈costiG〉

∞
i=1 (the semi-

algorithm of [10]) converges after at most N · |Q| iterations to the optimal cost
of winning. A prototype implementation of this iterative algorithm is available
at http://www.cs.aau.dk/∼illum/tools/1ptga/.

As future work we would like to determine what happens with priced timed
games using two clocks, but this seems really difficult as our approach heavily
relies on the fact that there is only one clock.
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