
HAL Id: hal-01194604
https://hal.science/hal-01194604

Submitted on 7 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Cost of Punctuality
Patricia Bouyer, Nicolas Markey, Joël Ouaknine, James Worrell

To cite this version:
Patricia Bouyer, Nicolas Markey, Joël Ouaknine, James Worrell. The Cost of Punctuality. Proceedings
of the 22nd Annual IEEE Symposium on Logic in Computer Science (LICS’07), 2007, Wroc, Poland.
pp.109-118, �10.1109/LICS.2007.49�. �hal-01194604�

https://hal.science/hal-01194604
https://hal.archives-ouvertes.fr

The Cost of Punctuality

Patricia Bouyer1,2,∗ Nicolas Markey1 Joël Ouaknine2 James Worrell2

1 LSV, CNRS & ENS Cachan, France
{bouyer,markey}@lsv.ens-cachan.fr

2 Oxford University, UK
{joel,jbw}@comlab.ox.ac.uk

Abstract

In an influential paper titled “The Benefits of Relaxing
Punctuality” [2], Alur, Feder, and Henzinger introduced
Metric Interval Temporal Logic (MITL) as a fragment of
the real-time logic Metric Temporal Logic (MTL) in which
exact or punctual timing constraints are banned. Their
main result showed that model checking and satisfiability
for MITL are both EXPSPACE-Complete.

Until recently, it was widely believed that admitting even
the simplest punctual specifications in any linear-time tem-
poral logic would automatically lead to undecidability. Al-
though this was recently disproved, until now no punctual
fragment of MTL was known to have even primitive recur-
sive complexity (with certain decidable fragments having
provably non-primitive recursive complexity).

In this paper we identify a ‘co-flat’ subset of MTL that
is capable of expressing a large class of punctual specifi-
cations and for which model checking (although not satis-
fiability) has no complexity cost over MITL. Our logic is
moreover qualitatively different from MITL in that it can
express properties that are not timed-regular. Correspond-
ingly, our decision procedures do not involve translating
formulas into finite-state automata, but rather into certain
kinds of reversal-bounded Turing machines. Using this
translation we show that the model checking problem for
our logic is EXPSPACE-Complete

1 Introduction

In the formal study of real-time systems, it has long been
accepted that there is an unavoidable and substantial trade-
off between the expressiveness of a specification formal-
ism and the feasability of the associated verification task.
This tension figures most prominently in the case of Metric
Temporal Logic (MTL), a timed extension of Linear Tem-
poral Logic (LTL), in which the temporal operators are con-
strained by time intervals.

∗Partly supported by a Marie Curie fellowship.

MTL was introduced almost two decades ago by Koy-
mans [14], and has since been extensively studied. Unfor-
tunately, the model-checking and satisfiability problems for
MTL over dense time are undecidable [3, 20], an extreme
case of infeasibility. Researchers were therefore led to seek
relaxations of the framework in a search for tractability.
Alur and Henzinger, for example, proved that model check-
ing MTL over discrete time was EXPSPACE-Complete [4].
Since untimed LTL model checking is already PSPACE-
Complete, their result clearly sat towards the desirable end
of the feasibility spectrum. The price they paid, however,
was to renounce the density of time.

Accommodating time density, unfortunately, appeared to
be problematic: it was widely held at the time that any
formalism in which exact or punctual timing constraints
could be expressed would automatically be undecidable.
Such constraints correspond to allowing singleton intervals
in MTL temporal operators, and enable one to specify, for
example, that a particular event is to be followed exactly
one time unit later by another one. In their seminal pa-
per titled “The Benefits of Relaxing Punctuality” [2], Alur,
Feder, and Henzinger therefore considered a fragment of
MTL, called Metric Interval Temporal Logic (MITL), which
syntactically bans punctual timing constraints. Their main
achievement was to show that the model-checking and sat-
isfiability problems for MITL are EXPSPACE-Complete.
The proof they gave, in which MITL formulas are first trans-
formed into timed automata, was quite complicated. Nev-
ertheless, this work was influential as it firmly established
MITL as the most important fragment of Metric Temporal
Logic over dense-time having a feasible model-checking
problem. In recent years, new or simplified proofs of the
EXPSPACE-Completeness of MITL have appeared in the
literature (e.g., [23, 13, 16]).

Recently, it was discovered that punctuality and dense
time do not after all necessarily lead to undecidability,
although the complexity of the various decidable frag-
ments studied was either non-primitive recursive or non-
elementary [19, 21, 22]. From a feasibility point of view,
such improvements, while significant, remained unsatisfac-
tory.

1

The aim of the present paper was therefore to investigate
more thoroughly the intrinsic cost of allowing punctuality
in a dense-time setting. Our main reasults concern two new
‘punctual’ fragments of Metric Temporal Logic, Bounded-
MTL and coFlat-MTL.

Bounded-MTL is derived from MTL by requiring all
time-constraining intervals to have finite length. As a re-
sult, the truth or falsity of a Bounded-MTL formula on a
given timed word is determined by an initial segment of
the word whose duration depends solely on the formula.
We are then able to show that the model-checking and sat-
isfiability problems for Bounded-MTL over dense time is
EXPSPACE-Complete.

Bounded-MTL is therefore a punctual fragment of Met-
ric Temporal Logic having precisely the same complexity as
MITL. The two fragments, however, differ in important re-
spects. A first observation is that, at a syntactic level, MITL
restricts MTL in banning constraining intervals that are ‘too
small’, whereas Bounded-MTL prohibits intervals that are
‘too large’. Semantically, Bounded-MTL thus cannot ex-
press invariant properties, required to hold forever, contrary
to MITL. In that respect, the expressiveness of Bounded-
MTL is quite restricted.

Thankfully, it is possible to incorporate invariance into a
substantially larger fragment of MTL. The principal contri-
bution of this paper concerns the logic coFlat-MTL, which
subsumes LTL, Bounded-MTL, and is closed under invari-
ance. Our main result is that model checking this highly
expressive punctual fragment of MTL is EXPSPACE-
Complete. Perhaps surprisingly, satisfiability of coFlat-
MTL, on the other hand, turns out to be undecidable.

Our proof of EXPSPACE membership proceeds by
translating Flat-MTL formulas into alternating timed au-
tomata, and in turn simulating runs of these using special
kinds of reversal-bounded Turing machines, for which ter-
mination can be shown to be in EXPSPACE. By contrast,
MITL formulas are analysed by translation into timed au-
tomata, and, unlike Bounded-MTL and coFlat-MTL, can
therefore only give rise to timed-regular languages.

MITL and coFlat-MTL have incomparable expressive-
ness. However, it can be argued that coFlat-MTL comprises
virtually all the specifications that one could reasonably be
interested to model check in practice. One might therefore
view the dense-time logic coFlat-MTL as the first signifi-
cant fragment of MTL to combine high expressiveness and
punctuality together with model-checking feasibility.

2 Channel Automata

Before presenting our real-time modelling framework,
we introduce a class of discrete machines that ultimately
underly our model-checking algorithm for coFlat-MTL.

A channel automaton is a finite-state automaton

equipped with a single unbounded fifo channel (or queue).
The transitions of the automaton either write messages to
the tail of the channel or read messages from the head of
the channel. This model is easily seen to be Turing pow-
erful [8]. In this paper we consider a class of channel au-
tomata with two extra primitives: global renaming and oc-
currence testing. The former allows a transition to simulta-
neously rename all the letters on the channel according to
some renaming relation, including the possibility of delet-
ing letters. The latter allows a transition to be guarded by
the predicate that some letter not appear on the channel.

Given an alphabet Σ, let Σε denote Σ ∪ {ε}, where ε
represents the empty word.

Definition 1. A Channel Automaton with Renaming
and Occurrence Testing (CAROT) is a tuple C =
(S, s0,Σ,∆, F), where S is a finite set of control states,
s0 ∈ S is the initial control state, F ⊆ S is a set of ac-
cepting control states, Σ is a finite channel alphabet and
∆ ⊆ S × Op × S is the set of transition rules, with Op =
{σ!, σ? | σ ∈ Σ}∪{zero(σ) | σ ∈ Σ}∪{R | R ⊆ Σ×Σε}
the set of operations. Given a rule τ ∈ ∆, we denote the
corresponding operation op(τ). Intuitively, zero(σ) ∈ Op
guards against the occurrence of σ in the channel, and
R ∈ Op is interpreted as a global renaming (where renam-
ing to ε corresponds to deletion).

A global state of C is a pair γ = (s, x), where s ∈ S is
the control state and x ∈ Σ∗ is the channel contents. The
rules in ∆ induce a transition relation on the set of global
states according to the following table, where, given x =
x1 . . . xn ∈ Σ∗ and R ⊆ Σ × Σε, R(x) def= {y1 · · · yn ∈
Σ∗ : xi R yi}.

Rule Transition
(s, σ!, t) (s, x)→ (t, x · σ)
(s, σ?, t) (s, σ · x)→ (t, x)

(s, zero(σ), t) (s, x)→ (t, x), if σ 6∈ x
(s,R, t) (s, x)→ (t, y), if y ∈ R(x)

Assume that Σ always contains a special symbol B,
called the end-of-channel marker. A computation of C is
a (finite or infinite) sequence of transitions γ0 → γ1 →
γ2 → · · · with γ0 = (s0,B). A finite computation is ac-
cepting if it ends in an accepting state γn.

To aid our analysis of computations, we make the follow-
ing (harmless) assumption about C. We suppose that given
consecutive rules (s, op1, t) and (t, op2, u), op1 = B? iff
op2 = B!: roughly speaking, this ensures that there is al-
ways a unique copy of B on the channel. This restriction
allows us to use the end-of-channel marker to measure the
number of cycles of the channel during a computation. Intu-
itively a segment of the computation during whichBmoves
from the tail of the channel to the head of the channel in-
volves a complete cycle of the channel. Formally we define

2

s b! s b! s R t B? u B! v
b? v c? s a! s b! s R t B? u B! v

a? v c? s b! s R t B? u B! v
c? s R u B? u B! v

Fig. 1. Computation table

s b! s b! s R t B? u u u B! v v v v v v v
v b? v c? s a! s b! s R t B? u B! v v v v v
v v v v v a? v c? s b! s R t B? u B! v v v
v v v v v v v v v c? s R u u u B? u B! v

Fig. 2. Computation table with sliding window

cycles(%) to be the number of transitions in % with operand
B!. This measure is similar to the notion of head reversals
for Turing machines.1

Definition 2. The cycle-bounded reachability problem for
CAROTs is as follows:
Instance: A CAROT C and a cycle bound N .
Question: Does C have an accepting computation % with
cycles(%) 6 N?

In the channel automaton C below, let R be the relation
that nondeterministically renames b to either b or c.

C : s t u v

a!,b!

R B? B!

a?,b?

c?

Figure 1 represents a computation of C in tabular form.
Each row of the table represents a cycle of the channel, and,
reading left-to-right, it records the sequence of transitions
during that cycle. The most important property of the table
is that the spacing is arranged so that an operation that reads
a message is placed directly below the operation that origi-
nally wrote the message, necessarily in the previous cycle of
the channel.2 In Figure 1 matching pairs of reads and writes
are indicated by rectangular boxes. Because of global re-
naming, the corresponding read and write events need not
refer to the same element of Σ. For instance, in Figure 1, a
write-event b! is sometimes aligned with a read-event c?.

The length of the computation table (i.e., the number
of columns) is at least the maximum length of the chan-
nel during the corresponding computation. It is easy to see
that this can be exponential in the value of the cycle bound.
(Consider a machine that repeatedly reads one copy of σ

1Formally, it can be shown that an N -cycle-bounded CAROT can sim-
ulate an N -reversal-bounded single-tape Turing machine, and vice-versa.

2To accommodate global deletion in such a table (i.e., renaming to ε),
we postulate a self-loop (s, ε?, s) for each control state s of C.

and writes two copies of σ.) However we describe a pro-
cedure to guess the existence of a computation table using
only polynomial space in the value of the cycle bound. The
first step is to fill in the blank spaces in the table by repeat-
ing the immediately preceding control state; for example,
starting from Figure 1 we obtain the table in Figure 2.

A nondeterministic procedure for guessing and verify-
ing such a table involves storing only part of the table in
memory at any one time. Imagine a sliding window of di-
mension 3× h, where h is the table height (i.e., the number
of rows). The window represents the part of the table in
view at any time; it starts at the left end and is moved one
place to the right with each phase of the procedure. Given
a particular view, a phase of the procedure checks that the
transitions therein are consistent with the control structure
of C. For instance, in Figure 2, while viewing the leftmost
window it is checked that (s, b!, s), (v, b?, v) ∈ ∆. Some-
what more subtly the corresponding read and write events
in the current view must be consistent with the zero testing
and renaming in the rest of the table. For instance, in Fig-
ure 2, again in the left-most window, the justification of the
vertically aligned b! and b? operations is that between the
occurrence of these two operations b was neither renamed
nor zero-tested.

In general, what is required is to store in memory the
cumulative effect of the zero tests and renaming in the part
of the table not currently in view. To this end, we associate
with each rule τ ∈ ∆ a relation Rτ on Σε according to
the value of op(τ). The table below shows this association,
where Id is the identity relation on Σε.

op(τ) σ!, σ? zero(σ) R

Rτ Id Id− {(σ, σ)} R ∪ {ε, ε}

Now suppose that on row i of the computation table
the sequence of transition rules is τ1, τ2, . . . , τn, and that
τj is the transition currently in view. Then the sliding-
window procedure stores in memory a pair of relations Lefti
and Righti on Σε, where Lefti = Rτj ◦ · · · ◦ Rτ1 and
Righti = Rτn◦· · ·◦Rτj+1 . Note that Righti must be guessed
since it refers to the part of the table to the right of the cur-
rent view, which has not been seen yet. The correctness
criterion on the current view is that if σ, σ′ ∈ Σ are verti-
cally aligned, with σ! on row i and σ′? on row i + 1, then
σ (Lefti+1 ◦ Righti) σ

′. Finally, observe that it is straight-
forward to verify the consistency of the guessed value of
Righti from one view to the next.

Theorem 3. The cycle-bounded reachability problem for
CAROTs is solvable in polynomial space in the size of the
channel automaton and the value of the cycle bound.

3

3 Metric Temporal Logic

In this section we formally define the syntax and seman-
tics of Metric Temporal Logic. Following [10, 11, 12, 25, 4,
5], among others, we interpret the logic over timed words:
ω-sequences of events with associated timestamps.3

Definition 4. The syntax of Metric Temporal Logic
(MTL) [14] is defined by the following grammar:

MTL 3 ϕ ::= σ | ¬σ | ϕ∨ϕ | ϕ∧ϕ | ϕUI ϕ | ϕ ŨI ϕ

where σ ranges over a finite set of events Σ and I is an
interval of R+ with bounds in N ∪ {∞}.

MTL formulas are interpreted over timed words: a timed
word w is an infinite sequence (σi, ti)i∈N where σi ∈ Σ
and ti ∈ R+ for each i, and such that the sequence (ti)i∈N
is strictly increasing and diverges to infinity.

Definition 5. Let w = (σi, ti)i∈N be an infinite timed word,
and k ∈ N. The (pointwise) semantics of MTL is defined
recursively as follows (we omit Boolean operations):

w, k |= σ ⇔ σk = σ

w, k |= ϕUI ψ ⇔ ∃i > 0. w, k + i |= ψ, tk+i − tk ∈ I
and ∀0 < j < i, w, k + j |= ϕ

w, k |= ϕ ŨI ψ ⇔ w, k |= ¬
(

(¬ϕ) UI (¬ψ)
)
.

If w, 0 |= ϕ, we write w |= ϕ.

Additional operators, such as t (true), f (false), ⇒, ⇔,
F, G and X, are defined in the usual way: FI ϕ ≡ t UI ϕ,
GI ϕ ≡ f ŨI ϕ, and XI ϕ ≡ f UI ϕ. We also use pseudo-
arithmetic expressions to denote intervals. For example,
‘= 1’ denotes the singleton {1}.

Let us point out that the main results of this paper also
hold under a weakly monotonic semantics for time (in
which the timestamps are merely nondecreasing), as well
as under a non-strict semantics for temporal operators (in
which the present time point is included).

3.1 Satisfiability and model checking

We consider the following two fundamental questions
for MTL and various fragments thereof:

• The satisfiability problem, asking whether a given
MTL formula ϕ is satisfiable, i.e., whether w |= ϕ for
some infinite timed word w over Σ;

3This is the so-called pointwise semantics. Another semantics, interval-
based, is interpreted over continuous signals. See e.g. [11, 23] for details.
As noted in [11], the known complexity results for MITL hold both in the
interval-based and in the pointwise semantics.

• The model-checking problem, asking whether a given
timed automaton A satisfies a given MTL formula ϕ,
i.e., whether all timed words accepted by A satisfy ϕ
(see [1] for details). We writeA |= ϕ when the answer
is positive.

Among others, we identify the following syntactic frag-
ments of MTL. Linear Temporal Logic (LTL) can be con-
sidered as the fragment of MTL in which modalities are not
constrained (i.e., where R+ is the only constraining inter-
val). Metric Interval Temporal Logic (MITL) is the frag-
ment of MTL where punctuality is not allowed (i.e., where
interval constraints are not singletons). Bounded-MTL is
the fragment of MTL in which all interval constraints have
finite length.

MITL was introduced in [2], motivated by the role played
by punctuality in the undecidability proof for MTL. The
main result of [2] was that model checking and satisfiability
for MITL are EXPSPACE-Complete. As we will see, these
problems are also EXPSPACE-Complete for Bounded-
MTL. This is somewhat surprising in view of the following
example.

Example 6. Let the variability of a timed word be the max-
imum number of events that occur in any one time unit. We
exhibit a family of Bounded-MTL formulas {ϕn}n∈N such
that the size of ϕn is linear in n, but the variability of any
timed word satisfying ϕn is at least 22n

, i.e., doubly expo-
nential in n. We define ϕn ≡ a ∧ ϕD ∧ G[0,2n] ϕD, where
ϕD ≡ (a → F=1 (a ∧ X 61b)) ∧ (b → F=1 (a ∧ X 61b)).
If % |= ϕn, then the variability of % must (at least) double
every time unit over the first 2n time units.

Observe that while Bounded-MTL permits punctual for-
mulas, it disallows unconstrained modalities. In particular,
Bounded-MTL is not suitable to express invariance—the
most basic type of temporal specification—and it does not
subsume LTL (either syntactically or semantically). Intu-
itively, Bounded-MTL is only suitable for expressing time-
bounded specifications. To remedy this deficiency we in-
troduce Flat-MTL as the fragment of MTL generated by the
grammar:

Flat-MTL 3 ϕ ::= σ | ¬σ | ϕ ∨ ϕ | ϕ ∧ ϕ |
ϕUJ ϕ | ψUI ϕ | ϕ ŨJ ϕ | ϕ ŨI ψ

where J ranges over the set of bounded intervals, I over
the set of all intervals, and the underlined formula ψ ranges
over LTL.

Notice immediately that Flat-MTL subsumes both LTL
and Bounded-MTL, however it is not closed under nega-
tion. In fact, the most natural way to state our main results
is in terms of the dual logic, which we call coFlat-MTL.
This consists of the duals (i.e., the negations) of Flat-MTL

4

formulas. Correspondingly, the syntactic restriction deter-
mining coFlat-MTL as a subset of MTL is dual to that deter-
mining Flat-MTL: we require that, if I is unbounded, then
formulas appearing on the right of UI and on the left of ŨI
be LTL formulas.

Like Flat-MTL, coFlat-MTL includes both LTL and
Bounded-MTL. However, crucially, it is also closed un-
der GI for unbounded I , since GI ϕ ≡ f ŨI ϕ. Thus we
have the slogan:

Bounded-MTL + Invariance ⊆ coFlat-MTL .

This means that one can express a much more useful class
of specifications in coFlat-MTL than in Bounded-MTL. In
particular, a wide variety of safety specifications can be ex-
pressed in the form Gϕ, where ϕ is in Bounded-MTL.

The main result of this paper is that the model-checking
problem for coFlat-MTL is EXPSPACE-Complete. This
last problem can be understood as a slight generalisation of
the satisfiability problem for the dual logic Flat-MTL.

Example 7. The formula G (req ⇒ F[0,1] (acq ∧ F=1 rel))
says that every time the lock is requested, it is acquired
within one time unit, and released after exactly one fur-
ther time unit. This formula is in coFlat-MTL, but is not
in Bounded-MTL (due to the unconstrained G) and is not
in MITL (due to the punctual F=1).

Given a timed automaton A, to find a violation of the
above formula one must search for a run ofA such that after
some request event, every acquire event in the subsequent
time unit fails to be followed after exactly one time unit by
a release event. Intuitively, over a dense-time semantics,
this task seems to require ‘remembering’ a potentially un-
bounded amount of information. Thus our EXPSPACE-
Completeness result for model checking coFlat-MTL may
appear surprising.

For comparison with previous work we describe one
more fragment of MTL, called Safety-MTL [19, 21]. This
is determined by the restriction that the Until modality
only be constrained by bounded intervals. Like coFlat-
MTL, Safety-MTL includes Bounded-MTL and is closed
under G , but, unlike coFlat-MTL, satisfiability is decid-
able for Safety-MTL whereas model checking is non-
elementary.

We summarise the relationships between the various log-
ics introduced above in the following diagram (where ↪→
indicates a syntactic inclusion):

LTL

Bounded-MTL
Safety-MTL

coFlat-MTL

MITL

MTL

Model Checking Satisfiability
LTL PSPACE-C. PSPACE-C.

MITL EXPSPACE-C. EXPSPACE-C.
Bounded-MTL EXPSPACE-C. EXPSPACE-C.

Safety-MTL Non-Prim.-Rec. Non-Elem.
coFlat-MTL EXPSPACE-C. Undec.

MTL Undec. Undec.

Table 1. Complexity of fragments of MTL (in-
terpreted over infinite timed words)

3.2 Main results

Table 1 summarizes the complexity of the fragments
of MTL defined above. Dark gray boxes correspond to re-
sults stated and proved elsewhere, whereas light gray boxes
correspond to results that can be deduced straightforwardly
from other papers. The undecidability of MTL is proved
in [20], while MITL and Safety-MTL have been defined and
studied respectively in [2] and in [19, 21].

In this paper, we state the following results:

• The model-checking problem for coFlat-MTL is in
EXPSPACE (see sections 4, 5), which immediately
implies the same result for Bounded-MTL.

• The model-checking and satisfiability problems for
Bounded-MTL are EXPSPACE-Hard, which imme-
diately implies that coFlat-MTL model checking is
also EXPSPACE-Hard.

For lack of space, we refer to [7] for full details.
In addition, it is worth noticing that the undecidabil-

ity proof of [20] for the satisfiability of MTL over infinite
words can also be used to prove that the satisfiability prob-
lem for coFlat-MTL (and thus the model-checking problem
for Flat-MTL) is undecidable. The result that the satisfia-
bility problem for Safety-MTL is non-elementary is a con-
sequence of [6].

The proof that the model checking of coFlat-MTL is in
EXPSPACE can be sketched as follows: (i) if ϕ is the for-
mula that we want to verify, we first construct an alternating
timed automaton (ATA) which recognizes all models of ¬ϕ
(Section 4.1); (ii) we then prove properties of that ATA
(Section 4.2); (iii) we construct a CAROT which will sim-
ulate joint executions of the automaton we want to model
check and the above-mentioned ATA (Section 5).

4 Alternating Timed Automata

In this section, we recall the definition of one-clock al-
ternating timed automata (ATA), a natural timed analog of

5

alternating automata [15, 19]. ATA generalise classical
(Alur-Dill) timed automata [1], and, unlike the latter, are
closed under complement. However language-emptiness is,
in general, undecidable for ATA.

Let L be a finite set of locations and x a clock variable.
We define Φ(L, x) as the set of formulas defined by the
grammar ‘ϕ ::= t | f | ϕ ∧ ϕ | ϕ ∨ ϕ | ` | x ∼ c | x.ϕ’
where ` ∈ L, ∼ ∈ {<,6,=,>, >} and c ∈ N.

Definition 8. A (one-clock) alternating timed automaton A
is a tuple (L,Σ, δ0, δ, F) where L is a finite set of locations,
Σ is a finite set of actions, δ0 ∈ Φ(L, x) is an initial con-
dition, δ : L × Σ → Φ(L, x) is the transition relation, and
F ⊆ L is a set of accepting locations.

Given a timed alternating automaton A, let M be the
maximum constant mentioned in the clock contraints in A.
Define the set of clock values Val to be [0,M] ∪ {⊥}.
Here ⊥ represents any clock value strictly greater than M .4

The set of states of A is L × Val. A set of states C and a
clock value v ∈ Val defines a Boolean valuation on the set
of formulas Φ(L, x) as follows (we omit obvious cases):

C |=v x ∼ c ⇔ v ∼ c C |=v ` ⇔ (`, v) ∈ C
C |=v x.ϕ ⇔ C |=0 ϕ

We say that C is a minimal model of ϕ ∈ Φ(L, x) with
respect to the clock value v if C |=v ϕ and if there is no
proper subset C ′ ⊆ C such that C ′ |=v ϕ.

Let S be a set of letters, and S∗ be the set of fi-
nite words over S. A tree τ over S is a subset of S∗

such that (i) for every word s0 s1 · · · sp ∈ τ , we also
have s0 s1 · · · sp−1 ∈ τ ; (ii) if s0, · · · sp and s′0, · · · s′q are
two words of τ , then s0 = s′0. The word s0 is the root of τ .
An element of a tree is called a node. Let ν = s0 · · · sp be
a node. The depth of ν is p, its label is sp, and its successors
have set of labels succ(ν) = {s′ ∈ Σ | s0 · · · sp s′ ∈ τ}.
A branch of a tree is a maximal (finite or infinite) sequence
of nodes (νi)i such that νi is a prefix of νi+1 for each i.
A forest is a finite set of trees.

Definition 9. An execution of an ATA over a timed word
w = (σi, ti)i∈N is a forest {τ1, ..., τk} over the set L× Val,
such that (i) any root (`, v) is such that v = 0, and the set
of roots satisfies the initial condition δ0 under valuation 0;
(ii) for each node ν of the forest of depth p and label (`, v),
letting v′ = v + tp − tp−1 (where t−1 = 0), we have that
succ(ν) is a minimal model of δ(`, σp) with respect to v′.

We use a Büchi acceptance condition: an execution for-
est is accepting if every infinite branch in the forest contains
infinitely many nodes whose labels are in F × Val.

4Such clock values are indistinguishable by clock constraints in A, so
this identification is harmless. We require ⊥ to satisfy the obvious arith-
metic properties, e.g., ⊥+ t = ⊥ for all t ∈ R+.

Observe that any execution forest is finitely branching,
due to the minimality assumption on succ(ν).

We say that an execution is memoryless if for any two
identically labelled nodes ν1 and ν2 of same depth, the re-
spective subtrees rooted at ν1 and ν2 are identical. There
is no loss of generality in restricting to memoryless execu-
tions. If A has an execution on a timed word w then, by
a result of Emerson and Jutla [9] on the memoryless deter-
minacy of parity games, it can also be shown that A has a
memoryless execution on w. Details can be found in [7].

4.1 Translating Formulas into Automata

Following the construction given in [19], from any MTL
formulaϕ, we can derive an ATABϕ that recognizes exactly
the set of infinite timed words satisfying ϕ. Rather than
recall the precise definition of Bϕ here, we axiomatise its
key properties for later use. We refer the reader to [7] for
full details.

The set of locations of Bϕ is the set Sub(ϕ) of modal
subformulas of ϕ. Moreover, the transition function δ of
Bϕ satisfies the following three axioms.
(1) Linearity: if ψ,ψ′ ∈ Sub(ϕ) are such that ψ′ appears
in δ(ψ, σ), then ψ′ is a subformula of ψ. In particular, the
only loops in Bϕ are self loops.
(2) Locality: every location appearing in δ(ψ, σ) other than
ψ appears under the scope of a reset ‘x.’. Furthermore, ψ
never occurs in δ(ψ, σ) under the scope of a reset.

If ϕ ∈ Flat-MTL, then Bϕ also satisfies the following
flatness property:
(3) Flatness: If ψ ∈ Sub(ϕ) is an LTL formula, then
δ(ψ, σ) contains no clock constraints. Otherwise, δ(ψ, σ)
has the form ((x 6 c)∧ϕ1)∨ϕ2 ∨ϕ3, where ϕ1, ϕ2, ϕ3 ∈
Φ(Sub(ϕ), x) are such that ϕ2 only mentions locations in
{ψ} ∪ LTL and ϕ3 doesn’t mention ψ. This last condition
can be read as follows: after a certain amount of time, lo-
cation ψ cannot make a simultaneous transition to itself and
another location in Sub(ϕ) \ LTL.

4.2 Ranking Flat-MTL

In this section, we analyse the structure of the execu-
tion forests of those ATA arising from Flat-MTL formulas.
Roughly speaking, the main result of this section, Theo-
rem 12, says that the segments of such an execution forest
in which the automaton clocks are active have a short to-
tal duration. Here we say that a clock (value) is inactive
if it is greater than the maximum clock constant M of the
automaton, otherwise we say that it is active.

In the rest of this section let Bϕ denote an ATA arising
from a Flat-MTL formula ϕ, and let M be the maximum
clock constant of Bϕ. Recall that the set of locations of Bϕ
is the set Sub(ϕ) of modal subformulas of ϕ. By extension,

6

we say that a state (ψ, v) of Bϕ is inactive if ψ is an LTL
formula or if v > M .

Given an execution forest of Bϕ, its i-th configuration is
the set of states labelling the nodes at depth i. An execution
forest of an ATA thus generates a sequence of configura-
tions % : C0 → C1 → . . . → Ck → Next we define
a rank function on configurations based on the distinction
between active and inactive clocks.

Let < be a linear order on Sub(ϕ) such that ϕ1 < ϕ2

whenever ϕ1 is a subformula of ϕ2 (one such can always
be chosen). Furthermore, let Γ denote the set Sub(ϕ) ×
{⊥,>} ordered lexicographically, where ⊥ < >. We think
of > as representing an active clock, whereas (following
the notation introduced in Section 4) ⊥ denotes an inactive
clock.

Definition 10. Given a configuration C of Bϕ, let the non-
LTL formulas occurring in C be written {ϕi}ki=1, where
ϕk > ϕk−1 > . . . > ϕ1. If none of the ϕi is paired
with an active clock in C, then we define rank(C) to be
the word (ϕk,⊥) . . . (ϕ2,⊥)(ϕ1,⊥). Otherwise, let ϕj be
the maximum among all formulas appearing in C that are
paired with an active clock, and define rank(C) to be the
word (ϕk,⊥) . . . (ϕj+1,⊥)(ϕj ,>). We order the ranks of
configurations according to the lexicographic order on Γ∗,
denoted �.

Example 11. Let the maximum clock constant in ϕ be
M = 3 and let C = {(ϕ1, 2.4), (ϕ1,⊥), (ϕ2, 0.8), (ϕ2,⊥),
(ϕ3,⊥), (ϕ4,⊥)} be a configuration of Bϕ, where ϕ4 >
ϕ3 > ϕ2 > ϕ1. Then rank(C) = (ϕ4,⊥)(ϕ3,⊥)(ϕ2,>),
that is, we record the maximum active state and all inactive
states above it.

Let % : C0 → C1 → . . . → Ck → . . . be a sequence of
configurations in a run of Bϕ on the timed word (σi, ti)i∈N.
Given an interval I ⊆ N, write %[I] for the subsequence
of % consisting of those Ci with i ∈ I . Furthermore, de-
fine the active duration of %[I], denoted duration(%[I]), to
be 0 if none of the Ci, i ∈ I , contains an active clock, and
tsup(I)−tinf(I) +M otherwise, where t∞ =∞. Intuitively,
duration(%[I]) gives an upper bound for the amount of time
that an active clock is present in the run segment %[I]. (In
case I = {i, . . . , j} is finite, this segment includes the time
delay between positions j and j + 1 in %, hence the extra
term M in the expression for duration(%[I]).)

Theorem 12. Let % : C0 → C1 → . . . → Ck → . . . be
the sequence of configurations of a memoryless run of Bϕ.
Then there is a partition I of N into at most |ϕ| · 2|ϕ| inter-
vals, where for each interval I in I, %[I] has active duration
at most 2M + 1, the last interval is (unbounded and) fully
inactive, and |ϕ| is the number of non-LTL modal subfor-
mulas of ϕ.

Proof. Define an equivalence ≡ on N by n ≡ m iff
rank(Cn) = rank(Cm). Now Lemma 13 (below) says that
rank is non-increasing along %; it follows that the equiva-
lence classes of ≡ are intervals. Furthermore, the index of
the equivalence relation is bounded by the number of ranks,
which is easily seen to be no more than |ϕ| · 2|ϕ|. Finally, it
follows from Lemma 14 (below) that the active duration of
any equivalence class is at most 2M + 1. �

It remains to prove the two technical lemmas quoted in
the proof of Theorem 12.

Lemma 13. If % : C0 → C1 → . . . → Ck → . . . is the
sequence of configurations in a memoryless run of Bϕ, then
rank(Cn+1) � rank(Cn) for each n ∈ N.

Proof. We split the transition from Cn to Cn+1 into two
steps: a time-elapse step, where each clock in Cn increases
by some fixed amount, and a discrete step, where state
changes are performed according to the transition func-
tion of Bϕ. We show that neither of these steps is rank-
increasing.

For the time-elapse step, observe that for any configura-
tion C and time delay t ∈ R+, rank(C + t) � rank(C),
where C + t = {(ψ, v + t) : (ψ, v) ∈ C}. This is because
the only possible difference between C and C + t is that
active clocks in C may become inactive in C + t; but this
cannot increase the rank (reflecting the fact that ⊥ < >).

Write δ for the transition function of Bϕ, and let σ ∈ Σ.
For the discrete step, suppose that C = {(ψi, vi)}i∈I is a
configuration and that C ′ =

⋃
iDi, where Di is a mini-

mal model of δ(ψi, σ) with respect to vi for each i ∈ I .5

Furthermore, for a contradiction, suppose that rank(C) ≺
rank(C ′), with γ ∈ Γ the letter in rank(C ′) occurring in the
first position in which rank(C) and rank(C ′) differ. Since
the letters in rank(C) appear in descending order we can as-
sume that γ does not appear in rank(C) at all. We consider
two cases according to whether γ is inactive or active.

The first case is that γ = (ψ,⊥) for some ψ ∈ Sub(ϕ) \
LTL. Then there exists i ∈ I such that (ψ,⊥) ∈ Di. By
locality of Bϕ (cf. Section 4.1), we must have ψi = ψ and
vi = ⊥. Thus γ = (ψ,⊥) appears in rank(C), contradict-
ing the assumption on γ.

The second case is that γ = (ψ,>) for some ψ ∈
Sub(ϕ) \ LTL. Then there exists i ∈ I and a clock value
v 6 M such that (ψ, v) ∈ Di. By linearity of Bϕ we have
ψ 6 ψi; if also vi 6 M then some active state at least
as high as (ψ,>) appears in rank(C). Since rank(C) and
rank(C ′) agree on letters higher than γ, this active state
can only be γ itself, which contradicts our hypothesis on γ.
Thus we may assume that vi = ⊥.

5Since % is memoryless, the set of states at each configuration in % can
always be calculated from the set of states of the previous configuration in
this manner.

7

But then, since vi 6= v, by locality of Bϕ it must hold
that ψ < ψi, and by flatness of Bϕ, we have that ψi does
not appear in Di. (Flatness dictates that ψ and ψi cannot
both appear in Di.) In fact, we can conclude that (ψi,⊥)
does not appear in C ′ (by locality of Bϕ it cannot appear in
Dj for j 6= i). But then (ψi, vi) does not appear in rank(C ′)
and (ψi, vi) > γ, contradicting the assumption on γ.

�

Lemma 14. Suppose % : C0 → C1 → . . . → Ck → . . . is
the sequence of configurations in a memoryless run of Bϕ
on a timed word (σi, ti)i∈N. If Ci is active, j > i and
tj − ti > M , then rank(Cj) ≺ rank(Ci).

Proof. Write rank(Ci) = (ϕk,⊥) . . . (ϕ2,⊥)(ϕ1,>)
and suppose, for a contradiction, that rank(Ci) =
rank(Ci+1) = . . . = rank(Cj). In particular, for 2 6
p 6 k, the node (ϕp,⊥) is present in each of the config-
urations Ci, Ci+1, . . . , Cj . This means that in the execution
tree underlying %, between depths i and j, any node labelled
(ϕp,⊥), for 2 6 p 6 k, also has a child labelled (ϕp,⊥)
(by locality of Bϕ, no state can make a (discrete) transi-
tion to (ϕp,⊥) apart from (ϕp,⊥) itself). By flatness of Bϕ
we conclude that the only possible depth-j descendents of a
depth-i node labelled (ϕp,⊥), 2 6 p 6 k, are also labelled
by (ϕp,⊥), or by LTL formulas.

Now, since rank(Ci) = rank(Cj), (ϕ1,>) occurs in
rank(Cj). Thus there is a state (ϕ1, v) ∈ Cj such that
v 6 M . From the above argument, the depth-i ancestor
of this state can only be labelled (ϕ1, u) for some u. Since
tj − ti > M , the clock x is reset somewhere on the path
from (ϕ1, u) to (ϕ1, v). But this contradicts linearity and
locality of Bϕ, since these conditions imply that any clock
reset on a path must be accompanied by a strict reduction in
the rank of the locations along the path. �

5 From ATAs to CAROTs

In this section, we define a simulation of ATAs by
CAROTs. This roughly corresponds to the powerset con-
struction used for transforming an (untimed) alternating au-
tomaton into a non-deterministic automaton [17], except
that we cannot bound the size of a configuration in the timed
case due to the presence of clock variables. Instead we use
the channel to store encodings of configurations, which are
levels in a run tree of the ATA being simulated. In this sim-
ulation, the cycling of the channel corresponds to the evo-
lution of time, and global renaming and occurrence testing
are used to simulate discrete transitions of the ATA.

Using Theorem 12, we show that an ATA Bϕ corre-
sponding to a Flat-MTL formula ϕ can be simulated by a
cycle-bounded CAROT. Then we use Theorem 3, concern-
ing the cycle-bounded reachability problem for CAROTs,
to prove an EXPSPACE upper bound for model checking.

We first fix some notation: let A = (LA, XA,Σ,
L0
A, δA) be the timed automaton under study, and B =

(LB,Σ, δ0B, δB, FB) be the ATA corresponding to ¬ϕ (pre-
viously called B¬ϕ) constructed in the previous section. We
call xB its single clock.

We note REG = {0, 1, . . . ,M,⊥} where M is the max-
imal constant appearing in A or in B. If γ ∈ R+ and
γ 6 M , we write reg(γ) for the largest integer in REG
which is smaller than or equal to γ. We write reg(⊥) = ⊥.
We also define the following two sets:

S = (LB × {xB} × Val) ∪ (LA ×XA × Val)
R = (LB × {xB} × REG) ∪ (LA ×XA × REG)

and their sets of subsets V = ℘(S) and Λ = ℘(R).
A joint A/B-configuration is composed of a state (`, v)

of A with ` ∈ LA, v : XA → Val and a finite set of
states (`i, vi) of B, with `i ∈ LB and vi ∈ Val for i ∈ I .
Such a configuration C can be written as the element
{(`i, xB, vi) | i ∈ I} ∪ {(`, x, v(x)) | x ∈ XA} of V .

Now given a configurationC, partitionC into a sequence
of subsetsC0, C1, . . . , Cn, C⊥, such thatC⊥ = {(`, x, v) ∈
C | ` ∈ LTL or v = ⊥},

⋃n
i=0 Ci = C \ C⊥, and if i, j 6=

⊥, for all (`, x, v) ∈ Ci and (`′, x′, v′) ∈ Cj , frac(v) 6
frac(v′) iff i 6 j (so that (`, x, v) and (`′, x′, v′) are in the
same block Ci iff v and v′ have the same fractional part).
We assume in addition that the fractional part of elements
in C0 is 0 (even if it means that C0 = ∅). Note that C⊥
contains all inactive and LTL formulas of the configuration
(following the vocabulary of the previous section).

We then define H : V → Λ∗ with H(C) = reg(C0) ·
reg(C1) · reg(C2) · · · reg(Cn) · reg(C⊥), where reg(C)
is obtained by replacing each value v that appears in C
with reg(v). In the following, we remove the superfluous
xB’s and ⊥’s in the letters, in order to ease readability.

The jointA/B-behaviour is then composed of transitions
C

σ−→ C ′ for σ ∈ Σ and C t−→ C ′ for t ∈ R+ in the usual
way. Using the abstraction function, it is possible to define a
discrete transition system which abstracts away precise tim-
ing information, but which simulates jointA/B-behaviours,
see [18, 19].

Example 15. Consider for instance a configuration C en-
coded by the word H(C) = {(`0, 2), (`, x, 3)} · {(`, y, 1)} ·
{(`1, 3), (`2, 1)} · {(`, z), `3}. We assume that the maxi-
mal constant is 4. The encoding of the successor of C
is obtained by cycling around the letters (except the last
one) of the word (and increasing the values of the re-
gions accordingly). Thus the first delay successor of H(C)
is ∅ · {(`0, 2), (`, x, 3)} · {(`, y, 1)} · {(`1, 3), (`2, 1)} ·
{(`, z), `3} (all states with integral values are now just
above the integer), the next successor is {(`1, 4), (`2, 2)} ·
{(`0, 2), (`, x, 3)} · {(`, y, 1)} · {(`, z), `3} (the states with
maximal fractional part reach the next integer), the next one

8

is ∅·{(`2, 2)}·{(`0, 2), (`, x, 3)}·{(`, y, 1)}·{(`, z), `3, `1}
as the state `1 is now over the maximal constant 4. Simulat-
ing discrete transitions is easy as it only consists in applying
the transition rules ofA and B to all states of the word (see
above-mentioned references for more details).

We will take advantage of this discrete abstraction to de-
fine a CAROT C which will ‘recognize’ the discrete joint
A/B-behaviours. The channel will be used to store the ‘un-
bounded’ part of the information, namely the successive
configurations of B. Since A must synchronize with B,
its timing information will also be stored on the channel.
The discrete states of the CAROT will store only a bounded
amount of information, namely the location ofA, the region
it lies in, the set of clocks of A having integer values, and
the B-part of the sets reg(C0) and reg(C⊥). For instance,
a configuration C such that

H(C) = {(`1, r0), (`2, r4), (`, x, r2)}·
{(`, y, r1), (`1, r5), (`2, r3)} · {(`, z, r7)} · {`3}

is encoded by the discrete information(
`, %, {x}, {(`1, r0), (`2, r4)}, {`3}

)
where %(x) = r2, %(y) = r1 and %(z) = r7, and by the
channel content (where we read from the left):

〉y(`1,r5)(`2,r3)〈〉z〈

We construct the CAROT C = (Q, q0,Γ,∆) (without
accepting conditions for the moment) as follows:
• The channel alphabet Γ is the union ofLB×REG\{⊥},
the set of clocks XA, and the two brackets 〈 and 〉.
• The set Q of states is the product set LA × REGXA ×
℘(XA) × ℘(LB × (REG \ {⊥})) × ℘(LB). It stores the
current location of A, the integral part of the clocks of A,
the set of clocks of A having integer value, the set of
states (`B, xB) of the current configuration of B in which
the clock xB is an integer, and the set of inactive (or LTL)
formulas in the current configuration of B.
• The initial states of C are the states that correspond to
an initial state of A with all clocks being equal to zero, and
to sets of states of B satisfying the initial condition of B.
• There are three kinds of transitions. First, from a
state (`A, rA, zA, λB, κB) where zA and/or λB are non-
empty, applying an (abstract) delay transition corresponds
to entering a state where both zA and λB are empty, and to
pushing zA ∪ λB on the channel.

Symmetrically, from a state where both zA and λB are
empty, an abstract delay transition reads the leftmost item
of the channel (corresponding to the set of states having the
highest fractional parts) and stores it in the discrete state of

the CAROT, updating the integral values of the correspond-
ing clocks.

Finally, action transitions consist in simultaneously ap-
plying a discrete step of A and a discrete step of B. Occur-
rence testing is used to determine (an overapproximation) of
the set of locations of B that lie on the channel, and global
deletion is used to remove a letter (`, r) from the channel
when the clock corresponding to ` is reset to 0.

It is not difficult to prove that the constructed CAROT
simulates the joint A/B-behaviours, but also that any run
of the CAROT can be simulated by a joint A/B-behaviour.

The above construction thus encodes the synchronized
behaviour of A and B, but it remains to encode the accep-
tance condition of B. This is achieved through the Miyano-
Hayashi construction [17, 24]. This requires us to add some
extra structure to C in order to keep track of branches in
the execution forest of B that are still ‘waiting’ to enter an
accepting state.

The most important aspect of the above simulation con-
cerns its relationship to Theorem 12. In particular, in any
segment of an execution of B in which all clock values in
the states of B are inactive, the simulating CAROT C has
at most |XA| items on the channel, corresponding to the
clocks of A (recall that XA is the set of clocks of A). In
such a segment, the current configuration of B is encoded
entirely in the control state of the CAROT. Otherwise, if
some of the clocks of B are active, the simulating CAROT
requires one cycle of its channel to simulate one time unit
of B’s execution (since the active clocks of B are stored on
the channel in order of their fractional parts). Theorem 12
then yields an upper bound on the number of cycles of C’s
channel, as made precise below.

Proposition 16. Let A be a timed automaton with set of
clocks X , and ϕ ∈ coFlat-MTL. Let CA,¬ϕ denote the
CAROT that simulates joint executions of A and Bϕ, as de-
scribed above. Then, A |= ϕ iff there is an infinite compu-
tation % of CA,¬ϕ such that we can write % as %′ · %′′ where:
(1) the number of cycles of the channel during %′ is bounded
by an exponential in the sizes of ϕ and A,
(2) along %′′, the size of the channel is bounded by |X|,
(3) the Büchi condition of CA,¬ϕ is satisfied along %′′.

Note that the number of control states of the CAROT
CA,¬ϕ is doubly exponential in the sizes ofA andϕ. Indeed,
the states consist of subsets of REG, which is exponential in
the size of the encoding of the maximal constant. However,
we can apply the algorithm of Theorem 3 on-the-fly, with-
out explicitely building the CAROT CA,¬ϕ. This algorithm
will be applied on the first part %′ of %. Since the channel
is bounded along %′′, the CAROT can be transformed into
a Büchi automaton (still doubly exponential) for verifying
the second part, which can also be achieved on-the-fly using
exponential space. Finally:

9

Theorem 17. The model-checking problem for coFlat-
MTL is EXPSPACE-Complete.

We refer the reader to [7] for the hardness proof.

6 Conclusion

In this paper, we have proposed the logic coFlat-MTL
as a counterpart to MITL, until now considered to be the
only linear-time timed temporal logic having reasonable
complexity. Although both logics are incomparably expres-
sive, coFlat-MTL allows most specifications that are inter-
esting in practice, whilst retaining punctuality. Moreover,
its model-checking problem exhibits no cost over that of
MITL. As specifications tend to be relatively small, we feel
justified in considering the complexity of model checking
coFlat-MTL to be feasible, at least in theory. The real test
will consist in applying our results in practice.

References

[1] R. Alur and D. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[2] R. Alur, T. Feder, and T. A. Henzinger. The benefits of re-
laxing punctuality. Journal ACM, 43(1):116–146, 1996.

[3] R. Alur and T. A. Henzinger. Logics and models of
Real-Time: a survey. In Real-Time: Theory in Practice,
Proc. REX Workshop 1991, vol. 600 of LNCS, pp. 74–106.
Springer, 1992.

[4] R. Alur and T. A. Henzinger. Real-time logics: Com-
plexity and expressiveness. Information and Computation,
104(1):35–77, 1993.

[5] R. Alur and T. A. Henzinger. A really temporal logic. Jour-
nal of the ACM, 41(1):181–204, 1994.

[6] P. Bouyer, N. Markey, J. Ouaknine, Ph. Schnoebelen, and
J. Worrell. On the complexity of termination in faulty chan-
nel machines. 2007. Submitted.

[7] P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell. The
cost of punctuality. Research report LSV-07-05, Lab.
Spécification & Vérification, ENS Cachan, France, 2007.

[8] D. Brand and P. Zafiropulo. On communicating finite-state
machines. Journal of the ACM, 30(2):323–342, 1983.

[9] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus
and determinacy (extended abstract). In Proc. 32nd Annual
Symp. on Found. of Computer Science (FOCS’91), pp. 368–
377. IEEE Comp. Soc. Press, 1991.

[10] T. A. Henzinger. The Temporal Specification and Verifica-
tion of Real-Time Systems. PhD thesis, Stanford University,
CA, USA, 1991.

[11] T. A. Henzinger. It’s about time: Real-time logics reviewed.
In Proc. 9th Int. Conf. on Concurr. Theory (CONCUR’98),
vol. 1466 of LNCS, pp. 439–454. Springer, 1998.

[12] T. A. Henzinger, Z. Manna, and A. Pnueli. What good are
digital clocks? In Proc. 19th Int. Coll. on Automata, Lan-
guages and Programming (ICALP’92), vol. 623 of LNCS,
pp. 545–558. Springer, 1992.

[13] Y. Hirshfeld and A. M. Rabinovich. Logics for real time:
Decidability and complexity. Fundamenta Informaticae,
62(1):1–28, 2004.

[14] R. Koymans. Specifying real-time properties with Metric
Temporal Logic. Real-Time Systems, 2(4):255–299, 1990.

[15] S. Lasota and I. Walukiewicz. Alternating timed automata.
In Proc. 8th Int. Conf. on Found. of Software Science and
Computation Structures (FoSSaCS’05), vol. 3441 of LNCS,
pp. 250–265. Springer, 2005.

[16] O. Maler, D. Nickovic, and A. Pnueli. From MITL to timed
automata. In Proc. 4th Int. Conf. on Formal Modeling and
Analysis of Timed Systems (FORMATS’06), vol. 4202 of
LNCS, pp. 274–189. Springer, 2006.

[17] S. Miyano and T. Hayashi. Alternating finite automata on
omega-words. Theoretical Computer Science, 32:321–330,
1984.

[18] J. Ouaknine and J. Worrell. On the language inclusion prob-
lem for timed automata: Closing a decidability gap. In
Proc. 19th Annual Symp. on Logic in Computer Science
(LICS’04), pp. 54–63. IEEE Comp. Soc. Press, 2004.

[19] J. Ouaknine and J. Worrell. On the decidability of Met-
ric Temporal Logic. In Proc. 19th Annual Symp. on Logic
in Computer Science (LICS’05), pp. 188–197. IEEE Comp.
Soc. Press, 2005.

[20] J. Ouaknine and J. Worrell. On Metric Temporal Logic
and faulty Turing machines. In Proc. 9th Int. Conf. on
Found. of Software Science and Computation Structures
(FoSSaCS’06), vol. 3921 of LNCS, pp. 217–230. Springer,
2006.

[21] J. Ouaknine and J. Worrell. Safety Metric Temporal Logic is
fully decidable. In Proc. 12th Int. Conf. on Tools and Algo-
rithms for the Constr. and Analysis of Systems (TACAS’06),
vol. 3920 of LNCS, pp. 411–425. Springer, 2006.

[22] J. Ouaknine and J. Worrell. On the decidability and com-
plexity of Metric Temporal Logic over finite words. Logical
Methods in Computer Science, 3(1), 2007.

[23] J.-F. Raskin. Logics, Automata and Classical Theories for
Deciding Real Time. PhD thesis, Université de Namur, Bel-
gium, 1999.

[24] M. Y. Vardi. An automata-theoretic approach to Linear Tem-
poral Logic. In Proc. Logics for Concurr.: Structure versus
Automata, vol. 1043 of LNCS, pp. 238–266. Springer, 1996.

[25] Th. Wilke. Specifying timed state sequences in power-
ful decidable logics and timed automata. In Proc. 3rd
Int. Symp. on Formal Techniques in Real-Time and Fault-
Tolerant Systems (FTRTFT’94), vol. 863 of LNCS, pp. 694–
715. Springer, 1994.

10

