
HAL Id: hal-01194603
https://hal.science/hal-01194603

Submitted on 7 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-Checking One-Clock Priced Timed Automata
Patricia Bouyer, Kim Guldstrand Larsen, Nicolas Markey

To cite this version:
Patricia Bouyer, Kim Guldstrand Larsen, Nicolas Markey. Model-Checking One-Clock Priced Timed
Automata. Proceedings of the 10th International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS’07), 2007, Braga, Portugal. pp.108-122, �10.1007/978-3-540-71389-
0_9�. �hal-01194603�

https://hal.science/hal-01194603
https://hal.archives-ouvertes.fr

Model-Checking One-Clock

Priced Timed Automata

Patricia Bouyer1⋆, Kim G. Larsen2⋆⋆, and Nicolas Markey1⋆

1 LSV, CNRS & ENS de Cachan, France
{bouyer,markey}@lsv.ens-cachan.fr

2 Aalborg University, Denmark
kgl@cs.aau.dk

Abstract. We consider the model of priced (a.k.a. weighted) timed au-
tomata, an extension of timed automata with cost information on both
locations and transitions. We prove that model-checking this class of
models against the logic WCTL, CTL with cost-constrained modalities,
is PSPACE-complete under the “single-clock” assumption. In contrast, it
has been recently proved that the model-checking problem is undecid-
able for this model as soon as the system has three clocks. We also prove
that the model-checking of WCTL∗ becomes undecidable, even under
this “single-clock” assumption.

1 Introduction

An interesting direction of real-time model-checking that has recently received
substantial attention is the extension and re-targeting of timed automata tech-
nology towards optimal scheduling and controller synthesis [1, 18, 7]. In particu-
lar, as part of this effort, the notion of priced (or weighted) timed automata [4, 3]
has been promoted as a useful extension of the classical model of timed automata
allowing continuous consumption of resources (e.g. energy) to be modelled and
analyzed.

A number of optimization problems have been shown decidable for priced
timed automata including minimum-cost reachability [4, 3], optimal (minimum
and maximum cost) reachability in multi-priced settings [17] and cost-optimal
infinite schedules [6, 7].

Unfortunately, the addition of cost comes with a price: certain problems
become undecidable for priced timed automata. In fact, in [11] it has recently
been shown that the problem of determining cost-optimal winning strategies for
priced timed games is not computable. Also, by the same authors, it has been
shown that the model-checking problem for priced timed automata w.r.t. WCTL
—CTL with cost-constrained modalities— is undecidable [10]. In [5] it has been
shown that these negative results hold even for priced timed (game) automata
with no more than three clocks.

⋆ Partly supported by ACI “Sécurité & Informatique” CORTOS.
⋆⋆ Partly supported by an invited professorship from ENS Cachan.

However, when restricting to the setting of priced timed game automata
with a single clock, the most recent work in [9] shows that the optimal cost of
winning and (almost-) optimal strategies are computable problems. In this paper
we focus on model-checking problems for priced timed automata with a single
clock. In particular we show that the model-checking problem with respect to
WCTL is PSPACE-complete under the “single clock” assumption. This is rather
surprising as model-checking TCTL (the only cost variable is the time elapsed)
under the same assumption is also PSPACE-complete [15]. We also prove that the
model-checking of WCTL∗ becomes undecidable, even under this “single clock”
assumption.

The paper is organized as follows: In Section 2, we present the model of
priced timed automata, the logic WCTL and develop an example. In Section 3,
we state the main result of the paper. In Section 4, we study the granularity which
is required for model-checking the logic WCTL. In Section 5, we first propose
an EXPTIME algorithm for model-checking one-clock priced timed automata
against WCTL formulas, then refine it to get a PSPACE algorithm, and finally
give an example. In Section 6, we prove that model-checking one-clock priced
timed automata against WCTL∗ formulas is undecidable.

2 Preliminaries

2.1 Priced Timed Automata

Let X be a set of clock variables. The set of clock constraints (or guards) over X
is defined by the grammar “g ::= x ∼ c | g ∧ g” where x ∈ X , c ∈ IN and
∼∈ {<,≤,=,≥, >}. The set of all clock constraints is denoted B(X). When a
valuation v : X → IR+ satisfies a clock constraint g is defined in a natural way
(v satisfies x ∼ c whenever v(x) ∼ c), and we then write v |= g. We denote
by v0 the valuation that assigns zero to all clock variables, by v+ t (t ∈ IR+) the
valuation that assigns v(x) + t to all x ∈ X , and for R ⊆ X we write v[R → 0]
to denote the valuation that assigns zero to all variables in R and agrees with v
for all X r R.

Definition 1. A priced timed automaton (PTA for short) is a tuple A = (Q, q0,
X , T, η, (Pi)1≤i≤p) where Q is a finite set of locations, q0 ∈ Q is the initial
location, X is a set of clocks, T ⊆ Q×B(X)× 2X ×Q is the set of transitions,
η : Q → B(X) defines the invariants of each location, and Pi : Q ∪ T → N is a
cost (or price) function.

The semantics of a PTA A is given as a labeled timed transition system T =
(S, s0,→) where S ⊆ Q × IRX

+ is the set of states, s0 = (q0, v0)
3 is the initial

state, and the transition relation → ⊆ S × IRp+ × S is defined as:

1. (discrete transition) (q, v)
c
−→ (q′, v′) if there exists (q, g, R, q′) ∈ E s.t. v |= g,

v′ = [R← 0]v, v′ |= η(q′), and ci = Pi(q, g, R, q
′) for every 1 ≤ i ≤ p;

3 v0 assigns zero to each clock.

2. (delay transition) (q, v)
c
−→ (q, v + t) if ∀0 ≤ t′ ≤ t, v + t′ |= η(q), and

ci = t · Pi(q) for every 1 ≤ i ≤ p.

A run of a PTA is a path in the underlying transition system. Given a run

̺ = s0
c0

−→ s1
c1

−→ · · ·
cn−1

−−−→ sn, its ith-cost is Pi(̺) =
∑n−1
j=0 c

j
i . A position along

a run ̺ is an occurrence of a state (q, v) along ̺. Let π be such a position, then
̺[π] denotes the corresponding state, whereas ̺≤π denotes the finite prefix of ̺
ending at position π.

Remark 1. In the model of priced timed automata, the cost variables are ob-
servers : the values of these variables don’t constrain the behaviour of the system
(the behaviours of a priced timed automaton are those of the underlying timed
automaton), but can be used as evaluation functions. For instance, problems
such as “optimal reachability” [4, 3], “optimal infinite schedules” [6] or “optimal
reachability timed games” [2, 8, 11, 5] have recently been investigated. The prob-
lem we consider in this paper is closely related to these kinds of problems: we
will use WCTL as a language for evaluating the performances of a system.

2.2 The Logic WCTL

Let AP be a set of atomic propositions. The logic WCTL4 [10] extends CTL with
cost constraints. Its syntax is given by the following grammar:

WCTL ∋ φ ::= true | a | ¬φ | φ ∨ φ | EφUP∼cφ | AφUP∼cφ

where a ∈ AP, P is a cost function, c ranges over N, and ∼ ∈ {<,≤,=,≥, >}.
We interpret formulas of WCTL over labeled PTA, i.e. PTA having a labeling

function ℓ which associates with every location q a subset of AP.

Definition 2. Let A be a labeled PTA. The satisfaction relation of WCTL is
defined over configurations (q, v) of A as follows:

(q, v) |= true

(q, v) |= p ⇔ a ∈ ℓ(q)
(q, v) |= ¬φ ⇔ (q, v) 6|= φ

(q, v) |= φ1 ∨ φ2 ⇔ (q, v) |= φ1 or (q, v) |= φ2

(q, v) |= Eφ1UP∼cφ2 ⇔ there is an infinite run ̺ in A
from (q, v) s.t. ̺ |= φ1UP∼cφ2

(q, v) |= Aφ1UP∼cφ2 ⇔ any infinite run ̺ in A from (q, v)
satisfies ̺ |= φ1UP∼cφ2

̺ |= φ1UP∼cφ2 ⇔ there exists π > 0 position along ̺ s.t.
̺[π] |= φ2, for all position π′ > 0
before π on ̺, ̺[π′] |= φ1,
and P (̺≤π) ∼ c

4 WCTL stands for “Weighted CTL”, following [10] terminology. It would have been
more natural to call it “Priced CTL” (PCTL) in our setting, but this would have
been confusing with “Probabilistic CTL” [13].

If A is not clear from the context, we may write (q, v),A |= φ instead of simply
(q, v) |= φ.

As usual, we will use shortcuts as E FP∼cφ ≡ E trueUP∼cφ, or AGP∼cφ ≡
¬E FP∼c¬φ. Moreover, if the cost function P is unique or clear from the context,
we may write φU∼cψ instead of φUP∼cψ.

We write WCTL∗ for the extension of WCTL similar to the extension CTL∗

of CTL [12]: temporal modality U∼c can then be nested independently of path
quantifiers.

2.3 Example

ṗ = 0
x ≤ 9

ṗ = 3
x ≤ 10

ṗ = 2
x < 20

ṗ = 4
x ≤ 15

x ≥
2

x ≥
4

x = 20, x := 0, p+ = 5

x = 15, x := 0

Problem
Cheap

ExpensiveOK

Fig. 1. Repair problem as a PTA

2 4 6 8 10 x

10

20

30

40

50

c

Wait in Problem

Goto Cheap

Wait in Problem

Goto Expensive

Fig. 2. Minimum cost of repair and as-
sociated strategy in location Problem

The 1PTA of Fig. 1 models a never-ending process of repairing problems,
which are bound to occur repeatedly with a certain frequency. The repair of a
problem has a certain cost, captured in the model by the cost variable c. As soon
as a problem occurs (modeled by the Problem location) the value of c grows with
rate 3, until actual repair is taking place in one of the locations Cheap (rate 2)
or Expensive (rate 4). At most 20 time units after the occurrence of a problem
it will have been repaired one way or another. In this setting we are interested
in properties concerning the cost of repairs as stated by the following WCTL
formulas (all satisfied by the model):

AG
(

Problem =⇒ E Fc≤47OK
)

AG
(

Problem =⇒ AFc≤56OK
)

AG
(

¬E (OK Ut≥8(Problem ∧ ¬E Fc<30OK))
)

where t holds for the time elapsed (special cost variable with rate 1).
Here the first property claims that whenever a problem occurs it may be

repaired (i.e. reach the location OK) within a total cost of 47. In fact Fig. 2
gives the minimum cost of repair —as well as an optimal strategy— for any
state of the form (Problem, x) with x ∈ [0, 10]. Correspondingly, the minimum

cost of reaching OK from states of the form (Cheap, x) (resp. (Expensive, x)) is
given by the expression 45− 2x (resp. 60− 4x). The second property states that
no matter which method is used for the repair, it will cost no more than 56.
Finally, the third property claims that whenever the system has been OK for at
least 8 time units before a problem occurs, then there must be a way of solving
the problem with a total cost less than 30. In fact, as indicated in Fig. 2, any
state (Problem, x) with x ≥ 20

3 satisfies the WCTL property E Fc≤30OK.

3 Main Result

We focus on one-clock priced timed automata (1PTA for short), i.e. priced timed
automata where |X | = 1. The main result of this paper is the following theorem:

Theorem 3. Model-checking WCTL on 1PTA is PSPACE-complete.

The PSPACE lower bound is a consequence of the PSPACE-hardness of the
model-checking of TCTL, the restriction of WCTL to time constraints, over
1PTA [15].

The PSPACE upper bound is rather involved, and will be done in two steps:
i) first we will exhibit a set of regions which will be correct for model-checking
WCTL formulas, see Section 4; ii) then we will use this result to propose a
PSPACE algorithm for model-checking WCTL, see Section 5.

Finally, it is worth reminding here that the model-checking of WCTL over
priced timed automata with three clocks is undecidable [5].

4 Sufficient Granularity for Model-Checking WCTL

The proof of Theorem 3 is rather involved and partly relies on the following
proposition, which exhibits a set of regions on which truth of WCTL formulas
is uniform.

Proposition 4. Let Φ be a WCTL formula and let A be a 1PTA. Then there
exist finitely many constants 0 = a0 < a1 < . . . < an < an+1 = +∞ s.t. for
every location q of A, for every 0 ≤ i ≤ n, the truth of Φ is uniform over
{(q, x) | ai < x < ai+1}. Moreover,

– {a0, ..., an} contains all the constants appearing in clock constraints of A;
– the constants are integral multiples of 1/C~(Φ) where ~ (Φ) is the constrained

temporal height of Φ, i.e. the maximal number of nested constrained modal-
ities in Φ, and C is the lcm of all positive costs labeling a location of A;

– an equals the largest constant M appearing in the guards of A;
– n ≤M · C~(Φ) + 1.

As a corollary, we recover the partial decidability result of [10], stating that
the model-checking of 1PTA with a stopwatch cost5 against WCTL formulas is
decidable using classical one-dimensional regions of timed automata (i.e. with
granularity 1).

5 I.e. cost with rates in {0, 1}.

Proof. The proof of this proposition is by structural induction on Φ. We focus on
the case when Φ = EφUP∼cψ (we will simply write Φ = EφU∼cψ): the cases of
atomic propositions, boolean combinations are straightforward, unconstrained
modalities require no refinement of the granularity (a basic CTL algorithm han-
dles this case), and the other modalities will be reduced to this main case.

Assume that the result has been proved for WCTL subformulas φ and ψ,
and that we have merged all constants for φ and ψ: we thus have constants
0 = a0 < a1 < . . . < an < an+1 = +∞ such that for every location q of A, for
every 0 ≤ i ≤ n, the truth of φ and that of ψ are both uniform over {(q, x) | ai <
x < ai+1}. The granularity of these constants is 1/Cmax(~(φ),~(ψ)) = 1/C~(Φ)−1.
We will exhibit extra constants such that the above proposition then also holds
for formula Φ = EφU∼cψ. For the sake of simplicity, we will call regions all
elementary intervals (ai, ai+1) and singletons {ai}. We also assume that A has
no discrete costs (i.e. P (T) = {0}). The general case would be handled in a
similar way, and will be developed in the long version of this paper.

In order to compute the set of states satisfying EφU∼cψ, we compute for
every state (q, x) all costs of paths from (q, x) to some region (q′, r), along
which φ continuously holds, and such that a ψ-state can be reached immedi-
ately from (q′, r). We then check whether we can achieve a cost satisfying “∼ c”.
We thus explain how we compute the set of possible costs between a state (q, x)
and a region (q′, r) in A.

For each index i, we restrict the automaton A to transitions whose guards
contain the interval (ai, ai+1), and that do not reset the clock. We denote by Ai
this restricted automaton. Let q and q′ be two locations of Ai. As stated by the
following lemma, the set of costs of paths between (q, ai) and (q′, ai+1) is an
interval that can be easily computed:

Lemma 5. Let Si(q, q
′) be the set of locations that are reachable from (q, ai)

and co-reachable from (q′, ai+1) in Ai (assuming ai+1 6= +∞), and assume it

is non-empty. Let ci,q,q
′

min and ci,q,q
′

max be the minimum and maximum costs among
the costs of locations in Si(q, q

′). Then the set of all possible costs of paths going

from (q, ai) to (q′, ai+1) in Ai is an interval 〈(ai+1−ai)·c
i,q,q′

min ; (ai+1−ai)·c
i,q,q′

max 〉.
The interval is left-closed iff there exist two locations r and s (with possibly r = s)

in Si(q, q
′) with cost ci,q,q

′

min such that6(q, ai)
∗
Ai

(r, ai), (r, ai)
∗
Ai

(s, ai+1), and
(s, ai+1)

∗
Ai

(q′, ai+1). The interval is right-closed iff there exists two locations

r and s in Si(q, q
′) with cost ci,q,q

′

max such that (q, ai)
∗
Ai

(r, ai), (r, ai)
∗
Ai

(s, ai+1), and (s, ai+1)
∗
Ai

(q′, ai+1).

The conditions on left/right-closures characterize the fact that it is possible
to instantaneously reach/leave a location with minimal/maximal cost, or if a
small positive delay has to be waited (due to a strict guard).

Proof. Obviously the costs of all paths in Ai belong to the interval (ai+1 − ai) ·

[ci,q,q
′

min , ci,q,q
′

max]. We will now prove that the set of costs is an interval containing

(ai+1 − ai) · (c
i,q,q′

min ; ci,q,q
′

max).

6 The notation α ∗
Ai

α′ means that there is a path in Ai from α to α′.

Let τmin (resp. τmax) be a sequence of transitions in Ai leading from (q, ai)
to (q′, ai+1) and going through a location with minimal (resp. maximal) cost.
Easily enough, the possible costs of the paths following τmin (resp. τmax) form an

interval whose left (resp. right) bound is ci,q,q
′

min ·(ai+1−ai) (resp. ci,q,q
′

max ·(ai+1−ai)).
Now, if c and c′ are the respective costs of q and q′, then 1

2 ·(c+c
′) ·(ai+1−ai)

is in both intervals. Indeed, the path following τmin (resp. τmax) which delays
1
2 · (ai+1 − ai) time units in q, then directly goes to q′ and waits there for the
remaining 1

2 · (ai+1 − ai) time units achieves the above-mentioned cost. This
implies that the set of all possible costs is an interval.

The bound ci,q,q
′

min · (ai+1 − ai) is reached iff there is a path from (q, ai)

to (q′, ai+1) which delays only in locations with cost ci,q,q
′

min . This is precisely
the condition expressed in the lemma. The same holds for the upper bound

ci,q,q
′

max · (ai+1 − ai). �

Similar results clearly hold for other kinds of regions:

– between a state (q, ai) and a region (q′, (ai, ai+1)) with ai+1 6= +∞, the set

of possible costs is an interval 〈0; ci,q,q
′

max · (ai+1−ai)), where 0 can be reached
iff it is possible to go from (q, ai) to some state (q′′, ai) with P (q′′) = 0.

– between a state (q, x), with x ∈ (a1, ai+1), and (q′, ai+1), the set of costs

is (ai+1− x) · 〈c
i,q,q′

min ; ci,q,q
′

max 〉, with similar conditions as above for the bounds
of the interval.

– between a state (q, x), with x ∈ (a1, ai+1), and region (q′, (ai, ai+1)) (assum-

ing ai+1 6= +∞), the set of possible costs is [0, ci,q,q
′

max · (ai+1 − x));
– between a state (q, an) and a region (q′, (an, an+1)) (with an+1 = +∞), the

set of possible costs is either [0, 0], if no positive cost rate is reachable and
co-reachable, or 〈0,+∞) otherwise. If the latter case, 0 can be achieved iff
it is possible to reach a state (q′′, an) with P (q′′) = 0;

– between a state (q, x), with x ∈ (an, an+1) and an+1 = +∞, and a re-
gion (q′, (an, an+1)), the set of costs is either [0, 0] or [0,+∞), with the same
conditions as previously.

We use these computations and build a graph G labeled by intervals which
will store all possible costs between symbolic states (i.e. pairs (q, r), where q is a
location and r a region) in A. Vertices of G are pairs (q, {ai}) and (q, (ai, ai+1)),
and tuples (q, x, {ai}) and (q, x, (ai, ai+1)), where q is a location of A. Their roles
are as follows: vertices of the form (q, x, r) are used to initiate a computation,
they represent a state (q, x) with x ∈ r. States (q, {ai}) are “regular” steps in the
computation, while states (q, (ai, ai+1)) are used either for finishing a computa-
tion, or just before resetting the clock (there will be no edge from (q, (ai, ai+1))
to any (q′, {ai+1})).

Edges of G are defined as follows:

– (q, {ai}) → (q′, {ai+1}) if there is a path from (q, ai) to (q′, ai+1). This

edge is then labeled with an interval 〈(ai+1 − ai) · c
i,q,q′

min ; (ai+1 − ai) · c
i,q,q′

max 〉,
the nature of the interval (left-closed and/or right-closed) depending on the
criteria exposed in Lemma 5.

– (q, {ai})→ (q′, {ai}) if there is an instantaneous path from (q, ai) to (q′, ai)
in A, the edge is then labeled with the interval [0, 0] (remember that we
assumed there are no discrete costs on transitions of A).

– (q, {ai})→ (q′, {a0}) if there is a transition in A enabled when the value of
the clock is ai and resetting the clock. It is labeled with [0, 0].

– (q, (ai, ai+1))→ (q′, {a0}) if there is a transition in A enabled when the value
of the clock is in (ai, ai+1) and resetting the clock. It is labeled with [0, 0].

– (q, {ai})→ (q′, (ai, ai+1)) if there is a path from (q, ai) to some (q′, α) with

ai < α < ai+1. This edge is labeled with the interval 〈0; (ai+1 − ai) · c
i,q,q′

max).

– (q, x, {ai})→ (q, {ai}) labeled with [0, 0].

– (q, x, (ai, ai+1))→ (q′, {ai+1}) if there is a path from some (q, α) with ai <

α < ai+1 to (q′, ai+1). This edge is labeled with (ai+1 − x) · 〈c
i,q,q′

min ; ci,q,q
′

max 〉.

– (q, x, (ai, ai+1))→ (q′, (ai, ai+1)) labeled with [0, (ai+1 − x) · c
i,q,q′

max).

Figure 3 represents one part of this graph. Note that each path π of this graph
is naturally associated with an interval ι(π) (possibly depending on variable x
if we start from a node (q, x, (ai, ai+1))) by summing up all intervals labeling
transitions of π.

q,x,{0} q,x,{ai} q,x,(ai,ai+1) q,x,{ai+1}

q′,x,{0} q′,x,{ai} q′,x,(ai,ai+1) q′,x,{ai+1}

...

q,{0} q,{ai} q,(ai,ai+1) q,{ai+1}

q′,{0} q′,{ai} q′,(ai,ai+1) q′,{ai+1}

...

Fig. 3. (Schematic) representation of the graph G (intervals omitted)

The correctness of graph G w.r.t. costs is stated by the following lemma,
which is a direct consequence of the previous investigations.

Lemma 6. Let q and q′ be two locations of A. Let r and r′ be two regions, and
let α ∈ r. Let d ∈ R

+. There exists a path π in G from a state (q, x, r) to (q′, r′)
with cost d ∈ ι(π)(α) if, and only if, there is a path in A with total cost d, and
going from (q, α) to some (q′, β) with β ∈ r′.

Corollary 7. Fix two regions r and r′. Then the set of possible costs of paths
in G from (q, x, r) to (q′, r′) is of the form

⋃

m∈N

〈αm − βm · x;α
′
m − β

′
m · x〉

(possibly with βm and/or β′
m = 0, and/or α′

m = +∞). Moreover,

– all constants αm and α′
m are either integral multiples of 1/Cmax(~(φ),~(ψ))

or +∞, and constants βm and β′
m are either costs of the automaton or 0;

– if r = (an,+∞), then βm = β′
m = 0 for all m.

Proof (Sketch). The set of possible costs can be computed by guessing the Parikh
image of a possible path. Then the set of possible costs along that path has
the form given in the statement. And as the set of possible Parikh images is
countable, we obtain the (possibly infinite) union of intervals of the corollary.

�

Lemma 8. For every location q, the set of clock values x such that (q, x) satisfies
EφU∼cψ is a finite union of intervals. Moreover,

– the bounds of those intervals are integral multiples of 1/C~(Φ);
– the largest finite bound of those intervals is at most the maximal constant

appearing in the guards of the automaton.

Proof (Sketch). It is possible to prove that the (possibly infinite) union of inter-
vals of the previous corollary can be reduced, for checking formula EφU∼cψ, to
a finite union of such intervals.

Then, new constants α we need to consider for checking EφU∼cψ are such
that αm − βm · α = c, i.e. α = (αm − c)/βm. Thus α is an integral multiple of
1/C~(Φ). �

This concludes the induction step for formula EφU∼cψ when the automaton
has no discrete cost. Extending this result to other modalities and to automata
with discrete cost is a rather technical matter that gives no new insights on the
model-checking problem; we thus postpone the proofs of these two extensions to
the full version of this paper. �

Remark 2. The exponential number of constants ai’s is unavoidable in general.
Indeed, consider the 1PTA A displayed on Fig.4. Using a WCTL formula, we
will require that the cost is exactly 4 between a and b. That way, if clock x
equals x0.x1x2x3 . . . xn . . . (this is the binary representation of a real in the
interval (0, 2)) when leaving a, then it will be equal to x1.x2x3 . . . xn . . . in b. We

consider the WCTL formula φ(X) = E
(

(a ∨ b)U=0(¬a ∧ E (¬bU=4(b ∧ X)))
)

,

where X is a formula we will specify. Then formula φ(EF=0c) states that we
can go from a to b with cost 4, and that x = 0 when arriving in b (since we
can fire the transition leading to c). From the remark above, this can only be
true if x = 0 or x = 1 in a. Now, consider formula φ(E F=0c ∨ φ(EF=0c)). If

ṗ=1

ṗ=4

ṗ=2

ṗ=2

ṗ=1

ṗ=1 ṗ=1

x<1

x≥1

x=2

x:=0

x=2

x:=0

x<2

x<2

x=0

a b c

Fig. 4. The 1PTA A

it holds in state a, then state c can be reached after exactly one or two rounds
in the automaton, i.e., if the value of x is in {0, 1/2, 1, 3/2}. Clearly enough,
nesting φ n times characterizes values of the clocks of the form p/2n−1 where p
is an integer strictly less than 2n.

5 Algorithms and Complexity

In this section, we provide two algorithms for model-checking WCTL on 1PTA.
The first algorithm runs in EXPTIME, whereas the second one runs in PSPACE,
thus matching the PSPACE lower bound. However, it is easier to first explain the
first algorithm, and then reuse part of it in the second algorithm. Finally, we will
pursue the example of Subsection 2.3 for illustrating our PSPACE algorithm.

5.1 An EXPTIME Algorithm

The correctness of the algorithm we propose for model-checking 1PTA against
WCTL properties relies on the properties we have proved in the previous section:
if A is an automaton with maximal constant M , writing C for the l.c.m. of
all costs labeling a location, and if Φ is a WCTL formula of size n, then the
satisfaction of Φ is uniform on the regions (m/Cn; (m+1)/Cn) with m < M ·Cn,
and also on (M ; +∞). The idea is thus to test the satisfaction of Φ for each state
of the form (q, k/2Cn) for 0 ≤ k ≤ (M · 2Cn) + 1 (i.e. at the bounds and in the
middle of each region).

To check the truth of Φ = EφUP∼cψ in state (q, x) with x = k/2Cn, we
will use the graph G that we have defined in Section 4. From the state (q, x, r)
of G, where r is the region containing k/2Cn, we check if EφU∼cψ (say) holds by
non-deterministically discovering a witness. This requires the following lemma:

Lemma 9. Let s be the smallest positive cost in A, and C be the lcm of all
positive costs of A. Let q be a location of A, and x ∈ R

+. Let Φ = EφU∼cψ
be a WCTL formula of size n. Then (q, x) |= Φ iff there exists a trajectory
in A, from (q, x) and satisfying φU∼cψ, and whose projection in G visits at
most N = ⌊c · Cn/s⌋+ 2 times each state of G.

Proof (Sketch). Let τ be a trajectory in A, starting from (q, x) and satisfy-
ing φU∼cψ. To that trajectory corresponds a trajectory ρ inG, starting in (q, x, r).
Consider a cycle in that trajectory ρ: either it has a global cost interval [0, 0], in

which case it can be removed and still yields a witnessing trajectory; or it has a
global cost interval of the form 〈a, b〉 with b > 0. In that case, letting s be the
smallest positive cost of the automaton, we know that b ≥ s/Cn. Now, if some
state of G is visited (strictly) more than N = ⌊c · Cn/s⌋ + 2 times along ρ, we
build a trajectory ρ′ from ρ by removing extraneous cycles, in such a way that
each state of G is visited at most N times along ρ (and that ρ starts and ends
in the same states). Since we assumed that ρ does not contain cycles with cost
interval [0; 0], we know that the upper bound of the accumulated cost along ρ′

is above c. Also, the lower bound of the accumulated costs along ρ′ is less than
that of ρ. Since ρ “contains” a trajectory witnessing φU∼cψ, the cost interval of
ρ contains a value satisfying ∼ c, thus so does the cost interval of ρ′. In other
words, ρ′ still contains a trajectory witnessing φU∼cψ. �

We now describe our algorithm: assuming we have computed, for each state q
of A, the intervals of values of x where φ (resp. ψ) holds, we non-deterministically
guess the successive states of a trajectory inG. At each step, we also have to guess
the intermediary states that are visited (between (q, {ai}) and (q′, {ai+1})), and
check that they satisfy φ when x is in (ai, ai+1). This verification can be achieved
in PSPACE. Moreover, at each step of this algorithm for checking that (q, x) |=
EφU∼cψ, we only need to store a polynomial amount of information: the current
position in G, the number of steps so far, and the interval of costs accumulated
so far. At each point, the algorithm may non-deterministically decide to go to
a ψ-state, and will check that the cost constraint is satisfied. In that case, it
returns yes. Otherwise, when the number of steps reaches |G| · (⌊c · Cn/s⌋+ 2)
(which is exponential), the procedure stops and returns no.

Thus, our procedure for checking that (q, x) |= EφU∼cψ is in PSPACE. Still,
since we store all the intervals for each location of the automaton and each
subformula, the whole algorithm requires an exponential amount of space, but
it runs in exponential time.

The other existential modalities are handled by reducing to the case of E U∼c,
as explained in Section 4. We assume that no universal modality appears in the
formula by replacing them with negated existential ones.

5.2 A PSPACE Algorithm

The PSPACE algorithm will reuse some parts of the previous algorithm, but
it will improve on space performance by storing only the minimal information
required, preferring to spend time on reconstructing model-checking information
rather than to spend space on storing it. Our method is thus similar in spirit to
the space-efficient, on-the-fly algorithm for TCTL presented in [14].

We will then need, while guessing a witness for EφUP∼cψ, to check that all
intermediary states satisfy formula φ. As φ might be itself a WCTL formula
with several nested modalities, we will fork a new computation of our algorithm
on formula φ from each intermediary state. The maximal number of threads
running simultaneaously is at most the depth of the parsing tree of formula Φ.
When a thread is preempted we only need to store a polynomial amount of

information in order to be able to resume it. Indeed, it is sufficient to store for
each preempted thread a triple (α,K, I) where α is a node a graph G, K is the
value of a counter bounded by |G| ·(⌊c · Cn/s⌋+ 2) counting the number of steps
of the path we are guessing (we know that a witness can be bounded by this
constant), and I is an interval corresponding to the accumulated cost along the
path being guessed.

The algorithm thus runs as follows: we start by labeling the root of the tree
by α = (q, x, r), K = 0 and I = [0; 0]. Then we guess a path in G starting
from (q, x, r), and when a new state (q′, r′) is added, we increment the value
of K, update the value of the interval, as described in the previous section.
Then, either we choose to verify that the state satisfies φ, or the constraint
P ∼ c can be satisfied by the new interval and we verify in addition that the
new state satisfies ψ. Moreover, we need to prove that all intermediary states
(see the EXPTIME algorithm) also satisfy φ (it is of course sufficient to check
intermediary with clock values of the form h/2Cn). All these verifications of φ or
ψ are done by starting a new thread in the computation, and a new guess of path
can start for a subformula of the original one... when all these computations are
finished, we can continue guessing the original path for formula Φ, and so on.

The number of nested guesses can be bounded by the depth of the parsing
tree of Φ, because when a new thread starts, it starts from a node which is a
child of the previous node. Thus, the memory which is needed in this algorithm
is the parsing tree of formula Φ with each node labeled by a tuple which can be
stored in polynomial space, which leads to a globally PSPACE algorithm.

Example 1. We illustrate our PSPACE algorithm on our initial example, with
formula Φ = ¬E (OK Ut≤8(Problem ∧ ¬EFc<30OK)). We write g = 1/C2 for
the resulting granularity as defined in Prop. 4, and consider a starting state,
e.g. (OK, x = mg).

¬
(OK, x, r)
step : 0
cost : [0, 0]

E Ut≤8

(OK, x, r)
step : 0
cost : [0, 0]

OK
(OK, x, r)
step : 0
cost : [0, 0]

∧

Problem ¬

E Uc<30

⊤ OK

¬
(OK, x, r)
step : 0
cost : [0, 0]

E Ut≤8

(OK, {x + g})
step : 1
cost : [g, g]

OK
(OK, {x + g})
step : 0
cost : [0, 0]

∧

Problem ¬

E Uc<30

⊤ OK

¬
(OK, x, r)
step : 0
cost : [0, 0]

EUt≤8

(Problem, {x + kg})
step : k

cost : [kg, kg]

OK ∧
(Problem, {x + kg})
step : 0
cost : [0, 0]

Problem ¬

EUc<30

⊤ OK

...

Fig. 5. Execution of our PSPACE algorithm on the initial example.

Fig. 5 show three steps of our algorithm. The first step represents the first
iteration, where subformula OK is satisfied at the beginning of the trajectory.
At step 2, the execution goes to (OK, x + g): we check that the left-hand-side
formula still holds in (OK, x+ g) (as depicted), but also in intermediary states.
The third figure corresponds to k steps later, when the algorithm decides to go to
the right-hand-part of E Ut≤8. In that case, of course, it is checked that kg ≤ 8,
and then goes on verifying the second until subformula.

6 Undecidability of WCTL∗ Model-Checking

The logic WCTL∗ is an extension of WCTL that allows nesting of modalities
without existential or universal quantifications. We prove that it is undecidable
on 1PTAs. To our knowledge, the complexity of TCTL∗ model-checking has
not been studied on one-clock timed automata. However, it is in EXPSPACE on
durational Kripke structures, a discrete-time extension of Kripke structures [16].

Theorem 10. Model-checking WCTL∗ over 1PTA is undecidable.

Proof (Sketch). We encode the halting problem for a two-counter machine M
as a model-checking problem for WCTL∗ over 1PTA. The counters c1 and c2 are
encoded by clock x being equal to 1/(2c1 · 3c2).

We first explain how we en-
1

qj

1 2 1
qk

x=1

x:=0

Fig. 6. Incrementing a counter

code an instruction incrementing
counter c1, say “qj: c1:=c1+1;
goto qk”. Such an instruction is
encoded by the automaton dis-
played on Fig. 6 (where costs are written in locations). We will require that the
price between the date at which we enter (or equivalently exit) qj and the date
at which we enter qk is exactly 1. This is enforced by checking the following path
formula (with nested until modalities) when entering qj :

ϕincr1 = qjU=0(¬qj ∧ (¬qkU=1qk))

This ensures that clock x has been divided by 2, i.e., that counter c1 has been
incremented. Decrementation can be handled in a similar way by setting the cost
of the second (resp. third) location to 2 (resp. 1) and enforcing global cost along
that module to be 2. Those operations easily adapt to counter c2.

Testing if counter c1 equals 0 reduces to checking that the value of clock x
is of the form 1/3c2 , thus to multiplying clock x by 3 until it possibly equals 1.
Consider the following instruction: “qk: if (c1==0) goto ql”. We encode this
instruction with the automaton of Fig. 7.

Multiplying clock x by 3 is achieved by one pass through the loop with cost
exactly 3. Consider the following formula:

ϕmult = E
(

m⇒
(

mU=0z ∨mU=0(¬m ∧ ¬mU=3m)
)

)

Uz

1
qk

1
ql

1

m

1
z

1 3 1
x=1

x:=0

Fig. 7. Testing a counter to 0

It precisely expresses that it is possible to reach z after a finite number of passes
through the loop, each pass having total cost 3. This holds iff the original value
of clock x when entering the module was of the form 1/3i, i.e., iff counter c1 was
equal to 0. Now, from qk, we simply have to ensure the following property:

ϕtest1 = qkU=0

(

¬qk ∧ E
(

¬mU=0(m ∧ ϕmult)
)

∧
(

¬qlU=0ql
)

)

Now, the global reduction consists in building a larger automaton, with one
state qj per instruction of the two-counter machine, and the intermediary states
required by the above modules. The following formula expresses that the halting
state can be reached after a finite number of executions of the instructions:

E
(

∧

j

(qj → ϕtype(qj))
)

UqHalt

where type(qj) is the type of instruction qj (i.e., “incr1” if qj is an incremen-
tation of counter c1, “test1” is it is a test of counter c1, and so on). State q0
satisfies this property iff there exists a computation of the two-counter machine
that ends up in state qHalt. �

7 Conclusion

In this paper we have proved that the model-checking of one-clock priced timed
automata against WCTL properties is PSPACE-complete. This is rather sur-
prising as model-checking TCTL over one-clock timed automata has the same
complexity, though it allows much less features. For proving this result, we have
exhibited a sufficient granularity such that truth of formulas over regions defined
with this granularity is uniform. Based on this result, we developed a space-
efficient algorithm which computes satisfaction of subformulas on-the-fly. This
result has to be contrasted with the undecidability result of [5] which establishes
that model-checking priced timed automata with three clocks and more against
WCTL properties is undecidable.

There are several natural research directions: the decidability of WCTL
model-checking for two-clocks priced timed automata is not known, we just know
that these models have an infinite bisimulation [10]; another interesting extension
is multi-constrained modalities, e.g. EφUP1≤5,P2>3φ?

References

1. Y. Abdeddäım, E. Asarin, and O. Maler. Scheduling with timed automata. Theor.
Comp. Science, 354(2):272–300, 2006.

2. R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability in weighted
timed games. In Proc. 31st Intl. Coll. Automata, Languages and Programming
(ICALP’04), LNCS 3142, p. 122–133. Springer, 2004.

3. R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata.
In Proc. 4th Intl. Workshop Hybrid Systems: Computation and Control (HSCC’01),
LNCS 2034, p. 49–62. Springer, 2001.

4. G. Behrmann, A. Fehnker, Th. Hune, K. G. Larsen, P. Pettersson, J. Romijn, and
F. Vaandrager. Minimum-cost reachability for priced timed automata. In Proc.
4th Intl. Workshop Hybrid Systems: Computation and Control (HSCC’01), LNCS
2034, p. 147–161. Springer, 2001.

5. P. Bouyer, Th. Brihaye, and N. Markey. Improved undecidability results on
weighted timed automata. Inf. Proc. Letters, 98(5):188–194, 2006.

6. P. Bouyer, E. Brinksma, and K. G. Larsen. Staying alive as cheaply as possible. In
Proc. 7th Intl. Workshop Hybrid Systems: Computation and Control (HSCC’04),
LNCS 2993, p. 203–218. Springer, 2004.

7. P. Bouyer, E. Brinksma, and K. G. Larsen. Optimal infinite scheduling for multi-
priced timed automata. Form. Meth. in Syst. Design, 2006. To appear.

8. P. Bouyer, F. Cassez, E. Fleury, and K. G. Larsen. Optimal strategies in priced
timed game automata. In Proc. 24th Conf. Found. Softw. Tech. & Theor. Comp.
Science (FST&TCS’04), LNCS 3328, p. 148–160. Springer, 2004.

9. P. Bouyer, K. G. Larsen, N. Markey, and J. I. Rasmussen. Almost optimal strategies
in one-clock priced timed automata. In Proc. 26th Conf. Found. Softw. Tech. &
Theor. Comp. Science (FST&TCS’06), LNCS 4337, p. 346–357. Springer, 2006.

10. Th. Brihaye, V. Bruyère, and J.-F. Raskin. Model-checking for weighted timed
automata. In Proc. Joint Conf. Formal Modelling and Analysis of Timed Sys-
tems and Formal Techniques in Real-Time and Fault Tolerant System (FOR-
MATS+FTRTFT’04), LNCS 3253, p. 277–292. Springer, 2004.

11. Th. Brihaye, V. Bruyère, and J.-F. Raskin. On optimal timed strategies. In Proc.
3rd Intl. Conf. Formal Modeling and Analysis of Timed Systems (FORMATS’05),
LNCS 3821, p. 49–64. Springer, 2005.

12. E. A. Emerson and J. Y. Halpern. ”Sometimes” and ”not never” revisited: On
branching versus linear time temporal logic. J. ACM, 33(1):151–178, 1986.

13. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512–535, 1994.

14. T. A. Henzinger, O. Kupferman, and M. Y. Vardi. A space-efficient on-the-fly
algorithm for real-time model checking. In Proc. 7th Intl. Conf. Concurrency
Theory (CONCUR’96), LNCS 1119, p. 514–529. Springer, 1996.

15. F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model checking timed automata
with one or two clocks. In Proc. 15th Intl. Conf. Concurrency Theory (CON-
CUR’04), LNCS 3170, p. 387–401. Springer, 2004.

16. F. Laroussinie, N. Markey, and Ph. Schnoebelen. Efficient timed model checking
for discrete-time systems. Theor. Comp. Science, 353(1-3):249–271, 2006.

17. K. G. Larsen and J. I. Rassmussen. Optimal conditional reachability for multi-
priced timed automata. In Proc. 8th Intl. Conf. Found. Softw. Science and Com-
putation Structures (FoSSaCS’05), LNCS 3441, p. 234–249. Springer, 2005.

18. J. I. Rasmussen, K. G. Larsen, and K. Subramani. Resource-optimal scheduling
using priced timed automata. In Proc. 10th Intl. Conf. Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’04), LNCS 2988, p. 220–235.
Springer, 2004.

