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Abstract

We focus on the problem of finding (the size of) a minimal
winning coalition in a multi-player game. We prove that de-
ciding whether there is a winning coalition of size at most k
is NP-complete, while deciding whether k is the optimal
size is DP-complete. We also study different variants of our
original problem: the function problem, where the aim is to
effectively compute the coalition; more succinct encoding of
the game; and richer families of winning objectives.

1. Introduction

Verification and control. Nowadays more and more real-
life systems are controlled by computer programs. It is of a
capital importance to know whether the programs govern-
ing these systems are correct. In order to formally verify
them, those systems can be modeled by various mathemat-
ical models, such as finite automata [15] or Kripke struc-
tures [12]. Together with these models, several temporal
logics have been considered, for instance LTL (linear-time
temporal logic) [20] or CTL (computation-tree logic) [5, 21],
in order to formally express “correctness”. In this setting,
given a model M and a temporal-logic formula ¢, the model-
checking problem asks whether M satisfies ¢. Clearly if
( expresses a security specification of a system M, it is
highly desirable to have effective methods for solving the
corresponding model-checking problem. Several efficient
model-checking tools have been developed and applied with
great success over an abundant number of industrial case
studies [16, 4, 9].

Model-checking focuses on closed systems, i.e., systems
where all the actions are controlled by a single agent. If we
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want to distinguish between actions of a controller and ac-
tions of an (hostile) environment, or more generally if we are
interested in modelling interactions between several agents,
we have to consider open systems. These systems are stud-
ied in control theory [2, 22], where the ultimate goal is to
automatically synthesize a controller that will restrict the
behavior of the system in order to satisfy some given proper-
ties. The natural mathematical framework to discuss open
systems is game theory. A natural game version of finite
automata and Kripke structures is the model of concurrent
game structure (CGS) [1]. CGSs are finite-state automata
whose transitions conform to the following protocol: at each
step, all the players select one of the moves they are allowed
to play, and the next state is looked up in the transition table
of the CGS. As regards specification languages, alternating-
time temporal logic (ATL) has been proposed in [1] as an
extension of CTL for reasoning about strategies: path quanti-
fiers are replaced with strategy quantifiers. It is then possible
to express controllability properties, such as “Player 1 has a
strategy to reach some given state”. Compared to CTL, this
extension comes with no extra cost: it can still be verified in
polynomial time [1] (though there can be slight discrepancies
when the number of agents is a parameter [14]).

Our contribution. In this paper, we study a different facet
of ATL. Instead of checking if an ATL formula holds on a
given CGS, we rather consider the question of finding a min-
imal coalition allowing to reach an objective. For example,
when modelling a communication network, we could won-
der how many nodes of the network have to be controlled in
order to ensure that a message can transit towards its destina-
tion. Our results easily extend to the case where agents have
a “price”: in the example above, some nodes might be more
difficult than others to control, which could be expressed as
the cost of controlling them. The problem would then be to
find the cheapest coalition that can enforce our goal.

This kind of problems can be naturally encoded in our



setting, and we settle the precise complexity of this and
several related problems: for simple winning objectives,
deciding whether there exists a winning coalition of size k is
NP-complete, while deciding whether k is the optimal size
is DP-complete. Furthermore, we study different variants of
our original problem: the function problem, where the aim is
to effectively compute the coalition, more succinct encoding
of the game, and richer families of winning objectives.

Related work. Coalition formation is an active topic in
cooperative game theory [17] and has recently been extended
to the multi-agent setting, leading to interesting applications
(see e.g. [23, 6, 7]). In particular, qualitative coalition games
are studied in [25], where the authors end up with similar
unusual complexity classes as ours. Still, the problems they
consider are quite different from ours, and we see no direct
relationship between them (even in the light of [8]).

Our optimal coalition problem is in some sense related
to the temporal logic query problem introduced in [3] and
further studied in [10]. Our algorithm could be used to solve
ATL queries of the form {7 ¢.

Outline of the paper. We introduce the necessary defini-
tions in Section 2. In Section 3, we fully solve our problems
in the case of reachability objectives in explicit CGSs, prov-
ing their NP-completeness and DP-completeness. Last, Sec-
tion 4 presents several extensions of this result to symbolic
(or “implicit”) CGSs [14], richer winning objectives and
DCGS [13]. Since some of the complexity classes we use
are non-standard, we also include some related definitions
in Appendix A.

2. Definitions

Definition 1 ([1]). A Concurrent Game Structure (CGS for
short) C is a 6-tuple (Agt, Loc, AP, Lab, Mv, EAg) where:

o Agt = {Ay,..., A} is a finite set of agents (or play-
ers);

e Loc and AP are two finite sets of locations and atomic
propositions, resp.;

e Lab: Loc — 24P is a function labeling each location
by the set of atomic propositions that hold for that
location;

o Mv: Loc x Agt — P(N) \ {@} defines the (finite) set
of possible moves for each agent in each location.

e Edg: Locx NF — Loc, where k = |Agl|, is a (partial)
function defining the transition table. With each loca-
tion and each set of moves of the agents, it associates
the resulting location.

The intended behavior of such a model is as follows:
in any location ¢, each player A; independently chooses
one of its allowed moves m; (defined by Mv(q, 4;)). Once
they all have chosen, the execution switches to the loca-
tion given by EdgQ(q, (m;),eagt). Formally, given a loca-
tion ¢, a coalition A C Agt, and a set of moves (1m;)4,ca
for the players in A, we let Next(q, (m;)a,ca) be the set
{Eg(g, (ma)a,eag) | Vi & A my € My(q, A;)}. We
write Next(q) for the set of possible successors of location g
(i.e., Next(q, @)).

Definition 2. An execution of a CGS C from location qq is an
infinite sequence (q;);en s.t., forany i > 0, q; € Next(q;—1).

Remark. Complexity results heavily rely on how the transi-
tion table EAQ is encoded. Following [14], we consider two
ways of encoding the table:

e the first way is to explicitly list the cells of the table.
If each of the k agents has two possible moves, this ends
up in a table of size 2% - |Loc|.

e the second way is by a finite list of pairs (¢;, qi)ien,
where each q; is a location in Loc, and ¢; are posi-
tive boolean combinations of propositions of the form
m; = ¢, whose individual meaning is “player A; plays
move c”. The first formula that holds true indicates the
successor state. For example, given the list

([ml = 1,Q1], [md = 27(12}7 [T7Q3])7

the play goes to location q; if player 1 chooses move 1,
otherwise it goes to location qs if player 3 chooses
move 2, otherwise it goes to qs. W.l.o.g., we require
that the last formula always be T.

CGSs with the first encoding are called explicit CGSs,
while the second type of CGSs are symbolic CGSs. It is
easy to figure out how to translate one into the other, the
translation to explicit CGSs being exponential.

Definition 3. Let A, € Agt be a player. A strategy for
player A; is a total function f;: Loc™ — N mapping each
prefix of an execution to an integer. It is required that the
result of a strategy is a possible move for the player in
the last location of the prefix: ¥p = qoq1 - .. qx- fi(p) €
Mv(g, A;).

Given a coalition A C Agt, a strategy for coalition A is
a sequence of strategies (f;) a,ea, one for each player in A.

With the definitions above, it is easy to define the out-
comes of a strategy:

Definition 4. Let (f;)a,ca be a strategy for a given coali-
tion A C Agt An execution p = qo q1 . .. of C is an outcome

of the strategy (fi)a,ea if

Vj > 0.q; € Next(gj—1,(fi(q0 --- qj—1))A,ea)-



The set of outcomes of (fi)a,ea from qo is denoted by
Out(qo, (fi) a,ea)-

Definition 5. A winning objective ) is a set of execu-
tions. A strategy (fi)a,ea is winning from location q if
Out(q, (fi)a,ea) C Q.

In the rest of the paper, we will mainly focus on reach-
ability objectives: given a set of goal locations F' C Loc,
the winning objective consisting in reaching F' is defined as
Qreach(F) = 1(¢i)ien | Fi. ¢ € F'}. Other objectives such
as safety, Biichi or LTL objectives can be defined in a similar
way.

In the sequel, we focus on the problem of finding (the
size of) an optimal coalition (in terms of its size) having a
winning strategy:

Definition 6. The problem of coalition size is defined as
Sollows: given a CGS C, an initial location qy € Loc, a
winning objective (), a maximal size k € N; determine if
there exists a coalition of size at most k having a winning
strategy from qq for the objective €.

We also define the following variants:

Definition 7. Given a CGS C, a coalition A C Agt, a loca-
tion qo € Loc, a winning objective ), and an integer k € N,
we define the following problems:

e the problem of constrained' (resp. co-constrained)
coalition size consists of determining if there exists a
coalition of size at most k, not containing A (resp. con-
taining A), having a winning strategy from qq for the
objective ().

e the problem of optimal coalition size consists of deter-
mining if there exists a coalition of size exactly k having
a winning strategy from qq for the objective <), and no
smaller coalition has.

The next section focuses on those four problems in the
case of explicit CGSs, for reachability objectives. The other
combinations are explained in Section 4.

3. Optimal coalition problems for reachability
objectives on explicit CGSs

It is well-known that, given a coalition in an explicit CGS,
deciding if it has a winning strategy for reachability objec-
tives can be done in polynomial time [1, 14]. This yields
an NP algorithm for the coalition size problems, consisting
in non-deterministically guessing a candidate coalition, and
checking that it has a winning strategy.

I'Since our algorithms consist in guessing a candidate coalition and
checking that it is winning, we could have much more general constraints
on coalitions, provided that they can be checked in polynomial time.

As a consequence, the optimal coalition size problem is
in DP2: the optimal coalition size is k iff there is a winning
coalition of size at most k, and no winning coalition of size
at most k — 1.

We prove that the algorithms above are optimal (even on
turn-based® games).

Theorem 8. The ((co-)constrained) coalition size problem
with reachability objectives is NP-hard on explicit CGSs.

Proof. We begin with the constrained version, reducing
3SAT to it*. Let ¢ = /\1<i<n(l’i71 vV li72 vV li,3) be an
instance of 3SAT on m variables z; to x,,. We build a
turn-based game with 3m + n + 3 states, each one being
controlled by a different player, where:

o there are two states labeled 0 and 1, the second one be-
ing the goal to be reached. There is a self-loop on each
of these two states (this is only because our definitions
require each location to have a successor);

e for each variable z;, with 1 < j < m, there are three
states labeled x;, —x; and x;7. The states x; and — x;
have transitions to both states 0 and 1, while state x;?
has three transitions to z;, = x; and 0;

e foreachclausec; =1;1 V02 Vi3, withl <i<mn,
there is one state, with four transitions: one to each of
the three states corresponding to literals /; ; to [; 3, and
an additional one to state 0;

e last, the initial state gg has n + m transitions, one to
each “clause”-location c¢; and one to each “question-
mark” location x ;7.

For the sake of simplicity, we identify each player with the
name of the state it controls. Fig. 1 depicts the resulting
turn-based game (where a solid transition from/to a set of
nodes indicates a transition from/to each node of the set;
dashed transitions represent transition from a clause node to
each literal node it contains).

Our instance of the constrained coalition size problem
is defined on the structure above, with the following addi-
tional requirements: we are looking for a coalition of size at
most n + 2m not containing player qg.

First, assume that our initial instance ¢ of 3SAT is sat-
isfiable. Let v be a valuation of the variables x; to x,
satisfying ¢. Consider the coalition containing the n
“clause” players, the m “question-mark” players, and, for
each 1 < j < m, player ; if v(z;) = T and player ~x;
if v(z;) = L.

2See Appendix A for some notes about this and other complexity classes.

3 A game is turn-based if, in each location, all but one player have only
one possible move.

4Other reductions, e.g. from VERTEX-COVER, could also be achieved.
Still, the reduction we present here is the most elegant we found that yields
a turn-based game and that can be used for our extensions of Section 4.2.
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Figure 1. Global schema of the turn-based
game used for the reduction.

This coalition has size n + 2m, and does not contain ¢g.
It remains to exhibit a winning strategy for this coalition:

e since each clause is made true by valuation v, (at least)
one of the successors of each “clause” state belongs to
the coalition. The strategy of each “clause” player is to
go to that state;

e similarly, each “question-mark™ player will send the
play to the (only) successor that belongs to the coalition;

e last, the “literal” players will jump to the goal state 1.

It is clear enough that this strategy is winning: player g
cannot do anything but go to a state that belongs to the
coalition. Then, the strategy of the “clause” player and
of the “question-mark” player sends the play to a “literal”
player that belongs to the coalition, which herself goes to
the goal location.

Conversely, assume that there is a winning coalition of
size at most n + 2m not containing qq. First notice that
any winning coalition necessarily contains the “clause”- and
“question-mark” players (otherwise, the coalition has no win-
ning strategy). For the same reason, for each variable z;, at
least one of x; and — x; must be in the coalition.

This makes n + 2m players, so that our winning coalition
contains no other player. As a consequence, for each 1 <
J < 'm, exactly one of z; and — x; belongs to the coalition.
This defines a valuation v, with v(x;) = T iff player z;
belongs to the winning coalition.

It remains to prove that this valuation satisfies ¢. Since
the coalition is winning, each “clause” player can send the
play in a state that belongs to the coalition. By construction,

C)
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Y
([qn+2m,+1,1] [Qn+27n+1,2] @n+2m,+1,n+21n+)
,
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X

o “clause” states to “question-mark” states

Figure 2. The module replacing ¢.

this implies that the corresponding clause is satisfied under
valuation v.

We now extend this reduction to the non-constrained prob-
lem. In order to relax the constraint that player ¢y does not
belong to the coalition, we add several “copies” of gg (and
as many new players) in the following way: for 1 < k <
n+2m+ 1, and for each 1 < k&’ < k, there is a state gy j-.
Each state g/, with1 < k < n+2m+ 1, has k41
transitions, to states qr41,1 O Qr41,k+1- States gn2m+1,1
tO Gn+2m+1,n+2m+1 have the same transitions as go in the
previous reduction. The new initial state is g 1. This con-
struction is depicted on Fig. 2. The rest of the construction
is similar to the previous one.

As in the constrained case, if our initial instance of 3SAT
is positive, we can build a coalition of size n + 2m and its
strategy, and prove that this strategy is winning: after the
first n + 2m + 1 steps, the play will end up in a (“clause”
or “question-mark”) state controlled by the coalition, which
will win by applying its strategy.

Conversely, if there is a winning coalition of size at
most n+ 2m, this coalition contains none of the newly added
players. Indeed, if a coalition A of size (at most) n + 2m is
winning and contains some player gy, i, then the coalition A’
obtained from A by removing gj, 5 is also winning: this is
because whatever the strategy for coalition A, there is an out-
come ending up in an uncontrolled state ¢y, 2pm+1,1- Since
coalition A has a winning strategy from that uncontrolled
state, so does coalition A’. Also, by symmetry of the roles
of the states ¢,,+2m+1, in the lower set, coalition A has a
strategy from any of those states, thus also from state ¢y ;.
As a consequence, if there is a winning coalition of size
at most n + 2m, then there is one containing none of the
states gy, ;. We are then back to the situation of the previous
reduction.



As for the co-constrained problem, it contains as a special
case the unconstrained problem, and is thus also NP-hard.
d

Theorem 9. The optimal coalition size problem for reacha-
bility objectives is DP-hard on explicit CGSs.

Proof. Given a pair of boolean formulas (¢, ¢’) in 3-CNF,
the problem SAT-UNSAT returns “yes” iff ¢ is satisfi-
able and ¢’ is not. This problem is easily shown DP-
complete [18]. We reduce this problem to the (constrained)
optimal coalition size problem, following the lines of the
proof for NP-hardness. Pick an instance (¢, ¢'), where

o) = /\1§i§n<,) (ll(q \% ll('% \% ll(/%) (assumed w.l.o.g. to

involve disjoint sets of variables) of SAT-UNSAT. We first
apply some transformations to ¢ and ¢':

e following the proof of [18, Theorem 17.2], we trans-
form ¢’ so that at least all but one clause is satisfiable:
this is achieved by disjuncting a fresh variable 2’ to
each clause, and adding the extra clause — z’. The re-
sulting formula is satisfiable iff the original one was,
and by setting all variables to true, all but one clause
is satisfied. In the sequel we denote by ¢’ the trans-
formed formula and assume it contains 7’ clauses and
m/ variables (including the variable 2").

e asregards ¢, we duplicate each variable and each clause
and the new formula is the conjunction of ¢ and qB,
where dA) is obtained by replacing each variable z;
with z;. Hence if ¢ is not satisfiable, then any valu-
ation will make at least two clauses false. Again we
keep the notation ¢ for the transformed formula and
assume it contains n clauses and m variables.

Assuming that both transformations have been applied,
we then build the turn-based game depicted on Fig. 3, which
roughly contains two copies of the game we used in the
NP-hardness proof.

The instance (¢, ¢') of SAT-UNSAT is then positive iff
any minimal coalition excluding g has size exactly n+2m+
n' 4+ 2m’ + 1. Indeed:

e if the instance is positive, then there exists a valua-
tion of variables z; satisfying ¢. Applying the same
construction as in the NP-hardness proof, a satisfying
valuation yields a coalition of n 4+ 2m players that has
a winning strategy in the left part of the board. For ¢/,
as for the other formula, it suffices to add all the “clause”
and “question-mark” players to the coalition, as well as
all “positive” variable players, plus —z’. This coalition
is winning in the right part of the board thanks to the
almost-satisfiability of ¢'. This yields a winning coali-
tion having n 4+ 2m + n’ + 2m’ + 1 players. By using
the same arguments as in the NP-hardness proof, we
can prove that no smaller coalition can win.

e conversely, assume that our SAT-UNSAT instance is
negative. There may be several cases: (7) if both ¢
and ¢’ are satisfiable, then there is a winning coalition
of size n + 2m + n’ 4+ 2m/; (i) if both ¢ and ¢’ are
unsatisfiable, then the coalition needs at least n+2m-+1
players for winning in the left part of the board, and n’ +
2m’ + 1 players for winning on the right part. Thus
at least n + 2m +n’ + 2m’ + 2 players are needed to
win the game; (iii) last, if ¢ is not satisfiable and ¢’
is, then exactly n’ + 2m’ players are necessary and
sufficient to win on the right part of the board. But
thanks to our transformation on ¢, n + 2m + 1 players
are not sufficient for winning on the left part, because
we duplicated the original formula. Thus, again in that
case, at least n+2m +n' +2m’ + 2 players are needed
to win the game.

The extension to the unconstrained and co-constrained
versions of the problem are similar to the NP-hardness proof,
and we omit them. O

In the end, we have:

Theorem 10. In explicit CGSs and for reachability objec-
tives, the ((co)-constrained) coalition size problem is NP-
complete, while the optimal coalition size problem is DP-
complete.

4. Related problems

In this section, we establish the precise complexity of sev-
eral related problems. The first part is devoted to the study
of symbolic CGSs, where the transition table is encoded
symbolically. We then look at function problems directly
related to our original problem: the aim is then to effec-
tively compute a coalition (if any). Finally, we extend our
results to different kinds of winning objectives, in particular
quantitative objectives on durational CGSs.

4.1. Optimal coalitions in symbolic CGSs

As mentioned in Remark 2, symbolic CGSs are (assumed
to be) more succinct than explicit ones. In particular, decid-
ing whether a coalition has a winning strategy (for reachabil-
ity, safety or Biichi objectives) can only be decided in X5 for
this class of CGSs [14]. As a consequence, our algorithm
for deciding the optimal coalition problem is now in X5
(i.e., the class N PNP, see Appendix A for details): it consists
in non-deterministically guessing a coalition of the given
size together with a (memoryless) strategy for that coali-
tion, and then check if the strategy is winning. The NP
oracle is used for deciding which of the formulas defining
the transition table are satisfiable. This algorithm is opti-
mal, as it is possible to encode the ¥5-complete problem
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Figure 3. Global schema of the turn-based game used for the reduction to SAT-UNSAT.

QSAT;, (see Appendix A) into the coalition size problem on
symbolic CGSs. Thus, we have:

Theorem 11. The ((co-)constrained) coalition size problem
for reachability objectives is X5 -complete in symbolic CGSs.

For the exact optimal coalition problem, we define a class
similar to DP for Zg (see [25] and Appendix A):

D5 ={LiNLy| Ly € X5, Ly € co¥h}.

That our problem belongs to this class is rather obvi-
ous, with an argument similar to the one for explicit CGSs.
It turns out to be complete for this class, as the encod-
ing of SAT-UNSAT carried out in the proof of Theo-
rem 9 can be adapted to encode the D5 -complete problem
QSAT-UNQSAT,, (see Appendix A).

Theorem 12. In symbolic CGSs, the optimal coalition size
problem for reachability objectives DY -complete.

4.2. Computing optimal coalitions

Our problem of deciding the existence of a small coali-
tion is obviously associated with the problem of effectively
computing the size of an optimal coalition, or an optimal
coalition itself. Those problems are called function problems,
as opposed to classical decision problems [18]. Some of the
associated complexity classes are described in Appendix A.

From our reduction of 3SAT (proof of Theorem 8), and
since the function problem associated with 3SAT is FNP-
complete, we immediately get hardness in FNP for the prob-
lem of computing a coalition of size less than k. This prob-
lem is obviously in FNP, as it suffices to find a witnessing
coalition, which can be checked in polynomial time.

Proposition 13. Finding a ((co)-constrained) winning coali-
tion of size less than k for reachability objectives is FNP-
complete on explicit CGSs.

An algorithm for computing the size of an optimal win-
ning coalition is by a binary search, using our NP-algorithm
for the optimal coalition problem. This is achieved by a
logarithmic number of calls to this NP-algorithm, yielding a
algorithm in FPNP1°2(™)] Hardness of our problem in this
class can be proved by encoding MAXSAT SIZE, where
the aim is to compute the maximal number of clauses that
are satisfiable at the same time in a 3SAT instance. This
is achieved by slightly adapting our original reduction (and
adding extra players) so that k is the maximal number of
satisfiable clauses iff the optimal coalition size is M — k for
some integer M.

Theorem 14. Computing the size of an optimal winning

coalition for reachability objectives in explicit CGSs is
FPNPloe(™)]_pgpd.

The problem of effectively computing an optimal coali-
tion can then be proved in FPNF with the following algorithm
(adapted from [18, Example 10.4]): first compute the size S
of the optimal winning condition, using the above binary
search algorithm. Then apply the following procedure suc-
cessively for each player p:

e replace each state s that p controls with a module sim-
ilar to the one depicted on Fig. 2, with height and
width S + 1. The incoming edges of s are plugged
at the upper state of the module, while its outgoing
edges are plugged on each of the bottom states. The
upper state is controlled by p, and the each newly added
state is controlled by a fresh player.

e compute the size of the optimal winning coalition in
that game, using the NP algorithm.

o if the optimal size is unchanged, then there exists an
optimal winning coalition not involving p, and we can



continue the algorithm with the new game; otherwise,
player p is needed in any optimal winning coalition, and
we continue applying the algorithm with the previous
game (with states s instead of the triangular modules).

This algorithm runs in polynomial time with an NP oracle,
and is thus in FPNP. We were not able to close the gap
between the FPNPI°8(™)] Jower bound and the FPNP upper
bound. To the best of our knowledge, the same situation
occurs e.g. for MAX-CLIQUE, where the aim is to find a
maximal clique in a graph [11].

Remark. The algorithm above could be used for solving
“ATL queries”, following the ideas of [3]: for example, solv-
ing formula AG( {AU?) ¢) consists in finding the smallest
coalitions that, together with A, can enforce ¢ from any
reachable state. This can be computed using ideas similar
to the ones developed above.

4.3. Priced agents

As mentioned in the introduction, an interesting extension
of our original problem is the case where controlling an agent
has a price: the input is extended with an array assigning
this positive (binary-encoded) price to each agent, with the
aim of finding the cheapest winning coalitions.

The complexities of the corresponding decision problems
are the same as in the original case: the hardness proofs still
apply, and the corresponding algorithms are easily adapted
to handle the price. Regarding the function problems, the
situation is different:

Theorem 15. Computing (the price of) a cheapest winning
coalition for reachability objectives in explicit CGSs with
weighted agents is FPNP-complete.

The optimal price can be computed by binary search, and
is proved optimal by encoding MAXSAT WEIGHT. This
immediately yields hardness for the problem of computing
an optimal coalition. Such an optimal coalition can be com-
puted using the same technique as depicted in Appendix A
for the traveling salesman problem.

4.4. Beyond reachability objectives

Since the game structures used in our proofs are mostly
acyclic (the only cycles occur on states 0 and 1, and are
only present for the sake of coherence with our definition
of a run), our results obviously extend to several kinds of
objectives, such as safety objectives and Biichi objectives.

More complex objectives can also be considered, for in-
stance LTL objectives. The standard way of deciding whether
a coalition has a winning strategy for such objectives is
through non-deterministic Biichi and deterministic Rabin
automata. This algorithm would then run in deterministic

doubly-exponential time (but only singly-exponential in the
number of agents). The problem of computing the (exact)
optimal coalition size is then also in deterministic doubly-
exponential time, since there are “only” exponentially many
coalitions to test.

Hardness in 2EXPTIME can be proved as follows: con-
sider a 2-player CGS, and a formula {A)) ¢, where ¢ is an
LTL formula. Deciding whether this formula holds in a given
location g of the CGS is 2EXPTIME-complete [1]. Now, if
we add an extra move to player A from gq leading to a sink
state (assumed to immediately make ¢ false), then clearly
A must belong to any winning coalition, so that there is a
winning coalition of size at most 1 iff player A has a strategy
for the objective ¢.

4.5. Quantitative objectives

The model of CGSs can be enriched by a duration func-
tion to obtain the model of DCGSs introduced in [13]. This
model associates a duration with each transition of the CGS,
allowing to model, for instance, a “simple” notion of time,
or a notion of cost, and to verify quantitative properties on
these systems.

Definition 16 ([13]). A Durational Concurrent Game Struc-
ture (DCGS for short) C is a structure (Agt, Loc, AP,
Lab, Mv, Edg, D) where (Agt, Loc, AP, Lab, Mv, Edg) is
a CGS, and D: Edg — N associates a nonnegative dura-
tion with each transition.

Given a finite execution py = qoq1 - - - ¢, W€ can natu-
rally associate a duration D(p) with py. When interested in
a reachability objective (of a set F'), we denote by D(p) the
duration of the shortest finite prefix of p ending in F', if such
a finite prefix does not exist, we say that D(p) is infinite.

In the framework of DCGSs, quantitative versions of the
reachability problem naturally arise. For instance, given a
coalition A and a nonnegative integer d, one can ask whether
coalition A can ensure its reachability objective within dura-
tion at most d. More formally, we ask whether there exists
a winning strategy (f;) a,ca (for the reachability objective)
such that for each p € Out(qo, (fi)a,ca), we have that
D(p) < k. In [13], an algorithm is proposed for this kind of
problem with positive costs. It runs in PTIME if no equality
is involved, and in EXPTIME in the general case.

In the spirit of this paper, various optimal coalition prob-
lems on DCGS could be considered, where we would ask
to minimize both the size of the winning coalition and the
duration needed to achieve the objective. We only define and
examine two variants of these problems.

Definition 17. The problem of coalition size with bounded
duration is defined as follows: given a DCGS C, an initial
location qg € LOC, a set of states F' C Loc to be reached, a



maximal size k € N, a maximal duration d € N, determine
if there exists a coalition of size at most k having a winning
strategy from qq for reaching F with duration at most d.

Given a coalition A, deciding if A has a winning strat-
egy to reach F' within a maximal duration d can be done
in PTIME [13]. As previously, this leads to an NP algorithm
for the coalition size problem with bounded duration.

On the other hand, the coalition size problem with
bounded duration is clearly NP-hard, since it contains the
coalition size problem as a special case (by letting all dura-
tions be zero). This straightforward extends to:

Theorem 18. In DCGSs and for reachability objectives, the
((co)-constrained) coalition size problem with bounded dura-
tion is NP-complete, while the optimal coalition size problem
with bounded duration is DP-complete.

Last, we turn to the extension to exact durations:

Definition 19. The problem of optimal coalition with exact
duration is defined as follows: given a DCGS C, an initial
location qo € Loc, a set of states F' C LoC to be reached, a
maximal size k € N, a maximal duration d € N; determine
if there exists a coalition of size at most k having a winning
strategy from qq for reaching F with duration exactly d.

Given a DCGS C and a coalition A, deciding if A can
reach F' with duration exactly d can be done in exponen-
tial time (precisely in time O(|C|?d), with d encoded in bi-
nary [13]). Executing this algorithm once for each coalition
of size k leads to an EXPTIME algorithm for the coalition
size problem with exact duration.

Given a two-player DCGS, the problem of deciding if the
first player has a winning strategy to reach F' with duration
exactly d has been proved EXPTIME-complete in [13]. This
problem can easily be encoded in the coalition size problem
with exact duration. This leads to the following theorem:

Theorem 20. The coalition size problem with exact duration
is EXPTIME-complete.

Since we end up in a deterministic class, deciding
whether k is the optimal size remains EXPTIME-complete.
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A Some notes about complexity classes

We briefly define some unusual complexity classes that
we use troughout the paper, together with some related prob-
lems. We assume the reader is familiar with PTIME and NP.
The interested reader will find much more details in [18].

A.1 Complexity of decision problems

The polynomial-time hierarchy. The polynomial hierar-
chy, introduced in [24], is an infinite hierarchy of classes
that lie between NP and PSPACE. These classes are defined
in terms of oracle Turing machines: given a complexity
class C, a Turing machine with oracle in C is a Turing ma-
chine equipped with a special device (the oracle), which can
answer in constant time to a problem in C. We refer to [18]
for a more formal definition.

Applying restrictions on the computational power of those
machines, we get new complexity classes: for instance,
PTIMENF is the class of problems that are solvable in deter-
ministic polynomial time on a Turing machine equipped with
an NP-oracle. The polynomial hierarchy is the hierarchy of
complexity classes based on this construction:

o
AP, = PTIME™

R
N?. , = coNP>:

Yh =nf =Ab = PTIME
P
¥7, = NP

Formally, the polynomial hierarchy, denoted by PH, is the
union of all those classes. It is easy to see that, at any
finite level 4, the three classes AP, ¥P and N¥ are contained
in PSPACE. It is not known whether the hierarchy is strict
or collapses at some level, nor whether PH C PSPACE.

At any finite level, those classes all have complete prob-
lems. For £F, a classical example is the problem QSAT;,
defined as follows: given ¢ finite sets (X;),;<; of variables,
and a boolean formula ¢ over | i<i Xj, is it true that
3X;.VXs...Q;X; P, where quantifiers alternate and @); is
either 3 or V, depending on the parity of i. It is straightfor-
ward to prove that QSAT; is in £¥. The hardness proof is
more involved, see [18].

It is possible to further refine those classes by imposing
a bound on the number of calls to the oracle. For instance,
PTIMENPIe "] genotes the subclass of Ab in which only a
logarithmic number of call to the oracle is allowed.

Difference classes. Difference classes are classes of lan-
guages defined as the difference of two classes. They were
introduced in [19]. The best-known difference class is
DP ={LiNLs| Ly € NP, Ly € coNP}. Note that DP is
not NP N coNP: the former contains NP (and coNP), while
the latter is expected to be a strict subclass of NP. Note also
that DP is a subclass of AS.

There exists several known problems that are complete
for DP: SAT-UNSAT is the set of couples (¢, ¢') of boolean
formulas s.t. ¢ is satisfiable and ¢’ is not. This problem is
easily seen to be solvable in DP, and can be proved to be
DP-complete.

Of course, many other difference classes can be used, in
particular DY = {L; N Ly | L1 € ¥8, Ly € N§}. An exam-
ple of a complete problem is QSAT-UNQSAT,, defined as
the set of couples (IX.VY.¢(X,Y),3X'VY'.¢/(X',Y")),
the first one being a positive instance of QSAT> and the
second one being a negative instance.

A.2 Complexity of function problems

Contrary to decision problems where a yes/no answer
is sufficient, function problems consists in computing a so-
lution to a problem. An obvious example is FSAT, which
is given a boolean formula and must compute a satisfying
assignment (or return “no” if none exists). This defines
the class FNP of function problems associated to problems
in NP. The class FP is the subclass associated to problems
in PTIME. As in the case of decision problems, a notion
of “reduction” between problems can be defined, and FNP
contains complete problems (e.g., FSAT).

Oracles can also be used in the setting of function prob-
lems: the class FPNP contains function problems that can
be computed in polynomial time with the use of an NP ora-
cle. The famous traveling salesman problem, in which the
actual optimal tour must be computed, is complete for FPNP.
the algorithm consists in first computing the optimal length
by binary search, and then computing an optimal tour by
testing if the same length can be achieved after increment-
ing the intercity distance one after the other: in case it can,
then that particular edge can be avoided in the optimal tour.
This yields a FPNP algorithm for TSP, which can be proved
complete for this class.

Finally, we can again restrict the number of calls to the
oracle, and define the class FPNP°2 "] with the expected def-
inition. An example of a complete problem for this class is
MAXSAT SIZE, in which, given a set of disjunctive clauses,
we want to compute the maximum number of clauses that
can be satisfied at the same time (algorithm by binary search).
If clauses are assigned a weight and we want to compute the
maximal total weight of satisfied clauses, we get MAXSAT
WEIGHT, which is FPNP—complete.



