
HAL Id: hal-01194593
https://hal.science/hal-01194593v1

Submitted on 7 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust Analysis of Timed Automata via Channel
Machines

Patricia Bouyer, Nicolas Markey, Pierre-Alain Reynier

To cite this version:
Patricia Bouyer, Nicolas Markey, Pierre-Alain Reynier. Robust Analysis of Timed Automata via
Channel Machines. Proceedings of the 11th International Conference on Foundations of Software Sci-
ence and Computation Structures (FoSSaCS’08), 2008, Budapest, Hungary. pp.157-171, �10.1007/978-
3-540-78499-9_12�. �hal-01194593�

https://hal.science/hal-01194593v1
https://hal.archives-ouvertes.fr

Robust Analysis of Timed Automata
via Channel Machines?

Patricia Bouyer1,2,??, Nicolas Markey1, Pierre-Alain Reynier3,? ? ?

1 LSV, CNRS & ENS de Cachan, France
2 Oxford University Computing Laboratory, UK

3 Université Libre de Bruxelles, Belgium
{bouyer,markey}@lsv.ens-cachan.fr, reynier@ulb.ac.be

Abstract. Whereas formal verification of timed systems has become
a very active field of research, the idealised mathematical semantics of
timed automata cannot be faithfully implemented. Several works have
thus focused on a modified semantics of timed automata which ensures
implementability, and robust model-checking algorithms for safety, and
later LTL properties have been designed. Recently, a new approach has
been proposed, which reduces (standard) model-checking of timed au-
tomata to other verification problems on channel machines. Thanks to
a new encoding of the modified semantics as a network of timed sys-
tems, we propose an original combination of both approaches, and prove
that robust model-checking for coFlat-MTL, a large fragment of MTL, is
EXPSPACE-Complete.

1 Introduction

Verification of real-time systems. In the last thirty years, formal verification of
reactive systems has become a very active field of research in computer science.
It aims at checking that (the model of) a system satisfies (a formula expressing)
its specifications. The importance of taking real-time constraints into account in
verification has quickly been understood, and the model of timed automata [2]
has become one of the most established models for real-time systems, with a
well-studied underlying theory, the development of mature model-checking tools
(Uppaal [21], Kronos [11], ...), and numerous success stories.

Implementation of real-time systems. Implementing mathematical models on
physical machines is an important step for applying theoretical results on practical
examples. This step is well-understood for many untimed models that have been
studied (e.g., finite automata, pushdown automata). In the timed setting, while
timed automata are widely-accepted as a framework for modelling real-time
aspects of systems, it is known that they cannot be faithfully implemented on

? Partly supported by project DOTS (ANR-06-SETIN-003).
?? Partly supported by a Marie Curie fellowship (European Commission).

? ? ? Partly supported by a Lavoisier fellowship (French Ministry of Foreign Affairs).

finite-speed CPUs [12]. Studying the “implementability” of timed automata is
thus a challenging question of obvious theoretical and practical interest.
A semantical approach. In [16], a new semantics for timed automata is defined that
takes into account the digital aspects of the hardware on which the automaton is
being executed. A timed automaton is then said to be implementable if, under
this new semantics, the behaviours of this automaton satisfies its specifications.
In order to study it efficiently, this semantics is over-approximated by the AASAP
(for Almost ASAP), which consists in “enlarging” the constraints on the clocks by
some parameter δ. For instance, “x ∈ [a, b]” is transformed into “x ∈ [a−δ, b+δ]”.
Implementability can be ensured by establishing the existence of some positive δ
for which the AASAP semantics meets the specification. The decidability of
this “robust model-checking” problem for specifications given as LTL formula has
already been solved (first basic safety properties in [14] and then full LTL [9])
using a graph algorithm on the region automaton abstraction.
Timed temporal logics. Until recently [23], linear-time timed temporal logics
were mostly considered as undecidable, and only MITL, the fragment without
punctuality of MTL [20], was recognised as really tractable and useful [3]. Very
recently [7], another fragment of MTL, called coFlat-MTL, has been defined,
whose model-checking is EXPSPACE-Complete. The decidability of this logic
relies on a completely original method using channel machines.
Our contribution. Inspired by the channel machine approach of [7], we propose a
new techniques to robust model-checking of linear-time timed temporal logics.
It is based on the construction of a network of timed systems which captures
the AASAP semantics, and which can be expressed as a channel machine. Based
on this approach, we prove that the robust model-checking of coFlat-MTL is
EXPSPACE-Complete, i.e., not more expensive than under the classical semantics.
It is worth noticing that coFlat-MTL includes LTL, our result thus encompasses
the previously shown decidability results in that framework.
Related work. Since its definition in [16], the approach based on the AASAP
semantics has received much attention, and even other kind of perturbations
like the drift of clocks, have been studied [26, 15, 4, 17]. In the case of safety
properties and under some natural assumptions, this approach is equivalent to
constraint enlargement and relies on similar techniques, as proved in [15]. Also,
several works have proposed a symbolic, zone-based approach to the classical
region-based algorithm for robustness [13, 27, 17]. This approach using the AASAP
semantics contrasts with a modelling-based solution proposed in [1], where the
behaviour of the platform is modelled as a timed automaton. Last, many other
notions of “robustness” have been proposed in the literature in order to relax
the mathematical idealisation of the semantics of timed automata [19, 22, 6, 5].
Those approaches are different from ours, since they roughly consist in dropping
“isolated” or “unlikely” executions. Also note that robustness issues have also
been handled in the untimed case, but are even further from our approach [18].
Outline of the paper. We introduce the setting in Section 2. Section 3 contains
our construction: we first turn the robust semantics of timed automata into
networks of timed systems (Section 3.1), which are then encoded as channel

automata (Section 3.2). We then explain how the resulting channel automata are
used for Bounded-MTL and coFlat-MTL model-checking (Section 3.3). By lack of
space, proofs are omitted and can be found in the research report [10].

2 Preliminaries

We present here the model of timed automata, some linear-time timed temporal
logics, and the model of channel automata, which is central to our approach.

2.1 Timed Automata

Let X be a finite set of clock variables. We denote by G(X) the set of clock
constraints generated by the grammar g ::= g ∧ g | x ∼ k, where x ∈ X, k ∈ N,
and ∼ ∈ {≤,≥}. A (clock) valuation v for X is an element of RX+ . If v ∈ RX+ and
t ∈ R+, we write v + t for the valuation assigning v(x) + t to every clock x ∈ X.
If r ⊆ X, v[r ← 0] denotes the valuation assigning 0 to every clock in r and v(x)
to every clock in X \ r.

A timed automaton is a tuple A = (L, `0, X, I,Σ, T) where L is a finite set
of locations, `0 ∈ L is an initial location, X is a finite set of clocks, I : L →
G(X) labels each location with its invariant, Σ is a finite set of actions, and
T ⊆ L× G(X)×Σ × 2X × L is the set of transitions. Given a parameter value
δ ∈ R≥0, whether a valuation v ∈ RX+ satisfies a constraint g within δ, written
v |=δ g, is defined inductively as follows:8<

:
v |=δ x ≤ k iff v(x) ≤ k + δ
v |=δ x ≥ k iff v(x) ≥ k − δ
v |=δ g1 ∧ g2 iff v |=δ g1 and v |=δ g2

Following [16], we define a parameterised semantics for A as a timed transition
system JAKδ = 〈S, S0, Σ,→δ〉. The set S of states of JAKδ is {(`, v) ∈ L× RX+ |
v |=δ I(`)}, with S0 = {(`0, v0) | v0(x) = 0 for all x ∈ X}. A transition in JAKδ is
composed either of a delay move (`, v) d−→δ (`, v + d), with d ∈ R+, when both v

and v+d satisfy the invariant I(`) within δ, or of a discrete move (`, v) σ−→δ (`′, v′)
when there exists a transition (`, g, σ, r, `′) ∈ T with v |=δ g, v′ = v[r ← 0], and
v′ |=δ I(`′). The graph JAKδ is thus an infinite transition system. Notice that, in
the definitions above, the standard semantics of timed automata can be recovered
by letting δ = 0. In that case, we omit the subscript δ.

A run of JAKδ is an infinite sequence (`0, v0) d0−→δ (`0, v0+d0) σ0−→δ (`1, v1) d1−→δ

(`1, v1 + d1) . . . where for each i ≥ 0, di ∈ R+. A timed word w is an infinite
sequence (σi, ti)i∈N where σi ∈ Σ and ti ∈ R+ for each i ≥ 0, and such that the
sequence (ti)i∈N is non-decreasing and diverges to infinity. The timed word w

is read on the run (`0, v0) d0−→δ (`0, v0 + d0) σ0−→δ (`1, v1) d1−→δ (`1, v1 + d1) . . .
whenever ti =

P
j≤i dj for every i ∈ N. We write L(JAKδ) for the set of timed

words that can be read on a run of JAKδ starting in (`0, v0). More generally, we
write L(JAK(`,v)δ) for the set of timed words than can be read starting from (`, v).

Since our results rely on the results of [14, 9], we require that our timed au-
tomata satisfy the following requirements: (i) constraints in guards and invariants
only involve non-strict inequalities; (ii) all the clocks are always bounded by some
constant M ; (iii) all the cycles in the region graph are progress cycles, i.e., all
the clocks are reset along those cycles. In addition, we require that the timed
automata are non-blocking, in the sense that from every state, an action transition
will eventually become firable: for every (`, v) ∈ L × RX+ such that v |=0 I(`),

there exists d ∈ RX+ and σ ∈ Σ such that (`, v) d−→0 (`, v+ d) σ−→0 (`′, v′) for some
(`′, v′) ∈ L× RX+ .

2.2 Implementability and Robustness of Timed Automata

The parameterised semantics defined above (referred to as “enlarged semantics”
in the sequel), has been defined in [16] in order to study the implementability of
timed systems. Indeed, timed automata are governed by a mathematical, idealised
semantics, which does not fit with the digital, imprecise nature of the hardware on
which they will possibly be implemented. An implementation semantics has thus
been defined in [16] in order to take the hardware into account: that semantics
models a digital CPU which, every δP time units (at most), reads the value of the
digital clock (updated every δL time units), computes the values of the guards,
and fires one of the available transitions. We write JAKδP ,δL for the resulting
transition system, and L(JAKδP ,δL) for the corresponding set of timed words.
Given a (linear-time) property P, i.e., a set of accepted timed words, a timed
automaton A is said to be implementable w.r.t. P iff L(JAKδP ,δL) ⊆ P for some
positive values of δP and δL.

As proved in [16], the enlarged semantics simulates the implementation se-
mantics as soon as δ > 4δP + 3δL. As a consequence, it is sufficient to check the
existence of δ > 0 such that L(JAKδ) ⊆ P in order to ensure implementability
of A w.r.t. P. We follow this idea in the sequel, and study the robust satisfac-
tion relation: a timed automaton robustly satisfies a linear-time property P,
written A |≡ P, whenever L(JAKδ) ⊆ P for some δ > 0.

2.3 Some Subclasses of Metric Temporal Logic

Linear-time properties are often defined via temporal logic formulae. In this
paper, we focus on subclasses of MTL (Metric Temporal Logic) [20].

Fix a finite, non-empty alphabet Σ. The syntax of MTL over Σ is defined by
the following grammar:

MTL 3 ϕ ::= σ | ¬σ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ | ϕÜUI ϕ

where σ ∈ Σ, and I is an interval of R+ with bounds in N∪ {∞}. MTL formulae
are interpreted over timed words. Let w = (σi, ti)i≥0 be a timed word, and p ∈ N.
The (pointwise) semantics of MTL is defined recursively as follows (we omit

Boolean operations):

w, p |= σ ⇔ σp = σ

w, p |= ϕUI ψ ⇔ ∃i > 0 s.t. w, p+ i |= ψ, tp+i − tp ∈ I
and ∀0 < j < i, w, p+ j |= ϕ

w, p |= ϕÜUI ψ ⇔ w, p |= ¬
�

(¬ϕ) UI (¬ψ)
�
.

If w, 0 |= ϕ, we write w |= ϕ. Following the discussion above, we write A |≡ ϕ if,
for some δ > 0, we have w |= ϕ for every w ∈ L(JAKδ).

Additional operators, such as tt (true), ff (false), ⇒, ⇔, F , G and X , are
defined in the usual way: FI ϕ ≡ ttUI ϕ, GI ϕ ≡ ffÜUI ϕ, and XI ϕ ≡ ffUI ϕ.
We also use pseudo-arithmetic expressions to denote intervals. For example, ‘= 1’
denotes the singleton {1}.

Following [7], we identify the following syntactic fragments of MTL: LTL [25]
can be considered as the fragment of MTL in which modalities are not constrained
(i.e., where R+ is the only constraining interval); Bounded-MTL is the fragment
of MTL in which all interval constraints are bounded: observe that Bounded-MTL
disallows unconstrained modalities, and is in particular not suitable to express
invariance properties (the most basic type of temporal specifications). The
fragment coFlat-MTL4 has then been defined to remedy this deficiency:

coFlat-MTL 3 ϕ ::= σ | ¬σ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUJ ϕ | ϕUI ψ | ϕÜUJ ϕ | ψ ÜUI ϕ

where J ranges over the set of bounded intervals, I over the set of all intervals,
and the underlined formula ψ ranges over LTL.

One immediately sees that coFlat-MTL subsumes both LTL and Bounded-MTL,
but it is not closed under negation. However, it is closed under invariance, and
can then express e.g. bounded response-time or even richer formulae such as
G (request⇒F≤5 (acquire∧F=1 release)).

2.4 Channel Automata

Channel automata are an interesting formalism for reasoning about alternating
timed automata, which has been used in [7] to prove the EXPSPACE-membership
of the model-checking problem for coFlat-MTL. We only give the definition and
necessary results here, and refer to [10] for some more intuition.

A channel automaton with renaming and occurrence testing (CAROT for
short) is a tuple C = (S, s0, Σ, δ, F), where S is a finite set of control states,
s0 ∈ S is the initial control state, F ⊆ S is a set of accepting control states, Σ is
a finite alphabet, δ ⊆ S ×Op × S is the set of transition rules, where

Op = {σ!, σ? | σ ∈ Σ} ∪ {zero?(σ) | σ ∈ Σ} ∪ {R | R ⊆ Σ ×Σ}

is the set of operations. Given a rule τ = (s, α, s′) ∈ δ, we define op(τ) = α.
4 We do not explain this terminology here, and refer to [7] for deeper considerations.

Intuitively, operations σ! and σ? are the classical write and read operations,
zero?(σ) is a guard for testing the occurrence of σ in the channel, and R ⊆ Σ×Σ
is interpreted as a global renaming. An end-of-channel marker can be used to
count the number of times the whole channel is read: it suffices to add, from
each state of the CAROT, an outgoing transition reading B, immediately followed
by a transition writing B. That way, there is always a unique copy of B on the
channel (except when it has just been read). The number of transitions writing B
along a computation % is the number of cycles of %, denoted by cycles(%). In the
sequel, the CAROTs are assumed to contain the end-of-channel marker B, and to
have all their states equipped with a loop reading and writing that symbol.

We consider in the sequel a restricted version of the reachability problem for
CAROTs, where we impose a bound on the “time” (measured here as the number
of cycles of the channel): the cycle-bounded reachability problem for CAROTs is
defined as follows: given a CAROT C, an input word w ∈ Σ∗, and a cycle bound h,
does C have an accepting computation % on w with cycles(%) 6 h?

In [7], a non-deterministic procedure is presented to check the existence of an
accepting cycle-bounded computation using only polynomial space in the value
of the cycle bound and in the size of the CAROT:

Theorem 1. The cycle-bounded reachability problem for CAROTs is solvable in
polynomial space in the size of the channel automaton, the size of the input word,
and the value of the cycle bound.

Remark. Note that the algorithm could easily be adapted to cope with the cycle-
bounded reachability between two global states (i.e., control state and content of
the channel): it suffices to first set the initial content of the channel, and to add
transitions that would, from any point, run one more cycle of the channel and
store its whole content in the location.

3 Robust Model-Checking of coFlat-MTL

In this section, we prove the main results of this paper, namely that the robust
model-checking problem can be expressed using CAROTs, and then that the robust
model-checking problem of coFlat-MTL is EXPSPACE-Complete. EXPSPACE-
Hardness is a consequence of the EXPSPACE-Hardness of the satisfiability problem
for Bounded-MTL [7]. EXPSPACE-membership is more involved and will be done
in several steps:

1. We first construct a family of networks of timed systems that captures the
enlarged semantics of timed automata (Subsection 3.1).

2. We then transform this family of networks into a CAROT, that will simulate
the joint behaviours of those networks of timed systems with an alternat-
ing timed automaton representing the property we want to robustly verify
(Subsection 3.2).

3. Finally, we use the CAROT to design a decidability algorithm for the robust
model-checking problem, first for Bounded-MTL, and then for coFlat-MTL
(Subsection 3.3).

For the rest of the paper, we fix a timed automaton A = (L, `0, X, I,Σ, T).

3.1 From Robustness to Networks of Timed Systems

In this subsection, we transform the robust model-checking problem into a model-
checking problem in an infinite family of timed systems. The correctness of the
transformation relies on simulation relations between timed transition systems:
given two timed transition systems Ti = (Si, Σ,→i) for i = 1, 2, we say that T2
simulates T1 whenever there exists a non-empty relation R ⊆ S1 × S2 such that
(s1, s2) ∈ R and s1

α−→1 s
′
1 with α ∈ Σ ∪ R+ implies s2

α−→2 s
′
2 for some s′2 ∈ S2

with (s′1, s
′
2) ∈ R. We then write T1 v T2.

Let n be an integer; we denote by Bn the timed network composed of the
following components (which are not standard timed automata because of the
use of disjunction and fractional parts in the guards):
• for each 0 ≤ i < n, Bi is the timed automaton

`i

[xi≤1]

xi=1,ε,xi:=0

Fig. 1. Automaton Bi

depicted on Fig. 1, where xi is a fresh clock not
belonging to X, and [xi ≤ 1] is an invariant for-
bidding the clock xi become larger than 1. That
way, this automaton is forced to fire its transition
when the value of xi reaches 1. We call such an
automaton a ∆-automaton in the sequel. In the
following, we will take indices of clocks xi modulo n, and in particular xi+1 = x0

whenever i = n− 1.
• the timed automaton B, built from A by modifying the guards and invariants
as follows: each constraint of the form x ≤ k is replaced with

(x < k + 1) ∧
�
x > k ⇒

_
0≤i<n

{x} ≤ xi+1 < xi−1

�

and each constraint of the form x ≥ k is replaced with

(x > k − 1) ∧
�
x < k ⇒

_
0≤i<n

{x} ≥ xi−1 > xi+1

�

We need to explain when a valuation v satisfies these “extended” guards.
Boolean operators are handled in the natural way, and {x} is intended to denote
the fractional part of the value of clock x.

It naturally defines a timed transition system JBnK, as the synchronised
product (synchronised because of the time) of all components. Denoting by
Xn = X ∪ {xi | 0 ≤ i < n} the set of clocks of Bn, a configuration of JBnK
can be described by a pair (`, v) where ` ∈ L and v ∈ RXn

+ (each ∆-automaton
has a single location). We write un for the valuation over Xn assigning 0 to
clocks in X and i

n to every clock xi for 0 ≤ i < n. The initial configuration of
this timed network is the pair (`0, un). Delay and action transitions are defined
naturally in the synchronised products of all the components. However in the
following we will hide ε-moves due to the components Bi. Thus, in JBnK, we write

(`, v) t=⇒ (`, v′) for an interleaving of delay transitions (which sum up to t) and of
ε-moves in the Bi’s. For uniformity, we write σ=⇒ for σ-moves in JBnK. In the sequel,
simulation relations assume the relation ⇒ in JBnK, and the simple transition
relation →δ in JAKδ. In the same way, the intended language accepted by JBnK
should ignore ε-transitions. In other words, it should also be defined using the
relation ⇒ as the transition relation:

L(JBnK) = {w = (σi, ti)i∈N | ∃(`0, un) d0=⇒ (`0, u′)
σ0=⇒ (`1, u′′)

d1=⇒ · · · ∈ JBnK

s.t. ∀i ∈ N, ti =
X
j≤i

dj}

Lemma 2. For every n ≥ 3, JAK 1
n
v JBnK v JAK 2

n
.

With the previous definition, the simulation results can be stated in terms of
language inclusion (as initial states are preserved by the exhibited simulation
relations): for every n ≥ 3, L(JAK 1

n
) ⊆ L(JBnK) ⊆ L(JAK 2

n
).

Theorem 3. Let ϕ ∈ MTL. Then, A |≡ ϕ ⇔ ∃n ≥ 3 s.t. JBnK |= ϕ.

3.2 From Networks of Timed Systems to CAROTs

Extending the approach of [7], the CAROT we build is such that it accepts joint
executions of the network of timed systems we just built (and not of a single
timed automaton as in [7]) and of the alternating timed automaton corresponding
to the negation of the coFlat-MTL formula we want to verify. In order to handle
arbitrarily many components in the network, and to deal with “extended” guards
(i.e., with disjunctions and fractional parts), the construction attached to the
network of timed systems needs to be deeply modified. In a first step, we describe
a CAROT that only encodes the behaviours of the network of timed systems.

Let M be the maximal constant appearing in the automaton A. Then M + 1
is larger than or equal to the maximal constant of any Bn. We assume that the
clocks of A (and Bn) take their values in [0,M + 1] ∪ {⊥}, where ⊥ is a special
value (intended to represent any value larger than M + 1). We write Reg for the
set {0, 1, . . . ,M + 1,⊥} and Λ = ℘(L×X × Reg).

A configuration (`, v) ∈ L× RXn
+ of the network of timed systems is encoded

as the element C(`,v) = {(`, x, v(x)) | x ∈ Xn}, and partitioned into a sequence
of disjoint subsets C0, C1, ..., Cp, C⊥, obtained using standard region techniques.
More precisely, C0 (resp. C⊥) contains elements whose fractional part is 0 (resp.
whose value is ⊥) and the others Ci gather elements with the same fractional
part and are sorted according to the increasing order of fractional parts. We then
let H(C(`,v)) =

�
reg(C0), reg(C⊥), reg(C1)reg(C2) . . . reg(Cp)

�
∈ Λ × Λ × Λ∗,

where we write reg(C) for {(`, x, reg(v)) | (`, x, v) ∈ C}, with reg(v) the largest
element of Reg smaller than or equal to v.

Using the abstraction function H, it is possible to define a discrete transition
system T nH which abstracts away precise timing information, but which simulates

the behaviours of Bn. The abstraction function also provides an equivalence rela-
tion ≡ on configurations: C ≡ C ′ iff H(C) = H(C ′). Extending straightforwardly
a result of [24] (regions are compatible with our extended guards), we have:

Lemma 4. The equivalence relation ≡ is a time-abstract5 bisimulation.

The CAROT we will build is based on the above discrete transition system.
More precisely, the intended encoding of a configuration in the CAROT is the
following: the integral values of the clocks of A are stored in the discrete state
of the CAROT, as well as the sets C0 and C⊥, and the current location `. The
other Ci’s are stored on the channel, from C1 (recently written on the channel)
to Cp (the next item to be read from the channel).

In order to use the same CAROT to simulate the network of timed system with
any number of ∆-automata, we abstract the name of clocks xi in our encoding,
representing them on the channel by a new symbol ∆. Since, at any time, at
most one of the xi’s can have integral value, and since we only need to know the
order of the xi’s in order to evaluate guards of Bn, the amount of information
to be stored in the location of the CAROT does not depend on the number of
∆-automata in the network.

Example 5. Consider for instance a configuration C encoded by the word

H(C) =
�
{(`, x, 3), (`, x2, 0)}, {(`, z,⊥)}, {(`, x0, 0)} · {(`, y, 1), (`, x1, 0)}

�
.

We assume that the maximal constant M is 3. The encoding of the delay-successor
of C is obtained by cycling around the letters (except the last one) of the word
(and increasing the values of the regions accordingly). Writing ∅ for the empty
set, the first delay successor of H(C) is�

∅, {(`, z,⊥)}, {(`, x, 3), (`, x2, 0)} · {(`, x0, 0)} · {(`, y, 1), (`, x1, 0)}
�
.

The next delay successor is�
{(`, y, 2), (`, x1, 0)}, {(`, z,⊥)}, {(`, x, 3), (`, x2, 0)} · {(`, x0, 0)}

�
.

Note that, in that second delay transition, we have reset clock x1 when it has
reached 1, and the integral part of y has increased to 2. The configuration H(C)
would be encoded as depicted on Fig. 2 (where we write to the left and read from
the right of the channel). With respect to the channel, the first delay transition
is performed through the write operation ‘〈x∆〉!’. As in [7], it is worth noticing
that a cycle of the CAROT corresponds to one time unit elapsing.

Furthermore, to simulate the extended guards used in Bn, we need some
additional information about the position of clocks of A w.r.t. symbols ∆. As we
have already seen, a clock x verifies a constraint {x} ≤ xi+1 < xi−1 iff its
fractional part is smaller than one of the two smallest clocks xj . In our simulation,

5 This means that precise delays of time-elapsing transitions are abstracted away.

〈 ∆ 〉 〈 y ∆ 〉

On the channel: In the location:

location `, H(C)0 = {x,∆}
bxc = 3, byc = 1, bzc = ⊥, b∆c = 0

Fig. 2. Encoding of a configuration in a CAROT

this corresponds as being “before” the second symbol ∆ on the channel. And
symmetrically for constraint {x} ≥ xi−1 > xi+1. We thus have to store in the
control part of the CAROT which clocks are “before” (resp. “after”) the two first
(resp. last) symbols ∆. Whereas this can easily be done for the clocks that have
been recently written on the channel, this is not possible for the clocks lying at
the head of the channel (this would require to store the position of each clock
w.r.t. each symbol ∆). Instead, we use non-determinism to allow the CAROT
make predictions about the content of the head of the channel, and then we
verify when reading clocks from the channel that these predictions were correct.

For lack of space, we cannot present the formal construction of the CAROT, but
report to [10]. We write CA for the resulting CAROT, T nCA for the transition system
associated with CA and restricted to configurations with correct predictions and
n occurrences of ∆ on the channel (or in the location), and ≈ for the relation
that describes which configuration (d, c) of T nCA (a control state together with a
channel content) corresponds to a configuration of T nH . The correctness of the
construction relies on the following lemmas.

Lemma 6. For any n ≥ 3, the transition systems T nH and T nCA are bisimilar.

Lemma 7. Let % be a time-divergent execution in JBnK. Then any computation
in CA simulating % has correct predictions.6

Let (dn, cn) be the configuration of CA encoding the initial configuration
of Bn, i.e., such that (dn, cn) ≈ H(`0, un). Lemmas 4, 6 and 7 then yield:

Theorem 8. Let n ≥ 3. CA has a time-divergent7 computation starting in
(dn, cn) iff L(JBnK) 6= ∅.

The second part of the construction of the CAROT for encoding the robust
model-checking problem consists in adding the part related to the temporal
formula ϕ (in MTL). This part will be handled in a very similar way as in [7],
we thus simply sketch the construction. First, we build the one-clock alternating
timed automaton A¬ϕ corresponding to ¬ϕ. Then, we build the product of
the CAROT CA with a CAROT simulating the behaviour of A¬ϕ. The resulting
CAROT, say CA,¬ϕ, running from the initial configuration (dϕ,n, cϕ,n) correspond-
ing via ≈ to the initial configuration of Bn × A¬ϕ, simulates joint behaviours
of Bn and A¬ϕ. The accepting condition for CA,¬ϕ is the Büchi condition given
by ‘flattening’ A¬ϕ. The results of [7] combined with our above results yield:
6 Intuitively, this is because delay transitions force predictions checking.
7 That is with infinitely many delay transitions.

Theorem 9. Let n ≥ 3 and ϕ ∈ MTL. CA,¬ϕ has a time-divergent accepting
computation starting in (dϕ,n, cϕ,n) iff JBnK 6|= ϕ.

Remark. A rough bound on the size of the CAROT CA,¬ϕ isO
�
|A|3·2O(M ·|ϕ|+|X|)

�
,

where |ϕ| is the number of subformulae of ϕ. The size of the alphabet of CA,¬ϕ is
in O(|X|). As proved in [7], if CA,¬ϕ has an h-cycle-bounded accepting execution,
then there is a bound N0, which depends on the size of CA,¬ϕ and h, such that
there exists an h-cycle-bounded accepting execution of length no more than
N0. We do not give the precise value of this bound (see [10] instead), but it is
exponential in h, which is itself exponential in the size of the input.

3.3 From CAROTs to Robust Model Checking

We first solve the robust model-checking problem for Bounded-MTL, and then
turn to the more involved logic coFlat-MTL. Both rely on the previously proved
equivalences:

A 6|≡ ϕ iff ∀n ≥ 3,
§
CA,¬ϕ has a time-divergent accepting
computation starting in (dϕ,n, cϕ,n)

Robust model-checking for Bounded-MTL. The algorithm to decide the
robust model-checking problem for Bounded-MTL formula relies on the fact that
the truth value of a Bounded-MTL formula ϕ along a run % only depends on the
first h time units of %, where h is the sum of the constants appearing in ϕ [7]. In
A¬ϕ, after having read a prefix of duration h time units, we thus always end up
in a sink state, that we report as accepting in the CAROT.

Moreover, the non-blocking assumption made on A implies the following
property:

Lemma 10. Let A be a timed automaton, and δ > 0. Given (`, v) a configuration
of A such that v |=δ I(`), we have that L(JAK(`,v)δ) 6= ∅.

Hence, robustly model-checking A against a Bounded-MTL property ϕ will be
reduced to searching, for every n ≥ 3, for a time-bounded accepting prefix in
T nCA,¬ϕ

, and verifying that the reachable configuration is with correct predictions.
Indeed, applying the previous lemma, we already know that we will be able to
extend this finite prefix into a time-diverging run witnessing ¬ϕ as soon as the
prefix is correctly chosen (meaning it ends up in a accepting state of the CAROT).

We define the following property, for any integer n:

P(n): “CA,¬ϕ has an h-cycle-bounded accepting computation
with correct predictions starting in (dϕ,n, cϕ,n)”

Then our problem somehow amounts to checking that for every n ≥ 3, property
P(n) holds. This is some kind of “universality” checking of the CAROT, where we
universally quantify on the initial number of ∆’s on the channel. This is achieved
using the following two lemmas:

Lemma 11. Let n, n′ ∈ N be such that n′ ≥ 2n ≥ 6. Then P(n′)⇒ P(n).

Proof. We have seen that

JBn
′
K w

(Lemma 2)
JA 2

n′
K w

(2
n′
≤ 1

n
)

JA 1
n
K w

(Lemma 2)
JBnK.

Also, for m ≥ 3, the CAROT CA,¬ϕ, when restricted to configurations with correct
predictions, is time-abstract bisimilar to the product of Bm with A¬ϕ. Finally,
the respective initial configurations are in the relation ≈. ut
Lemma 12. Let N ≥ 2 ·N0. Then P(N)⇒ ∀n ∈ N,∃n′ ≥ n s.t. P(n′).

Proof (Sketch). Using the notion of computation table introduced in [7], we
prove a pumping lemma for CAROTs. Indeed, the height of the computation
table is bounded by h; the number of “sliding windows” of such tables is thus
bounded. Hence, once the table is large enough, it is possible to duplicate one of
its fragments, building new computation tables encoding computations over larger
inputs (corresponding to configurations (dϕ,n

′
, cϕ,n

′
) for integers n′ arbitrarily

larger than n). ut
Thanks to those lemmas, it suffices to only look for an h-cycle-bounded

execution starting in one of the configurations (dϕ,N , cϕ,N) (for any N ≥ 2 ·N0)
in order to ensure the existence of an accepting execution for any number of ∆’s:
Corollary 13. Let N ≥ 2 ·N0. Then P(N)⇔ ∀n ≥ 3, P(n).

Theorem 14. The model-checking problem for Bounded-MTL is EXPSPACE-
Complete (and PSPACE-Complete if constants of the formula are given in unary).

Proof. The hardness parts follow from the same hardness results for Bounded-MTL
satisfiability [7].

The upper bound follows from the previous study. However, since the size of
the CAROT is doubly exponential, the non-deterministic algorithm of Theorem 1
has to be applied on-the-fly, without explicitly building the CAROT. Since the
number N0 of different sliding windows of height h is also doubly-exponential in
the size of the input, our non-deterministic algorithm will also have a counter,
and will stop as soon as the counter reaches N0. This all can be achieved within
exponential space.

If the constants of the formula are unary-encoded, then h is linear in the size
of the input formula, and N0 is simply exponential in the size of the input. The
same algorithm then uses only polynomial space. ut

Robust model-checking for coFlat-MTL. The case of coFlat-MTL is more
involved than that of Bounded-MTL. The reason is that, unlike Bounded-MTL,
the truth value of a coFlat-MTL formula ϕ along a run % does not only depend on
a prefix of % of bounded duration. Instead, we have the following decomposition
lemma, which follows from [7, Theorem 12]:
Lemma 15. Let $ be an accepting run of JAKδ × JA¬ϕK. Then it can be decom-
posed as $1 ·$2 ·$3 · · ·$2m where there is a finite automaton F¬ϕ 8 s.t.:
8 Intuitively, F¬ϕ is obtained as the flattening of the untimed part of A¬ϕ, see [10].

(i) the duration of $2i−1 (for 1 ≤ i ≤ m) is bounded by h = (2M + 3 +W ·
2|ϕ|) · (|ϕ| · 2|ϕ|),

(ii) the duration of $2i (for 1 ≤ i ≤ m) is at least 2|ϕ| · (2W + 1), and along
that portion, the behaviour of A¬ϕ is that of F¬ϕ,

(iii) the Büchi condition of F¬ϕ is satisfied along $2m, and
(iv) 2m ≤ |ϕ| · 2|ϕ|,

where W is the number of states of the region automaton of A × F¬ϕ. Odd-
numbered segments are called the active parts, while even-numbered ones are said
inactive.

This decomposition lemma inspires a decidability algorithm, where we mod-
ularly check the existence of runs not satisfying ϕ by distinguishing between
active and inactive parts of the runs. Indeed, given a sequence (%δ)δ>0, using
combinatorics arguments, it is possible to twist them so that, for δ > 0 small
enough (say δ ≤ δ0), all %δ look very similar (that is, roughly the junction points
between active and inactive parts are close to each other and belong to the same
region). Conversely, if we are given a witnessing run %δ0 , and if we consider the
junction points of that run, for each inactive (resp. active) part, it is possible for
every δ > 0 to build an inactive (resp. active) portion of a run joining the two
junction points. The construction of an inactive portion of a run partly relies on
approximation results proved in [15, 8], and the construction of an active portion
of a run relies on a result similar to Corollary 13. The complete proof is rather
technical and gathers in an original way many results of [15, 8, 7].

An informal version of the decidability algorithm is the following, and can be
schematised as on Figure 3:

– Guess the junction points of the active and inactive parts
– For each active part, check that the two guessed junction points are reachable

in CA,¬ϕ in a cycle-bounded manner9 (here, we need to prove a result similar
to Corollary 13)

– For each inactive and bounded active part, check that the two junction points
are “robustly” reachable (using results of [15, 8])

– For the last unbounded active part, check that the automaton A×F¬ϕ, from
last junction point, does not robustly satisfy the acceptance condition of F¬ϕ
interpreted as a co-Büchi condition (using the algorithm of [9]).

We can conclude with the main result of the paper:

Theorem 16. The robust model-checking problem for coFlat-MTL is EXPSPACE-
Complete.

4 Conclusion

In this paper, we have proposed a new approach to robust model-checking of timed
systems based on channel machines: we construct a family of networks of timed
9 The bound on the number of cycles is that of (i) in the above decomposition lemma.

$1 $2 $3 $4 $5 $6 $7 $8

≥2|ϕ|·(2W+1)≤h

Active (odd) parts:
cycle-bounded
reachability in CA.

Inactive (even) parts:
robust reachability
in A× F¬ϕ.

Final (even) part:
robust co-Büchi condition
of F¬ϕ in A× F¬ϕ.

Fig. 3. Global view of our algorithm

systems such that robustly verifying a formula in a timed automaton reduces
to the verification of the formula in one of the members of the family; Then we
encode the behaviour of this family of timed systems using channel machines.
We have applied this approach to coFlat-MTL, a rather expressive fragment of
MTL, and prove that it can be decided in EXPSPACE, which is moreover optimal.
The logic coFlat-MTL subsumes LTL, thus it is the more general specification
language for which robust model-checking has been proved decidable.

Our correctness proofs heavily rely on technical lemmas proved in [15, 8] and
is unfortunately not fully CAROT-based. As future works, we plan to study robust
reachability directly on the CAROT encoding the extended semantics, in order to
develop a fully CAROT-based algorithm for coFlat-MTL.

References

1. K. Altisen and S. Tripakis. Implementation of timed automata: An issue of
semantics or modeling? In Proc. 3rd Intl Conf. Formal Modeling and Analysis of
Timed Systems (FORMATS’05), LNCS 3829, pages 273–288. Springer, 2005.

2. R. Alur and D. Dill. A theory of timed automata. Theor. Comp. Sci., 126(2):183–235,
1994.

3. R. Alur, T. Feder, and Th. A. Henzinger. The benefits of relaxing punctuality.
J. ACM, 43(1):116–146, 1996.

4. R. Alur, S. La Torre, and P. Madhusudan. Perturbed timed automata. In Proc. 8th
Intl Workshop Hybrid Systems: Computation & Control (HSCC’05), LNCS 3414,
pages 70–85. Springer, 2005.

5. C. Baier, N. Bertrand, P. Bouyer, Th. Brihaye, and M. Größer. Almost-sure model
checking of infinite paths in one-clock timed automata. Research Report LSV-07-29,
ENS Cachan, France, 2007.

6. C. Baier, N. Bertrand, P. Bouyer, Th. Brihaye, and M. Größer. Probabilistic and
topological semantics for timed automata. In Proc. 27th Conf. Found. Softw. Tech.
& Theor. Comp. Sci. (FSTTCS’07), LNCS 4855, pages 179–191. Springer, 2007.

7. P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell. The cost of punctuality. In
Proc. 22nd Ann. Symp. Logic in Computer Science (LICS’07). IEEE Comp. Soc.
Press, 2007. 109–118.

8. P. Bouyer, N. Markey, and P.-A. Reynier. Robust model-checking of timed automata.
Research Report LSV-05-06, ENS Cachan, France, 2005.

9. P. Bouyer, N. Markey, and P.-A. Reynier. Robust model-checking of timed automata.
In Proc. 7th Latin American Symp. Theoretical Informatics (LATIN’06), LNCS 3887,
pages 238–249. Springer, 2006.

10. P. Bouyer, N. Markey, and P.-A. Reynier. Robust analysis of timed automata via
channel machines. Research Report LSV-07-32, ENS Cachan, France, 2007.

11. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: a
model-checking tool for real-time systems. In Proc. 10th Intl Conf. Computer Aided
Verification (CAV’98), LNCS 1427, pages 546–550. Springer, 1998.

12. F. Cassez, Th. A. Henzinger, and J.-F. Raskin. A comparison of control problems for
timed and hybrid systems. In Proc. 5th Intl Workshop Hybrid Systems: Computation
& Control (HSCC’02), LNCS 2289, pages 134–148. Springer, 2002.

13. C. Daws and P. Kordy. Symbolic robustness analysis of timed automata. In Proc.
4th Intl Conf. Formal Modeling and Analysis of Timed Systems (FORMATS’06),
LNCS 4202, pages 143–155. Springer, 2006.

14. M. De Wulf, L. Doyen, N. Markey, and J.-F. Raskin. Robustness and implementabil-
ity of timed automata. In Proc. Joint Conf. Formal Modelling and Analysis of
Timed Systems & Formal Techniques in Real-Time and Fault Tolerant System
(FORMATS+FTRTFT’04), LNCS 3253, pages 118–133. Springer, 2004.

15. M. De Wulf, L. Doyen, N. Markey, and J.-F. Raskin. Robustness and implementabil-
ity of timed automata. Tech. Report 2004.30, Centre Fédéré en Vérification, Belgium,
Dec. 2005. Revised version.

16. M. De Wulf, L. Doyen, and J. Raskin. Almost ASAP semantics: From timed
models to timed implementations. In Proc. 7th Intl Workshop Hybrid Systems:
Computation & Control (HSCC’04), LNCS 2993, pages 296–310. Springer, 2004.

17. C. Dima. Dynamical properties of timed automata revisited. In Proc. 5th Intl Conf,
Formal Modeling and Analysis of Timed Systems (FORMATS’07), LNCS 4763,
pages 130–146. Springer, 2007.

18. T. French, J. C. McCabe-Dansted, and M. Reynolds. A temporal logic of robustness.
In Proc. 6th Intl Workshop Frontiers of Combining Systems (FroCoS’07), LNAI 4720,
pages 193–205. Springer, 2007.

19. V. Gupta, Th. A. Henzinger, and R. Jagadeesan. Robust timed automata. In
Proc. Intl Workshop Hybrid and Real-Time Systems (HART’97), LNCS 1201, pages
331–345. Springer, 1997.

20. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Systems, 2(4):255–299, 1990.

21. K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. J. Software Tools
for Technology Transfer, 1(1–2):134–152, 1997.

22. J. Ouaknine and J. Worrell. Revisiting digitization, robustness and decidability for
timed automata. In Proc. 18th Ann. Symp. Logic in Computer Science (LICS’03).
IEEE Comp. Soc. Press, 2003.

23. J. Ouaknine and J. Worrell. On the decidability of metric temporal logic. In Proc.
19th Ann. Symp. Logic in Computer Science (LICS’05), pages 188–197. IEEE Comp.
Soc. Press, 2005.

24. J. Ouaknine and J. Worrell. On the decidability and complexity of Metric Temporal
Logic over finite words. Logical Methods in Comp. Sci., 3(1-8):1–27, 2007.

25. A. Pnueli. The temporal logic of programs. In Proc. 18th Ann. Symp. Foundations
of Computer Science (FOCS’77), pages 46–57. IEEE Comp. Soc. Press, 1977.

26. A. Puri. Dynamical properties of timed automata. In Proc. 5th Intl Symp. Formal
Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’98), LNCS 1486,
pages 210–227. Springer, 1998.

27. M. Swaminathan and M. Fränzle. A symbolic decision procedure for robust safety
of timed systems. In Proc. 14th Intl Symp. Temporal Representation and Reasoning
(TIME’07), page 192. IEEE Comp. Soc. Press, 2007.

