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Robust Analysis of Timed Automata via Channel Machines

Whereas formal verification of timed systems has become a very active field of research, the idealised mathematical semantics of timed automata cannot be faithfully implemented. Several works have thus focused on a modified semantics of timed automata which ensures implementability, and robust model-checking algorithms for safety, and later LTL properties have been designed. Recently, a new approach has been proposed, which reduces (standard) model-checking of timed automata to other verification problems on channel machines. Thanks to a new encoding of the modified semantics as a network of timed systems, we propose an original combination of both approaches, and prove that robust model-checking for coFlat-MTL, a large fragment of MTL, is EXPSPACE-Complete.

Introduction

Verification of real-time systems. In the last thirty years, formal verification of reactive systems has become a very active field of research in computer science. It aims at checking that (the model of) a system satisfies (a formula expressing) its specifications. The importance of taking real-time constraints into account in verification has quickly been understood, and the model of timed automata [START_REF] Alur | A theory of timed automata[END_REF] has become one of the most established models for real-time systems, with a well-studied underlying theory, the development of mature model-checking tools (Uppaal [START_REF] Larsen | Uppaal in a nutshell[END_REF], Kronos [START_REF] Bozga | Kronos: a model-checking tool for real-time systems[END_REF], ...), and numerous success stories.

Implementation of real-time systems. Implementing mathematical models on physical machines is an important step for applying theoretical results on practical examples. This step is well-understood for many untimed models that have been studied (e.g., finite automata, pushdown automata). In the timed setting, while timed automata are widely-accepted as a framework for modelling real-time aspects of systems, it is known that they cannot be faithfully implemented on finite-speed CPUs [START_REF] Cassez | A comparison of control problems for timed and hybrid systems[END_REF]. Studying the "implementability" of timed automata is thus a challenging question of obvious theoretical and practical interest. A semantical approach. In [START_REF] De Wulf | Almost ASAP semantics: From timed models to timed implementations[END_REF], a new semantics for timed automata is defined that takes into account the digital aspects of the hardware on which the automaton is being executed. A timed automaton is then said to be implementable if, under this new semantics, the behaviours of this automaton satisfies its specifications.

In order to study it efficiently, this semantics is over-approximated by the AASAP (for Almost ASAP ), which consists in "enlarging" the constraints on the clocks by some parameter δ. For instance, "x ∈ [a, b]" is transformed into "x ∈ [a-δ, b+δ]". Implementability can be ensured by establishing the existence of some positive δ for which the AASAP semantics meets the specification. The decidability of this "robust model-checking" problem for specifications given as LTL formula has already been solved (first basic safety properties in [START_REF] De Wulf | Robustness and implementability of timed automata[END_REF] and then full LTL [START_REF] Bouyer | Robust model-checking of timed automata[END_REF]) using a graph algorithm on the region automaton abstraction. Timed temporal logics. Until recently [START_REF] Ouaknine | On the decidability of metric temporal logic[END_REF], linear-time timed temporal logics were mostly considered as undecidable, and only MITL, the fragment without punctuality of MTL [START_REF] Koymans | Specifying real-time properties with metric temporal logic[END_REF], was recognised as really tractable and useful [START_REF] Alur | The benefits of relaxing punctuality[END_REF]. Very recently [START_REF] Bouyer | The cost of punctuality[END_REF], another fragment of MTL, called coFlat-MTL, has been defined, whose model-checking is EXPSPACE-Complete. The decidability of this logic relies on a completely original method using channel machines. Our contribution. Inspired by the channel machine approach of [START_REF] Bouyer | The cost of punctuality[END_REF], we propose a new techniques to robust model-checking of linear-time timed temporal logics. It is based on the construction of a network of timed systems which captures the AASAP semantics, and which can be expressed as a channel machine. Based on this approach, we prove that the robust model-checking of coFlat-MTL is EXPSPACE-Complete, i.e., not more expensive than under the classical semantics. It is worth noticing that coFlat-MTL includes LTL, our result thus encompasses the previously shown decidability results in that framework. Related work. Since its definition in [START_REF] De Wulf | Almost ASAP semantics: From timed models to timed implementations[END_REF], the approach based on the AASAP semantics has received much attention, and even other kind of perturbations like the drift of clocks, have been studied [START_REF] Puri | Dynamical properties of timed automata[END_REF][START_REF] De Wulf | Robustness and implementability of timed automata[END_REF][START_REF] Alur | Perturbed timed automata[END_REF][START_REF] Dima | Dynamical properties of timed automata revisited[END_REF]. In the case of safety properties and under some natural assumptions, this approach is equivalent to constraint enlargement and relies on similar techniques, as proved in [START_REF] De Wulf | Robustness and implementability of timed automata[END_REF]. Also, several works have proposed a symbolic, zone-based approach to the classical region-based algorithm for robustness [START_REF] Daws | Symbolic robustness analysis of timed automata[END_REF][START_REF] Swaminathan | A symbolic decision procedure for robust safety of timed systems[END_REF][START_REF] Dima | Dynamical properties of timed automata revisited[END_REF]. This approach using the AASAP semantics contrasts with a modelling-based solution proposed in [START_REF] Altisen | Implementation of timed automata: An issue of semantics or modeling?[END_REF], where the behaviour of the platform is modelled as a timed automaton. Last, many other notions of "robustness" have been proposed in the literature in order to relax the mathematical idealisation of the semantics of timed automata [START_REF] Gupta | Robust timed automata[END_REF][START_REF] Ouaknine | Revisiting digitization, robustness and decidability for timed automata[END_REF][START_REF] Baier | Probabilistic and topological semantics for timed automata[END_REF][START_REF] Baier | Almost-sure model checking of infinite paths in one-clock timed automata[END_REF]. Those approaches are different from ours, since they roughly consist in dropping "isolated" or "unlikely" executions. Also note that robustness issues have also been handled in the untimed case, but are even further from our approach [START_REF] French | A temporal logic of robustness[END_REF]. Outline of the paper. We introduce the setting in Section 2. Section 3 contains our construction: we first turn the robust semantics of timed automata into networks of timed systems (Section 3.1), which are then encoded as channel automata (Section 3.2). We then explain how the resulting channel automata are used for Bounded-MTL and coFlat-MTL model-checking (Section 3.3). By lack of space, proofs are omitted and can be found in the research report [START_REF] Bouyer | Robust analysis of timed automata via channel machines[END_REF].

Preliminaries

We present here the model of timed automata, some linear-time timed temporal logics, and the model of channel automata, which is central to our approach.

Timed Automata

Let X be a finite set of clock variables. We denote by G(X) the set of clock constraints generated by the grammar g ::

= g ∧ g | x ∼ k, where x ∈ X, k ∈ N, and ∼ ∈ {≤, ≥}. A (clock) valuation v for X is an element of R X + . If v ∈ R X
+ and t ∈ R + , we write v + t for the valuation assigning v(x) + t to every clock x ∈ X. If r ⊆ X, v[r ← 0] denotes the valuation assigning 0 to every clock in r and v(x) to every clock in X \ r.

A timed automaton is a tuple A = (L, 0 , X, I, Σ, T ) where L is a finite set of locations, 0 ∈ L is an initial location, X is a finite set of clocks, I : L → G(X) labels each location with its invariant, Σ is a finite set of actions, and

T ⊆ L × G(X) × Σ × 2 X × L is the set of transitions. Given a parameter value δ ∈ R ≥0 , whether a valuation v ∈ R X
+ satisfies a constraint g within δ, written v |= δ g, is defined inductively as follows:

8 < : v |= δ x ≤ k iff v(x) ≤ k + δ v |= δ x ≥ k iff v(x) ≥ k -δ v |= δ g 1 ∧ g 2 iff v |= δ g 1 and v |= δ g 2
Following [START_REF] De Wulf | Almost ASAP semantics: From timed models to timed implementations[END_REF], we define a parameterised semantics for A as a timed transition system A δ = S, S 0 , Σ, → δ . The set S of states of

A δ is {( , v) ∈ L × R X + | v |= δ I( )}, with S 0 = {( 0 , v 0 ) | v 0 (x) = 0 for all x ∈ X}. A transition in A δ is composed either of a delay move ( , v) d -→ δ ( , v + d), with d ∈ R + ,
when both v and v + d satisfy the invariant I( ) within δ, or of a discrete move ( , v) σ -→ δ ( , v ) when there exists a transition ( , g, σ, r, ) ∈ T with v |= δ g, v = v[r ← 0], and v |= δ I( ). The graph A δ is thus an infinite transition system. Notice that, in the definitions above, the standard semantics of timed automata can be recovered by letting δ = 0. In that case, we omit the subscript δ.

A run of A δ is an infinite sequence ( 0 , v 0 )

d0 -→ δ ( 0 , v 0 +d 0 ) σ0 -→ δ ( 1 , v 1 ) d1 -→ δ ( 1 , v 1 + d 1 )
. . . where for each i ≥ 0, d i ∈ R + . A timed word w is an infinite sequence (σ i , t i ) i∈N where σ i ∈ Σ and t i ∈ R + for each i ≥ 0, and such that the sequence (t i ) i∈N is non-decreasing and diverges to infinity. The timed word w is read on the run ( 0 , v 0 )

d0 -→ δ ( 0 , v 0 + d 0 ) σ0 -→ δ ( 1 , v 1 ) d1 -→ δ ( 1 , v 1 + d 1 )
. . . whenever t i = P j≤i d j for every i ∈ N. We write L( A δ ) for the set of timed words that can be read on a run of A δ starting in ( 0 , v 0 ). More generally, we write L( A

( ,v) δ
) for the set of timed words than can be read starting from ( , v).

Since our results rely on the results of [START_REF] De Wulf | Robustness and implementability of timed automata[END_REF][START_REF] Bouyer | Robust model-checking of timed automata[END_REF], we require that our timed automata satisfy the following requirements: (i) constraints in guards and invariants only involve non-strict inequalities; (ii) all the clocks are always bounded by some constant M ; (iii) all the cycles in the region graph are progress cycles, i.e., all the clocks are reset along those cycles. In addition, we require that the timed automata are non-blocking, in the sense that from every state, an action transition will eventually become firable: for every ( , v)

∈ L × R X + such that v |= 0 I( ), there exists d ∈ R X + and σ ∈ Σ such that ( , v) d -→ 0 ( , v + d) σ -→ 0 ( , v ) for some ( , v ) ∈ L × R X + .

Implementability and Robustness of Timed Automata

The parameterised semantics defined above (referred to as "enlarged semantics" in the sequel), has been defined in [START_REF] De Wulf | Almost ASAP semantics: From timed models to timed implementations[END_REF] in order to study the implementability of timed systems. Indeed, timed automata are governed by a mathematical, idealised semantics, which does not fit with the digital, imprecise nature of the hardware on which they will possibly be implemented. An implementation semantics has thus been defined in [START_REF] De Wulf | Almost ASAP semantics: From timed models to timed implementations[END_REF] in order to take the hardware into account: that semantics models a digital CPU which, every δ P time units (at most), reads the value of the digital clock (updated every δ L time units), computes the values of the guards, and fires one of the available transitions. We write A δ P ,δ L for the resulting transition system, and L( A δ P ,δ L ) for the corresponding set of timed words. Given a (linear-time) property P, i.e., a set of accepted timed words, a timed automaton A is said to be implementable w.r.t. P iff L( A δ P ,δ L ) ⊆ P for some positive values of δ P and δ L . As proved in [START_REF] De Wulf | Almost ASAP semantics: From timed models to timed implementations[END_REF], the enlarged semantics simulates the implementation semantics as soon as δ > 4δ P + 3δ L . As a consequence, it is sufficient to check the existence of δ > 0 such that L( A δ ) ⊆ P in order to ensure implementability of A w.r.t. P. We follow this idea in the sequel, and study the robust satisfaction relation: a timed automaton robustly satisfies a linear-time property P, written A |≡ P, whenever L( A δ ) ⊆ P for some δ > 0.

Some Subclasses of Metric Temporal Logic

Linear-time properties are often defined via temporal logic formulae. In this paper, we focus on subclasses of MTL (Metric Temporal Logic) [START_REF] Koymans | Specifying real-time properties with metric temporal logic[END_REF].

Fix a finite, non-empty alphabet Σ. The syntax of MTL over Σ is defined by the following grammar:

MTL ϕ ::= σ | ¬σ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ U I ϕ | ϕ Ü U I ϕ
where σ ∈ Σ, and I is an interval of R + with bounds in N ∪ {∞}. MTL formulae are interpreted over timed words. Let w = (σ i , t i ) i≥0 be a timed word, and p ∈ N. The (pointwise) semantics of MTL is defined recursively as follows (we omit Boolean operations):

w, p |= σ ⇔ σ p = σ w, p |= ϕ U I ψ ⇔ ∃i > 0 s.t. w, p + i |= ψ, t p+i -t p ∈ I and ∀0 < j < i, w, p + j |= ϕ w, p |= ϕ Ü U I ψ ⇔ w, p |= ¬ (¬ϕ) U I (¬ψ) .
If w, 0 |= ϕ, we write w |= ϕ. Following the discussion above, we write A |≡ ϕ if, for some δ > 0, we have w |= ϕ for every w ∈ L( A δ ).

Additional operators, such as tt (true), ff (false), ⇒, ⇔, F , G and X , are defined in the usual way:

F I ϕ ≡ tt U I ϕ, G I ϕ ≡ ff Ü U I ϕ, and 
X I ϕ ≡ ff U I ϕ.
We also use pseudo-arithmetic expressions to denote intervals. For example, '= 1' denotes the singleton {1}.

Following [START_REF] Bouyer | The cost of punctuality[END_REF], we identify the following syntactic fragments of MTL: LTL [START_REF] Pnueli | The temporal logic of programs[END_REF] can be considered as the fragment of MTL in which modalities are not constrained (i.e., where R + is the only constraining interval); Bounded-MTL is the fragment of MTL in which all interval constraints are bounded: observe that Bounded-MTL disallows unconstrained modalities, and is in particular not suitable to express invariance properties (the most basic type of temporal specifications). The fragment coFlat-MTL 4 has then been defined to remedy this deficiency:

coFlat-MTL ϕ ::= σ | ¬σ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ U J ϕ | ϕ U I ψ | ϕ Ü U J ϕ | ψ Ü U I ϕ
where J ranges over the set of bounded intervals, I over the set of all intervals, and the underlined formula ψ ranges over LTL.

One immediately sees that coFlat-MTL subsumes both LTL and Bounded-MTL, but it is not closed under negation. However, it is closed under invariance, and can then express e.g. bounded response-time or even richer formulae such as G (request ⇒ F ≤5 (acquire ∧ F =1 release)).

Channel Automata

Channel automata are an interesting formalism for reasoning about alternating timed automata, which has been used in [START_REF] Bouyer | The cost of punctuality[END_REF] to prove the EXPSPACE-membership of the model-checking problem for coFlat-MTL. We only give the definition and necessary results here, and refer to [START_REF] Bouyer | Robust analysis of timed automata via channel machines[END_REF] for some more intuition.

A channel automaton with renaming and occurrence testing (CAROT for short) is a tuple C = (S, s 0 , Σ, δ, F ), where S is a finite set of control states, s 0 ∈ S is the initial control state, F ⊆ S is a set of accepting control states, Σ is a finite alphabet, δ ⊆ S × Op × S is the set of transition rules, where

Op = {σ!, σ? | σ ∈ Σ} ∪ {zero?(σ) | σ ∈ Σ} ∪ {R | R ⊆ Σ × Σ}
is the set of operations. Given a rule τ = (s, α, s ) ∈ δ, we define op(τ ) = α.

Intuitively, operations σ! and σ? are the classical write and read operations, zero?(σ) is a guard for testing the occurrence of σ in the channel, and R ⊆ Σ × Σ is interpreted as a global renaming. An end-of-channel marker can be used to count the number of times the whole channel is read: it suffices to add, from each state of the CAROT, an outgoing transition reading , immediately followed by a transition writing . That way, there is always a unique copy of on the channel (except when it has just been read). The number of transitions writing along a computation is the number of cycles of , denoted by cycles( ). In the sequel, the CAROTs are assumed to contain the end-of-channel marker , and to have all their states equipped with a loop reading and writing that symbol.

We consider in the sequel a restricted version of the reachability problem for CAROTs, where we impose a bound on the "time" (measured here as the number of cycles of the channel): the cycle-bounded reachability problem for CAROTs is defined as follows: given a CAROT C, an input word w ∈ Σ * , and a cycle bound h, does C have an accepting computation on w with cycles( ) h?

In [START_REF] Bouyer | The cost of punctuality[END_REF], a non-deterministic procedure is presented to check the existence of an accepting cycle-bounded computation using only polynomial space in the value of the cycle bound and in the size of the CAROT: Theorem 1. The cycle-bounded reachability problem for CAROTs is solvable in polynomial space in the size of the channel automaton, the size of the input word, and the value of the cycle bound.

Remark. Note that the algorithm could easily be adapted to cope with the cyclebounded reachability between two global states (i.e., control state and content of the channel): it suffices to first set the initial content of the channel, and to add transitions that would, from any point, run one more cycle of the channel and store its whole content in the location.

Robust Model-Checking of coFlat-MTL

In this section, we prove the main results of this paper, namely that the robust model-checking problem can be expressed using CAROTs, and then that the robust model-checking problem of coFlat-MTL is EXPSPACE-Complete. EXPSPACE-Hardness is a consequence of the EXPSPACE-Hardness of the satisfiability problem for Bounded-MTL [START_REF] Bouyer | The cost of punctuality[END_REF]. EXPSPACE-membership is more involved and will be done in several steps:

1. We first construct a family of networks of timed systems that captures the enlarged semantics of timed automata (Subsection 3.1). 2. We then transform this family of networks into a CAROT, that will simulate the joint behaviours of those networks of timed systems with an alternating timed automaton representing the property we want to robustly verify (Subsection 3.2). 3. Finally, we use the CAROT to design a decidability algorithm for the robust model-checking problem, first for Bounded-MTL, and then for coFlat-MTL (Subsection 3.3).

For the rest of the paper, we fix a timed automaton A = (L, 0 , X, I, Σ, T ).

From Robustness to Networks of Timed Systems

In this subsection, we transform the robust model-checking problem into a modelchecking problem in an infinite family of timed systems. The correctness of the transformation relies on simulation relations between timed transition systems: given two timed transition systems T i = (S i , Σ, → i ) for i = 1, 2, we say that T 2 simulates T 1 whenever there exists a non-empty relation

R ⊆ S 1 × S 2 such that (s 1 , s 2 ) ∈ R and s 1 α -→ 1 s 1 with α ∈ Σ ∪ R + implies s 2 α -→ 2 s 2 for some s 2 ∈ S 2 with (s 1 , s 2 ) ∈ R. We then write T 1 T 2 .
Let n be an integer; we denote by B n the timed network composed of the following components (which are not standard timed automata because of the use of disjunction and fractional parts in the guards):

• for each 0 ≤ i < n, B i is the timed automaton i [xi≤1]
xi=1,ε,xi:=0 Fig. 1. Automaton B i depicted on Fig. 1, where x i is a fresh clock not belonging to X, and [x i ≤ 1] is an invariant forbidding the clock x i become larger than 1. That way, this automaton is forced to fire its transition when the value of x i reaches 1. We call such an automaton a ∆-automaton in the sequel. In the following, we will take indices of clocks x i modulo n, and in particular x i+1 = x 0 whenever i = n -1.

• the timed automaton B, built from A by modifying the guards and invariants as follows: each constraint of the form x ≤ k is replaced with

(x < k + 1) ∧ x > k ⇒ _ 0≤i<n {x} ≤ x i+1 < x i-1
and each constraint of the form x ≥ k is replaced with

(x > k -1) ∧ x < k ⇒ _ 0≤i<n {x} ≥ x i-1 > x i+1
We need to explain when a valuation v satisfies these "extended" guards. Boolean operators are handled in the natural way, and {x} is intended to denote the fractional part of the value of clock x.

It naturally defines a timed transition system B n , as the synchronised product (synchronised because of the time) of all components. Denoting by X n = X ∪ {x i | 0 ≤ i < n} the set of clocks of B n , a configuration of B n can be described by a pair ( , v) where ∈ L and v ∈ R Xn + (each ∆-automaton has a single location). We write u n for the valuation over X n assigning 0 to clocks in X and i n to every clock x i for 0 ≤ i < n. The initial configuration of this timed network is the pair ( 0 , u n ). Delay and action transitions are defined naturally in the synchronised products of all the components. However in the following we will hide ε-moves due to the components B i . Thus, in B n , we write ( , v) t = ⇒ ( , v ) for an interleaving of delay transitions (which sum up to t) and of ε-moves in the B i 's. For uniformity, we write σ = ⇒ for σ-moves in B n . In the sequel, simulation relations assume the relation ⇒ in B n , and the simple transition relation → δ in A δ . In the same way, the intended language accepted by B n should ignore ε-transitions. In other words, it should also be defined using the relation ⇒ as the transition relation:

L( B n ) = {w = (σ i , t i ) i∈N | ∃( 0 , u n ) d0 = ⇒ ( 0 , u ) σ0 =⇒ ( 1 , u ) d1 = ⇒ • • • ∈ B n s.t. ∀i ∈ N, t i = X j≤i d j } Lemma 2. For every n ≥ 3, A 1 n B n A 2 n .
With the previous definition, the simulation results can be stated in terms of language inclusion (as initial states are preserved by the exhibited simulation relations): for every n ≥ 3,

L( A 1 n ) ⊆ L( B n ) ⊆ L( A 2 n ). Theorem 3. Let ϕ ∈ MTL. Then, A |≡ ϕ ⇔ ∃n ≥ 3 s.t. B n |= ϕ.

From Networks of Timed Systems to CAROTs

Extending the approach of [START_REF] Bouyer | The cost of punctuality[END_REF], the CAROT we build is such that it accepts joint executions of the network of timed systems we just built (and not of a single timed automaton as in [START_REF] Bouyer | The cost of punctuality[END_REF]) and of the alternating timed automaton corresponding to the negation of the coFlat-MTL formula we want to verify. In order to handle arbitrarily many components in the network, and to deal with "extended" guards (i.e., with disjunctions and fractional parts), the construction attached to the network of timed systems needs to be deeply modified. In a first step, we describe a CAROT that only encodes the behaviours of the network of timed systems.

Let M be the maximal constant appearing in the automaton A. Then M + 1 is larger than or equal to the maximal constant of any B n . We assume that the clocks of A (and B n ) take their values in [0, M + 1] ∪ {⊥}, where ⊥ is a special value (intended to represent any value larger than M + 1). We write Reg for the set {0, 1, . . . , M + 1, ⊥} and Λ = ℘(L × X × Reg).

A configuration ( , v) ∈ L × R Xn + of the network of timed systems is encoded as the element C ( ,v) = {( , x, v(x)) | x ∈ X n }, and partitioned into a sequence of disjoint subsets C 0 , C 1 , ..., C p , C ⊥ , obtained using standard region techniques. More precisely, C 0 (resp. C ⊥ ) contains elements whose fractional part is 0 (resp. whose value is ⊥) and the others C i gather elements with the same fractional part and are sorted according to the increasing order of fractional parts. We then let

H(C ( ,v) ) = reg(C 0 ), reg(C ⊥ ), reg(C 1 )reg(C 2 ) . . . reg(C p ) ∈ Λ × Λ × Λ * ,
where we write reg(C) for {( , x, reg(v)) | ( , x, v) ∈ C}, with reg(v) the largest element of Reg smaller than or equal to v.

Using the abstraction function H, it is possible to define a discrete transition system T n H which abstracts away precise timing information, but which simulates the behaviours of B n . The abstraction function also provides an equivalence relation ≡ on configurations:

C ≡ C iff H(C) = H(C ).
Extending straightforwardly a result of [START_REF] Ouaknine | On the decidability and complexity of Metric Temporal Logic over finite words[END_REF] (regions are compatible with our extended guards), we have:

Lemma 4.
The equivalence relation ≡ is a time-abstract5 bisimulation.

The CAROT we will build is based on the above discrete transition system. More precisely, the intended encoding of a configuration in the CAROT is the following: the integral values of the clocks of A are stored in the discrete state of the CAROT, as well as the sets C 0 and C ⊥ , and the current location . The other C i 's are stored on the channel, from C 1 (recently written on the channel) to C p (the next item to be read from the channel).

In order to use the same CAROT to simulate the network of timed system with any number of ∆-automata, we abstract the name of clocks x i in our encoding, representing them on the channel by a new symbol ∆. Since, at any time, at most one of the x i 's can have integral value, and since we only need to know the order of the x i 's in order to evaluate guards of B n , the amount of information to be stored in the location of the CAROT does not depend on the number of ∆-automata in the network.

Example 5. Consider for instance a configuration C encoded by the word

H(C) = {( , x, 3), ( , x 2 , 0)}, {( , z, ⊥)}, {( , x 0 , 0)} • {( , y, 1), ( , x 1 , 0)} .
We assume that the maximal constant M is 3. The encoding of the delay-successor of C is obtained by cycling around the letters (except the last one) of the word (and increasing the values of the regions accordingly). Writing ∅ for the empty set, the first delay successor of H(C) is ∅, {( , z, ⊥)}, {( , x, 3), ( , x 2 , 0)} • {( , x 0 , 0)} • {( , y, 1), ( , x 1 , 0)} .

The next delay successor is {( , y, 2), ( , x 1 , 0)}, {( , z, ⊥)}, {( , x, 3), ( , x 2 , 0)} • {( , x 0 , 0)} . Note that, in that second delay transition, we have reset clock x 1 when it has reached 1, and the integral part of y has increased to 2. The configuration H(C) would be encoded as depicted on Fig. 2 (where we write to the left and read from the right of the channel). With respect to the channel, the first delay transition is performed through the write operation ' x∆ !'. As in [START_REF] Bouyer | The cost of punctuality[END_REF], it is worth noticing that a cycle of the CAROT corresponds to one time unit elapsing. Furthermore, to simulate the extended guards used in B n , we need some additional information about the position of clocks of A w.r.t. symbols ∆. As we have already seen, a clock x verifies a constraint {x} ≤ x i+1 < x i-1 iff its fractional part is smaller than one of the two smallest clocks x j . In our simulation, this corresponds as being "before" the second symbol ∆ on the channel. And symmetrically for constraint {x} ≥ x i-1 > x i+1 . We thus have to store in the control part of the CAROT which clocks are "before" (resp. "after") the two first (resp. last) symbols ∆. Whereas this can easily be done for the clocks that have been recently written on the channel, this is not possible for the clocks lying at the head of the channel (this would require to store the position of each clock w.r.t. each symbol ∆). Instead, we use non-determinism to allow the CAROT make predictions about the content of the head of the channel, and then we verify when reading clocks from the channel that these predictions were correct.

For lack of space, we cannot present the formal construction of the CAROT, but report to [START_REF] Bouyer | Robust analysis of timed automata via channel machines[END_REF]. We write C A for the resulting CAROT, T n C A for the transition system associated with C A and restricted to configurations with correct predictions and n occurrences of ∆ on the channel (or in the location), and ≈ for the relation that describes which configuration (d, c) of T n C A (a control state together with a channel content) corresponds to a configuration of T n H . The correctness of the construction relies on the following lemmas. Lemma 6. For any n ≥ 3, the transition systems T n H and T n C A are bisimilar. Lemma 7. Let be a time-divergent execution in B n . Then any computation in C A simulating has correct predictions. 6Let (d n , c n ) be the configuration of C A encoding the initial configuration of B n , i.e., such that (d n , c n ) ≈ H( 0 , u n ). Lemmas 4, 6 and 7 then yield:

Theorem 8. Let n ≥ 3. C A has a time-divergent 7 computation starting in (d n , c n ) iff L( B n ) = ∅.
The second part of the construction of the CAROT for encoding the robust model-checking problem consists in adding the part related to the temporal formula ϕ (in MTL). This part will be handled in a very similar way as in [START_REF] Bouyer | The cost of punctuality[END_REF], we thus simply sketch the construction. First, we build the one-clock alternating timed automaton A ¬ϕ corresponding to ¬ϕ. Then, we build the product of the CAROT C A with a CAROT simulating the behaviour of A ¬ϕ . The resulting CAROT, say C A,¬ϕ , running from the initial configuration (d ϕ,n , c ϕ,n ) corresponding via ≈ to the initial configuration of B n × A ¬ϕ , simulates joint behaviours of B n and A ¬ϕ . The accepting condition for C A,¬ϕ is the Büchi condition given by 'flattening' A ¬ϕ . The results of [START_REF] Bouyer | The cost of punctuality[END_REF] combined with our above results yield:

Theorem 9. Let n ≥ 3 and ϕ ∈ MTL. C A,¬ϕ has a time-divergent accepting computation starting in (d ϕ,n , c ϕ,n ) iff B n |= ϕ.
Remark. A rough bound on the size of the CAROT C A,¬ϕ is O

|A| 3 •2 O(M •|ϕ|+|X|)
, where |ϕ| is the number of subformulae of ϕ. The size of the alphabet of C A,¬ϕ is in O(|X|). As proved in [START_REF] Bouyer | The cost of punctuality[END_REF], if C A,¬ϕ has an h-cycle-bounded accepting execution, then there is a bound N 0 , which depends on the size of C A,¬ϕ and h, such that there exists an h-cycle-bounded accepting execution of length no more than N 0 . We do not give the precise value of this bound (see [START_REF] Bouyer | Robust analysis of timed automata via channel machines[END_REF] instead), but it is exponential in h, which is itself exponential in the size of the input.

From CAROTs to Robust Model Checking

We first solve the robust model-checking problem for Bounded-MTL, and then turn to the more involved logic coFlat-MTL. Both rely on the previously proved equivalences:

A |≡ ϕ iff ∀n ≥ 3, § C A,¬ϕ has a time-divergent accepting computation starting in (d ϕ,n , c ϕ,n )
Robust model-checking for Bounded-MTL. The algorithm to decide the robust model-checking problem for Bounded-MTL formula relies on the fact that the truth value of a Bounded-MTL formula ϕ along a run only depends on the first h time units of , where h is the sum of the constants appearing in ϕ [START_REF] Bouyer | The cost of punctuality[END_REF]. In A ¬ϕ , after having read a prefix of duration h time units, we thus always end up in a sink state, that we report as accepting in the CAROT.

Moreover, the non-blocking assumption made on A implies the following property: Lemma 10. Let A be a timed automaton, and δ > 0. Given ( , v) a configuration of A such that v |= δ I( ), we have that L( A

( ,v) δ ) = ∅.
Hence, robustly model-checking A against a Bounded-MTL property ϕ will be reduced to searching, for every n ≥ 3, for a time-bounded accepting prefix in T n C A,¬ϕ , and verifying that the reachable configuration is with correct predictions. Indeed, applying the previous lemma, we already know that we will be able to extend this finite prefix into a time-diverging run witnessing ¬ϕ as soon as the prefix is correctly chosen (meaning it ends up in a accepting state of the CAROT).

We define the following property, for any integer n: P(n): "C A,¬ϕ has an h-cycle-bounded accepting computation with correct predictions starting in (d ϕ,n , c ϕ,n )"

Then our problem somehow amounts to checking that for every n ≥ 3, property P(n) holds. This is some kind of "universality" checking of the CAROT, where we universally quantify on the initial number of ∆'s on the channel. This is achieved using the following two lemmas:

Lemma 11. Let n, n ∈ N be such that n ≥ 2n ≥ 6. Then P(n ) ⇒ P(n).

Proof. We have seen that

B n (Lemma 2) A 2 n ( 2 n ≤ 1 n ) A 1 n (Lemma 2) B n .
Also, for m ≥ 3, the CAROT C A,¬ϕ , when restricted to configurations with correct predictions, is time-abstract bisimilar to the product of B m with A ¬ϕ . Finally, the respective initial configurations are in the relation ≈. Thanks to those lemmas, it suffices to only look for an h-cycle-bounded execution starting in one of the configurations (d ϕ,N , c ϕ,N ) (for any N ≥ 2 • N 0 ) in order to ensure the existence of an accepting execution for any number of ∆'s:

Corollary 13. Let N ≥ 2 • N 0 . Then P(N ) ⇔ ∀n ≥ 3, P(n).
Theorem 14. The model-checking problem for Bounded-MTL is EXPSPACE-Complete (and PSPACE-Complete if constants of the formula are given in unary).

Proof. The hardness parts follow from the same hardness results for Bounded-MTL satisfiability [START_REF] Bouyer | The cost of punctuality[END_REF].

The upper bound follows from the previous study. However, since the size of the CAROT is doubly exponential, the non-deterministic algorithm of Theorem 1 has to be applied on-the-fly, without explicitly building the CAROT. Since the number N 0 of different sliding windows of height h is also doubly-exponential in the size of the input, our non-deterministic algorithm will also have a counter, and will stop as soon as the counter reaches N 0 . This all can be achieved within exponential space.

If the constants of the formula are unary-encoded, then h is linear in the size of the input formula, and N 0 is simply exponential in the size of the input. The same algorithm then uses only polynomial space.

Robust model-checking for coFlat-MTL. The case of coFlat-MTL is more involved than that of Bounded-MTL. The reason is that, unlike Bounded-MTL, the truth value of a coFlat-MTL formula ϕ along a run does not only depend on a prefix of of bounded duration. Instead, we have the following decomposition lemma, which follows from [7, Theorem 12]: Lemma 15. Let be an accepting run of A δ × A ¬ϕ . Then it can be decomposed as 1 • 2 • 3 • • • 2m where there is a finite automaton F ¬ϕ8 s.t.:

(i) the duration of 2i-1 (for

1 ≤ i ≤ m) is bounded by h = (2M + 3 + W • 2 |ϕ| ) • (|ϕ| • 2 |ϕ| ), (ii) the duration of 2i (for 1 ≤ i ≤ m) is at least 2 |ϕ| • (2W + 1)
, and along that portion, the behaviour of A ¬ϕ is that of F ¬ϕ , (iii) the Büchi condition of F ¬ϕ is satisfied along 2m , and

(iv) 2m ≤ |ϕ| • 2 |ϕ| ,
where W is the number of states of the region automaton of A × F ¬ϕ . Oddnumbered segments are called the active parts, while even-numbered ones are said inactive.

This decomposition lemma inspires a decidability algorithm, where we modularly check the existence of runs not satisfying ϕ by distinguishing between active and inactive parts of the runs. Indeed, given a sequence ( δ ) δ>0 , using combinatorics arguments, it is possible to twist them so that, for δ > 0 small enough (say δ ≤ δ 0 ), all δ look very similar (that is, roughly the junction points between active and inactive parts are close to each other and belong to the same region). Conversely, if we are given a witnessing run δ0 , and if we consider the junction points of that run, for each inactive (resp. active) part, it is possible for every δ > 0 to build an inactive (resp. active) portion of a run joining the two junction points. The construction of an inactive portion of a run partly relies on approximation results proved in [START_REF] De Wulf | Robustness and implementability of timed automata[END_REF][START_REF] Bouyer | Robust model-checking of timed automata[END_REF], and the construction of an active portion of a run relies on a result similar to Corollary 13. The complete proof is rather technical and gathers in an original way many results of [START_REF] De Wulf | Robustness and implementability of timed automata[END_REF][START_REF] Bouyer | Robust model-checking of timed automata[END_REF][START_REF] Bouyer | The cost of punctuality[END_REF].

An informal version of the decidability algorithm is the following, and can be schematised as on Figure 3:

-Guess the junction points of the active and inactive parts -For each active part, check that the two guessed junction points are reachable in C A,¬ϕ in a cycle-bounded manner 9 (here, we need to prove a result similar to Corollary 13) -For each inactive and bounded active part, check that the two junction points are "robustly" reachable (using results of [START_REF] De Wulf | Robustness and implementability of timed automata[END_REF][START_REF] Bouyer | Robust model-checking of timed automata[END_REF]) -For the last unbounded active part, check that the automaton A × F ¬ϕ , from last junction point, does not robustly satisfy the acceptance condition of F ¬ϕ interpreted as a co-Büchi condition (using the algorithm of [START_REF] Bouyer | Robust model-checking of timed automata[END_REF]).

We can conclude with the main result of the paper:

Theorem 16. The robust model-checking problem for coFlat-MTL is EXPSPACE-Complete.

Conclusion

In this paper, we have proposed a new approach to robust model-checking of timed systems based on channel machines: we construct a family of networks of timed 9 The bound on the number of cycles is that of (i) in the above decomposition lemma. systems such that robustly verifying a formula in a timed automaton reduces to the verification of the formula in one of the members of the family; Then we encode the behaviour of this family of timed systems using channel machines. We have applied this approach to coFlat-MTL, a rather expressive fragment of MTL, and prove that it can be decided in EXPSPACE, which is moreover optimal. The logic coFlat-MTL subsumes LTL, thus it is the more general specification language for which robust model-checking has been proved decidable.

Our correctness proofs heavily rely on technical lemmas proved in [START_REF] De Wulf | Robustness and implementability of timed automata[END_REF][START_REF] Bouyer | Robust model-checking of timed automata[END_REF] and is unfortunately not fully CAROT-based. As future works, we plan to study robust reachability directly on the CAROT encoding the extended semantics, in order to develop a fully CAROT-based algorithm for coFlat-MTL.
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 2 Fig. 2. Encoding of a configuration in a CAROT
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  (even) part: robust co-Büchi condition of F¬ϕ in A × F¬ϕ.
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 3 Fig. 3. Global view of our algorithm

  Lemma 12. Let N ≥ 2 • N 0 . Then P(N ) ⇒ ∀n ∈ N, ∃n ≥ n s.t. P(n ).Proof (Sketch). Using the notion of computation table introduced in[START_REF] Bouyer | The cost of punctuality[END_REF], we prove a pumping lemma for CAROTs. Indeed, the height of the computation table is bounded by h; the number of "sliding windows" of such tables is thus bounded. Hence, once the table is large enough, it is possible to duplicate one of its fragments, building new computation tables encoding computations over larger inputs (corresponding to configurations (d ϕ,n , c ϕ,n ) for integers n arbitrarily larger than n).

This means that precise delays of time-elapsing transitions are abstracted away.

Intuitively, this is because delay transitions force predictions checking.

That is with infinitely many delay transitions.

Intuitively, F¬ϕ is obtained as the flattening of the untimed part of A¬ϕ, see[START_REF] Bouyer | Robust analysis of timed automata via channel machines[END_REF].
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