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Abstract

Recent works show that the parameters controlling
the parameterizations of the physical processes in cli-
mate models can be estimated from observations us-
ing filtering techniques. In this paper, we propose an
offline parameter estimation approach, without esti-
mating the state of the climate model. It is based on
the Ensemble Kalman Filter (EnKF) and an iterative
estimation of the error covariance matrices and of the
background state using a maximum likelihood algo-
rithm. The technique is implemented in a subgrid-
scale orography (SSO) parameterization scheme that
works in a single vertical column. First, the param-
eter estimation technique is evaluated using twin ex-
periments. Then, the technique is used with syn-
thetic observations to estimate how the parameters of
the SSO scheme should change when the resolution of
the input orography dataset of a general circulation
model is increased. Our analysis reveals that when
the resolution of the orography dataset increases, the

scheme should take into account the dynamical shel-
tering that can occur at low levels between mountain
peaks located within the same gridbox area.

1 Introduction

Numerical models including atmospheric/oceanic
General Circulation Models (GCMs) and current
earth system models, contain several physical pa-
rameterizations with a large number of parame-
ters. Climate predictions using these numerical
models are sensitive to the large set of parameters
that are present in the physical parameterizations
(cf. [Stainforth et al.(2005)]). Most of these un-
known physical parameters can not be determined
directly from observations and are generally manu-
ally tuned. This subjective approach is excessively
time demanding and do not give optimal results.
Moreover, if the horizontal resolution of the model
or of an input dataset is increased or a parame-
terization scheme is changed, the physical parame-
ters need to be re-evaluated. To address these is-
sues, several authors (see e.g. [Jackson et al.(2004)]
and [Severijns and Hazeleger(2005)]) propose to es-
timate the physical parameters objectively, defining
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a cost function based on the Root Mean Square Er-
ror (RMSE) criterion. The idea is to find the op-
timal set of parameter values that gives the min-
imum RMSE and produces the lowest model er-
ror. However, nonlinear model responses may
produce multiple local minima in the cost func-
tion (cf. [Posselt and Bishop(2012)]), and thus so-
phisticated optimization algorithms are required to
find the global minimum corresponding to the op-
timal parameters. Such optimization algorithms
are usually too expensive computationally to be
employed in sophisticated models. An alterna-
tive consists in supposing that the parameters are
stochastic and in estimating them using filtering
techniques (see e.g. [Annan and Hargreaves(2004)],
[Posselt and Bishop(2012)], [Ruiz et al.(2013)] and
[Schirber et al.(2013)]). The basic idea to estimate
the parameters is based on an augmented state com-
posed by both the state of the system and the phys-
ical parameters in a nonlinear Gaussian state-space
model. This online estimation is a tough problem
in practice. Even a simple linear state equation with
multiplicative parameters behaves nonlinearly for pa-
rameter estimation ([Yang and Delsole(2009)]).
Another approach consists in estimating the phys-

ical parameters independently of the state of the
system. The particular advantage of using an of-
fline estimation technique is that the control space
is reduced from 107 to just a few dimensions. This
drastic reduction in size permits to conduct sev-
eral model/parameterization evaluations as is often
needed in parameter estimation. One disadvantage
of offline techniques, is that they can not take into ac-
count the feedback of the changes that the parameter-
ization produces onto the parameterization itself. For
a subgrid-scale orography (SSO) scheme nevertheless,
this issue should not be too critical, since most of the
flow changes produced are advected downstream (for
instance in the form of potential vorticity banners,
see Figure 13(c) in [Lott(1995)]). Accordingly, the
feedback can be neglected if the mountains consid-
ered are not close to the lee of other mountains.
In order to conduct an offline estimation of physi-

cal parameters, the parameterization should be com-
pared to observations, for instance the PYREX cam-
paign, in which surface drag and momentum fluxes

were measured over a transect of the Pyrénées moun-
tain (cf. [Bougeault et al.(1990)]). In this case, the
mountain massif can be considered to be entirely lo-
cated within a model gridbox area of a climate model,
so drag and momentum flux can be directly com-
pared to the same quantities predicted by the scheme
over the same area. Therefore, we can validate SSO
schemes using a single vertical column. This ap-
proach is often used prior to the implementation of
the schemes in GCMs (see for instance the offline
tests of the scheme in single vertical columns using
the PYREX data in [Lott and Miller(1997)]).
[Pulido and Thuburn(2005)] and

[Pulido and Thuburn(2008)] showed that a four-
dimensional variational data assimilation technique
can be used to estimate the missing momentum
forcing due to the unresolved/subgrid-scale gravity
waves in the stratosphere. This missing momentum
forcing was used to estimate optimal parameters
of a nonorographic gravity wave parameterization
in [Pulido et al.(2012)]. Using twin experiments,
they showed that the variational data assimilation
technique does not converge towards the optimal
parameters because of the nonlinear response of the
parameterization to parameter perturbations. They
employed a time-demanding genetic algorithm to
overcome these difficulties. In the present work, we
propose a similar offline parameter estimation pro-
cedure but using a ensemble-based data assimilation
technique to estimate the optimal parameters of a
SSO scheme.
The technique presented here uses the Ensem-

ble Kalman Filter (EnKF) and Ensemble Kalman
Smoother (EnKS) which are reviewed in detail in
[Evensen(2009)]. In this work, we do not use an
augmented state to estimate parameters of GCMs
as is usually done for online estimation like in
[Annan and Hargreaves(2007)] or [Ruiz et al.(2013)],
instead the state variables for the EnKF are only
the physical parameters in this offline parameter es-
timation. As we do not have any knowledge of their
temporal evolution, the state model is supposed to
follow a random walk. In this way, we assume a
non-negligible model error. An innovative part of our
technique is that we also estimate the statistical pa-
rameters of the EnKF: (i) the covariance matrices
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of the Gaussian errors that control the weight of the
state and the observation equations and (ii) the back-
ground state of the filter, typically an a priori knowl-
edge of the physical parameters. Generally, these sta-
tistical parameters of the EnKF are prescribed values
chosen by the user. In practice, this manual tuning
does not ensure the filter convergence to the state
of the system. To overcome this problem, the stan-
dard implementations of the EnKF use an inflation
factor for the forecast and/or observational error co-
variance matrices to avoid filter divergence. However,
the main problem of this approach is the choice of
the covariance inflation (additive or multiplicative)
and the amplitude of the inflation. Several studies
propose to estimate the inflation factors using the
first moment estimation of the squared innovation
(see e.g. [Wang and Bishop(2003)], [Li et al.(2009)]
and [Liang et al.(2011)]), Bayesian approaches (see
e.g. [Anderson(2007)] and [Miyoshi(2011)]) or the
second-order least squares statistic of the squared in-
novation as in [Wu et al.(2012)]. The technique pre-
sented in this paper does not need to use any infla-
tion factor since the statistical parameters are non-
deterministic values. Here, as the estimation is of-
fline in a low-dimensional system, we estimate di-
rectly the entire error covariance matrices and the
background state of the EnKF using a maximum like-
lihood approach. In particular, we use the iterative
and efficient Expectation-Maximization (EM) algo-
rithm introduced by [Dempster et al.(1977)]. To our
knowledge, the implemented technique in this work
based on the combination of an ensemble Kalman
filter with the Expectation-Maximization algorithm
has not been proposed previously in data assimila-
tion.
The novel estimation technique is applied to the

SSO scheme described in [Lott and Miller(1997)] and
revised in [Lott(1999)]. This SSO scheme com-
putes the wind tendencies due to the subgrid-scale
orography and is implemented in three GCMs: the
Laboratoire de Météorologie Dynamique (LMDz),
the ECHAM model which is the atmospheric com-
ponent of the Earth System Model of the Max-
Planck Institute (MPI-ESM) and the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF)
model. It is known that weather forecast and cli-

mate models are sensitive to the physical parame-
ters of SSO schemes (see e.g. [Palmer et al.(1986)],
[Lott et al.(2005)] and [Sigmond et al.(2008)] respec-
tively). Currently, this issue is still important
since climate models now extent to the mid-
dle atmosphere where mountain gravity waves
significantly affect the Brewer-Dobson circulation
([McLandress and Shepherd(2009)]). This circula-
tion seems to intensify with the climate change
([Li et al.(2008)]). These results call for a re-
evaluation of the SSO schemes in the middle-
atmosphere resolving models and in particular of the
set of parameters used in the schemes. An optimiza-
tion of the SSO schemes can help to evaluate better
the potential effects of the orographic gravity wave
drag on the westerlies in mid-latitudes.

This paper is organized as follows. First, we de-
scribe the SSO scheme and the data-sets it uses in
Section 2. Then, in Section 3, we present the statis-
tical model used to estimate the physical parameters
of the SSO scheme. The details of the estimation
technique based on the EnKF, EnKS and the EM al-
gorithm are explained in Section 4. The estimation
technique is applied to a column version (not a 3D
version) of the subgrid-scale orography scheme. We
then use two synthetic cases (i.e., without using real
observations): an identical twin-experiment and a sit-
uation in which the horizontal resolution of the orog-
raphy dataset is changed. We show the results in Sec-
tion 5. Conclusions are drawn and perspective work
is outlined in Section 6. In general, the unified nota-
tions of data assimilation given in [Ide et al.(1997)]
are used in this paper.

2 Data and model

2.1 General circulation model data

To conduct our offline estimation we used daily
data from a simulation done with the LMDz GCM
([Hourdin et al.(2006)]) using a horizontal resolution
of 3.75◦ × 2.5◦ and 50 vertical levels with a model
top at 5 hPa. We have extracted from this model
the SSO scheme we want to optimize. To conduct
the optimization, we limit ourselves to a one month
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period, July 2000. The exact year itself is of little
importance, since the run considered has a spin up of
several years, and was not constrained by other forc-
ings than the sea-surface temperature and the land-
sea ice cover. The particular month chosen is in mid
winter, when high wind speed conditions prevail over
the Southern Andes.
The SSO scheme we use represents mountain

gravity wave drag and blocked flow drag following
[Lott and Miller(1997)]. It also introduce lateral lift
to take into account the fact that narrow valleys are
partially sheltered from the large scale winds in the
free troposphere (cf. [Lott(1999)]). The scheme was
extended to the stratosphere in [Lott et al.(2005)]
and this is the version that we use. For completeness,
the salient features of scheme are described here.
Before launching a simulation, ten subgrid scale

orography parameters are calculated in each model
gridbox: the mountain minimum, mean, and max-
imum elevations, the mountain departure from the
mean is then characterized by its anisotropy, its ori-
entation angle, its slope and its standard deviation.
As we will see, when we change orography datasets
these parameters change significantly and the most
dramatic changes concern the evaluation of the slope.
We will adress these issues in Sect. 5.2 and evaluate
the changes to be done to the SSO scheme used in
LMDz, when we make a transition from the 10 min-
utes of resolution US Navy orography dataset used in
most current applications, to a more refined 2 min-
utes of resolution dataset. At each time step, the SSO
scheme uses the background flow conditions predicted
by the model at a given gridpoint (i.e. the horizontal
components of the winds, the temperature and the
surface pressure), and predicts the effect of the SSO
on the large-scale flow at all model levels.
The SSO scheme uses a set of six non-dimensional

parameters of order O(1) which characterize the
mesoscale and synoptic-scale effects of the mountain
on the large-scale flow. The first three parameters G,
Cd and Cl directly scale the forces associated to the
different processes parameterized: the gravity wave
drag, the low-level blocked flow drag, and the low-
level lift that enhances large-scale vortex compres-
sion to represent valleys sheltering respectively. The
other three parameters HNC , β and Ric, are used

Table 1: Physical parameters of the SSO scheme,
their assigned true values and their corresponding
physical range.

Physical parameters True Range
G 1 (0, 1.5)
Cd 1 (0, 1.5)
Cl 1 (0, 1.5)
Hnc 1 (0, 1.5)
β 0.5 (0, 1)
Ric 0.25 (0, 2)

to characterize the low-level flow blocking depth, the
fraction of the gravity wave drag that propagates to-
ward the free troposphere and aloft, and the critical
Richardson number that is used to predict when the
mountain waves break. In Table 1, we give the val-
ues of each parameter used in operation, and also the
range of values we will consider as plausible when we
will re-tune the SSO scheme.

The profiles of wind tendencies given by the SSO
scheme are very sensitive to the value of the six non-
dimensional parameters as in other schemes. The set
of parameters used in the past were motivated by
decades of research on mountain flow dynamics, and
by few experimental campaigns conducted over spe-
cific areas like the Pyrenees in France (for a motiva-
tion of the lift based on the PYREX campaign, see for
instance [Lott(1995)]). Although satellite data com-
bined with high-resolution simulations could also be
used in the future ([Hertzog et al.(2012)]), it remains
that local tunings will probably still be needed, at
least near places where the drag forces can potentially
be very important. For this reason, and also because
the methodology we propose is well adapted to handle
1-column models ([Posselt and Bishop(2012)]), this is
the strategy we have followed in the present paper,
where we imagine that an observational campaign
takes place near the Perito Moreno Glacier in the
Andes (46◦ south, 71◦ west), location represented by
a dot in Figure 1. There, the mountains are charac-
terized by an important anisotropic shape and strong
variations of the altitudes (the standard deviation is
295m for a mean altitude of 531m and a peak of
1513m). These topographical conditions represented
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in Figure 1(a) are ideal to study mountain induced
forces especially in high surface wind speed condi-
tions such as in Figure 1(b). Indeed, this geographical
location gave one of the largest subgrid-scale moun-
tain drag amplitudes on the Earth in a preliminary
spatial analysis for July 2000 in which we computed
globally the subgrid-scale mountain drag with the
scheme.

2.2 Preliminary tests

To give a preliminary view of the scheme outputs,
Figure 2 shows the tendencies predicted by the SSO
scheme,

y(tk) = F (θ,Z(tk)) (1)

where θ = (HNC , Cd, Ric, G,Cl, β), and Z(tk) is a
generic notation for the vertical profiles of the hor-
izontal winds and temperature. In (1), the vec-
tor y(tk) has m = 100 values each of the 31 days
k ∈ {1, . . . ,K = 31} of July 2000. Each day, the first
50 values correspond to the zonal tendencies at the 50
model levels, and the last 50 values to the meridional
tendencies.

From a preliminary temporal analysis during July
2000 on the chosen location, we distinguish two char-
acteristic regimes of wind profiles in terms of the re-
sulting induced SSO tendencies. Two examples of
these regimes are shown in Figure 3. On the 5 July
2000 (dotted line), the wind profile shows low and
constant wind speeds with the altitude. On the 25
July (dashed line) the profile shows higher surface
wind speeds and an increase of the wind with height,
due to the presence of the subpolar jet in the re-
gion. The zonal and meridional components of the
SSO tendency for the two cases are shown in Figure
2. The free physical parameters of the scheme are set
to Ht

NC = 1, Ct
d = 1, Ritc = 0.25, Gt = 1, Ct

l = 1
and βt = 0.5. These set of ”true” parameter values
θt were proposed by [Lott(1999)] and generate the
”true” tendency denoted yt(tk). From Figure 2, on
the 25 July 2000, we find large tendencies whereas
on the 5 July 2000 the effect is much weaker due to
the low wind speed conditions. The 95th percentile
envelope around the mean value for the month of
July 2000 is also shown. It indicates that the pre-

(a)

(b)

Figure 1: (a) Topography of the south Andes and (b)
surface winds the 25 July 2000. The location of the
chosen mountain peaks is close to the Perito Moreno
Glacier (46◦ south, 71◦ west) and represented by a
dot.
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dicted SSO tendencies tend to be small in the mid-
levels and larger at levels corresponding to the peak
of the mountain (800 hPa) and to the tropospheric
jet (250 hPa).

To evaluate how the outputs of the scheme vary
with the different parameters, we evaluate the cost
function

J(tk) =
(
yt(tk)− y(tk)

)> (
yt(tk)− y(tk)

)
(2)

where the transpose notation > is used, so that the
square differences are summed over all altitudes and
over the two components (zonal and meridional).
Firstly, the cost function given in (2) is computed by
changing one physical parameter and by fixing the
other parameters to the true values.

Figure 4(a) shows the sensitivity of J as a func-
tion of HNC and Cl for the state found on 5 July
2000 which is a situation with low surface winds as
shown in Figure 3. The cost function associated with
HNC parameter shows a nonquadratic behavior, rep-
resenting a nonlinear sensitivity in the derivative of
J . The parameter Cl shows a quadratic cost func-
tion so that its sensitivity is linear. The other four
parameters also show a linear sensitivity, as found
for the Cl parameter, so that their cost functions are
not shown. Figure 4(b) shows the sensitivity of J in
high surface wind speed conditions, on the 25 July
2000. The sensitivity of J for HNC parameter is en-
hanced by a factor of 103 in strong wind speed condi-
tions compared to the sensitivity of the weak wind
speed condition case. Finally, a relatively weaker
enhancement of the J sensitivity is found for high
surface wind speed conditions to certain physical pa-
rameters, e.g. Cl (squares) and Cd (not shown here)
compared to the enhancement of HNC sensitivity be-
tween low and high surface wind conditions. In Fig-
ure 4(b), a saturation of the cost function is found
close to the global minimum for HNC > 1.1 (cir-
cles) in high wind speed conditions. This behaviour
can be explained as follows. As the surface wind in-
creases and HNC increases the blocked flow depth
decreases and eventually reaches 0 (see (4) and (9) in
[Lott and Miller(1997)]). At this point, the parame-
ter HNC becomes saturated since an increase of its
value can not change the blocked flow depth to neg-

(a)

(b)

Figure 2: Vertical profiles of (a) zonal and (b) merid-
ional tendencies generated by the SSO scheme at lo-
cation 46◦ south, 71◦ west within the Andes. The
gray intervals correspond to the 95th percentile en-
velope on the month of July 2000. The dotted and
dashed lines correspond respectively to the mountain
drag profiles the 5 and 25 July 2000.
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Figure 3: Wind speed profiles from the LMDz GCM
model the 5 (dotted line) and 25 (dashed line) July
2000 at location 46◦ south, 71◦ west within the An-
des.

ative values. Therefore, HNC values larger than this
critical value cannot affect the SSO predictions.
In a second sensitivity experiment, the cost func-

tion given in (2) is computed changing two physi-
cal parameters simultaneously. Figure 5 shows the
cost function as a function of the physical parameters
HNC and G. Parameter HNC is correlated with G
parameter. The 10 smallest values of the cost func-
tion are indicated in the Figure 5 with black dots.
They underline the fact that the global minimum re-
gion of the cost function (intersection of the 2 dashed
black lines) is not well defined. On the contrary, in
Figure 5(a), a large region of very low sensitivity close
to the global minimum is highlighted, especially in
low wind speed conditions where the sensitivity of J
is reduced. In this region of the cost function, there
is a negative correlation between HNC and G.

3 Nonlinear Gaussian state-
space model

To estimate the n = 6 physical parameters in θ via
our filtering technique, we first need to make them
stochastic. We denote them as x and we say it is the
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Figure 4: Cost function (2) as a function of the phys-
ical parameters HNC (circles) and Cl (squares). The
true values of the physical parameters are Ht

NC = 1
and Ct

l = 1. The results are given for the location
46◦ south, 71◦ west, (a) on 5 July 2000 representing
low surface wind speed conditions and (b) on 25 July
2000 representing high surface wind speed conditions.
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west, (a) on 5 July 2000 representing low surface wind
speed conditions and (b) on 25 July 2000 representing
high surface wind speed conditions.

”state of the system”. The state evolution is given
by a Gaussian random walk,

x(tk) = x(tk−1) + η(tk), (3)

where the n-dimensional stochastic random vector
{η(tk)}k∈{1,...,K} represents an additive perturbation
at each time tk. We assume that the perturbations
are Gaussianly distributed with zero mean and a con-
stant in time n × n covariance matrix Q. Equation
(3) is taken as the state equation in our state-space
model.
If we use directly the physical parameters θ as the

state of the system, they can easily become negative,
or reach very large values whereas the parameters in
the SSO scheme are assumed to be always positive
and of the order of unity. For this reason, we map
the physical parameters θ on x by using the Gauss
error function θ = G(x), as sometimes used in data
assimilation ([Hu et al.(2010)]).
At the initial time of (3), we introduce an a priori

knowledge of the physical parameters. We assume
that this background information follows a Gaussian
distribution given by the n-dimensional vector mean
xb and the n× n covariance matrix B.
At time tk, the zonal and meridional SSO tenden-

cies given in (1) are assumed to be observed. They
are stored in the m-dimensional stochastic random
vector {y(tk)}k∈{1,...,K}. The state vector at time tk
is related to the observation by means of the obser-
vation equation defined by

y(tk) = Hk (x(tk)) + ε(tk), (4)

where the observation operator Hk is the nonlinear
function defined by

Hk (x(tk)) = F (G (x(tk)) ,Z(tk)) (5)

where F is the SSO scheme (1) and G is
the Gauss error function. In (4), we suppose
that the m-dimensional stochastic random vector
{ε(tk)}k∈{1,...,K} is an additive zero mean Gaussian
error. The m × m covariance matrix of ε(tk) is de-
noted by R(tk). As the sensitivity of J varies with
the atmospheric conditions Z(tk), particularly with
the surface wind speed, R(tk) is assumed in principle
to vary with time.
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The statistical parameters correspond to the vector
and matrices that define the system (3)-(4). They are
denoted by ψ. We use the term ”statistical parame-
ters” of the state-space statistical model to make the
difference with the 6 ”physical parameters” θ of the
SSO scheme. Namely, the statistical parameters are
the a priori probability density function (PDF) of the
physical parameters, given by xb and B, and the co-
variance error matrices Q and R(tk) ∀k ∈ {1, ...,K}.
We write ψ =

(
xb,B,Q,R

)
. The statistical param-

eters define the uncertainty of the state-space sta-
tistical model and play a central role on the qual-
ity and rate of convergence in the estimation of the
physical parameters with the filtering and smoothing
techniques described below.
The estimation of the statistical parameters ψ is

conducted maximizing the total likelihood function
L. This function is based on the PDF of the ini-
tial state p(x(t1)), the conditional state evolution
p(x(tk)|x(tk−1)) and the observations conditionally
to the state p(y(tk)|x(tk)). The three PDFs are
assumed to be normally distributed with the re-
spective mean and covariances: x(t1) − xb and B,
x(tk)−x(tk−1) and Q, y(tk)−Hk(x(tk)) and R(tk).
Finally, using the Markov property of the state-space
model, the total likelihood function is the product of
the PDF for all times K. It is given by

L(x,ψ) = p(x(t1))

K∏
k=2

p(x(tk)|x(tk−1))

×
K∏

k=1

p(y(tk)|x(tk)). (6)

In practice, this total likelihood function is approx-
imated by its expectation conditionally to all the ob-
servations y1:K = y(t1), . . . ,y(tK). This requires the
computation of the state smoothed probabilities to
be described below.

4 Estimation technique

The algorithm to estimate the physical and statis-
tical parameters is described concisely here. A dia-
gram with the main steps of the algorithm is shown

in Figure 6. The algorithm starts with a proposed

set of statistical parameters ψ̂
(1)

which do not need
to be known precisely. Then, the statistical param-
eters are estimated maximizing the total likelihood
function using the Expectation-Maximization algo-
rithm. A loop is initiated which is composed by an
expectation and a maximization step. The expec-
tation step computes the expectations given in Ap-
pendix A via the EnKS. The maximization step con-

sists basically in computing the optimal ψ̂
(j)

from
the known analytical expressions given in Appendix
B. At each iteration j of the EM algorithm, we com-
pute the innovation likelihood l given in Appendix
C. It is commonly used to evaluate the quality of the
state estimates and to compare state-space models
with different statistical parameters ( for more de-
tails, see [Cappé et al.(2005)], p.140). If the innova-
tion likelihood does not change significantly, the last

estimated ψ̂
(j)

is returned. These optimal statistical
parameters given by the Expectation-Maximization
algorithm are finally used to initiate a last EnKF run
which estimate the physical parameters.

4.1 Expectation-Maximization algo-
rithm

The maximum likelihood estimates of the statistical
parameters ψ are conducted using the EM algorithm
proposed by [Dempster et al.(1977)]. This is a classi-
cal method used in the case of incomplete or missing
data. This iterative algorithm is based on two steps:
the expectation of the total log-likelihood function
(E-step) and its maximization with respect to ψ (M-
step). The EM algorithm begins with an initial set

of statistical parameters ψ̂
(1)

. Then, repeating the

E and M steps, the sequence of estimates ψ̂
(j)

yields
increasing values of the expected log-likelihood and
converges to the maximum likelihood estimates.
At the iteration j, the E-step consists in comput-

ing the expected total log-likelihood function condi-
tionally to the total observations and the previous
estimated statistical parameters. It is given by

Q(ψ|ψ̂
(j−1)

) = E
[
log (L(x,ψ)) |y1:K , ψ̂

(j−1)
]
. (7)
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Initialize ψ at j = 1:

- initial state distribution with x̂
(1)
b and B̂(1)

- error covariances Q̂(1) and R̂(1)(tk) ∀k

��
E-step:

- estimate l
(
x, ψ̂

(1)
)
using Appendix C

- estimate p
(
x(tk)|y1:K , ψ̂

(1)
)
∀k via EnKS

- use expectations given in Appendix A

j = 2

��
M-step:

- maximize Q
(
ψ|ψ̂

(j−1)
)

- compute ψ̂
(j)

using Appendix B

��

oo

E-step:

- estimate l
(
x, ψ̂

(j)
)
using Appendix C

- estimate p
(
x(tk)|y1:K , ψ̂

(j)
)
∀k via EnKS

- use expectations given in Appendix A

��
Test:

l
(
x, ψ̂

(j)
)
− l

(
x, ψ̂

(j−1)
)

negligible?

yes

��

no //

j = j + 1

OO

Stop:

- return ψ̂
(j)

- return p
(
x(tk)|y1:k, ψ̂

(j)
)
∀k via EnKF

Figure 6: Diagram of the method based on the max-
imum likelihood estimates of the state-space model
(3)-(4).

In the case of nonlinear state-space statistical mod-
els, the exact smoothed probabilities are not com-
putable. Thus, we use the Monte Carlo approxima-
tions given by the EnKS. The conditional expecta-
tions given in Appendix A are then computed.

The M-step consists in maximizing Q(ψ|ψ̂
(j−1)

)
with respect to ψ. We obtain a direct analytic form
of the maximum likelihood estimates. The expres-
sions are given in Appendix B. The derivations are
not presented here (cf. [Tandeo et al.(2011)] for more
details).

4.2 Ensemble Kalman filter

The EnKF algorithm used here is an adaptation of
the one proposed by [Burgers et al.(1998)].

In the initial step of the EnKF algorithm, at time
t1, an ensemble of x’s composed by N members is
randomly generated. The members of the ensemble
follow a Gaussian distribution given by the vector
mean xb and the covariance matrix B. The N ini-
tial members are stored in the vectors xf

i (t1) ∀i ∈
{1, ..., N}.
In the update step, at each time tk, we randomly

generate N samples of ηi and εi ∀i ∈ {1, ..., N} with
respective covariances Q and R(tk). Then, following
(3), the i-member of the updated state is given by

xf
i (tk) = xa

i (tk−1) + ηi(tk), (8)

and the mapping from the forecast state space to the
observational space of the i-member is computed as

yf
i (tk) = Hk

(
xf
i (tk)

)
. (9)

The N members of the ensemble are used to esti-
mate the sample means of the propagated state in the
state space and in the observational space denoted by
xf (tk) and yf (tk) respectively.

In the analysis step, we follow [Pham(2001)]
methodology which avoids the linearization of the ob-
servational operator. The Kalman gain is computed
with

K(tk) = Pf
xy(tk)

(
Pf

yy(tk) +R(tk)
)−1

, (10)
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where Pf
xy(tk) is the sample cross-covariance matrix

and Pf
yy(tk) is the sample covariance matrix, which

are determined by

Pf
xy(tk) =

1

N − 1

×
N∑
i=1

(
xf
i (tk)− xf (tk)

)(
yf
i (tk)− yf (tk)

)>
(11)

and

Pf
yy(tk) =

1

N − 1

×
N∑
i=1

(
yf
i (tk)− yf (tk)

)(
yf
i (tk)− yf (tk)

)>
. (12)

In our case, the number of observations is larger
than the dimension of the state space (m > n) so that
the matrix Pf

yy(tk) + R(tk) is ill-conditioned mak-
ing the matrix inversion difficult. Therefore, as de-
scribed in [Evensen(2009)], Chapter 14, we compute
the pseudo inverse of Pf

yy(tk)+R(tk) taking into ac-
count 99% of the information given by the eigenval-
ues. Having K(tk) from (10), the N members of the
ensemble are then updated by

xa
i (tk) = xf

i (tk) +K(tk)di(tk) (13)

where the m-dimensional di(tk) ∀i ∈ {1, ..., N} are
the N innovation vectors in which we use perturbed
observations such as di(tk) = y(tk)+ εi(tk)−yf

i (tk).
Note that the sample covariance of the N innovations
is Pf

yy(tk) + R(tk). Finally, the updated analyzed
state is represented by the sample mean xa(tk) and
the sample covariance Pa(tk).

4.3 Ensemble Kalman smoother

The backward recursions correspond
to the EnKS algorithm proposed by
[Evensen and Van Leeuwen(2000)]. It uses the
results of the EnKF computed above.
In the initial step of the EnKS algorithm, at time

tK , we use the members of the filtered state, ∀i ∈
{1, ..., N}, such as xs

i (tK) = xa
i (tK) and Ps(tK) =

Pa(tK).

Then, we proceed backward from k = K − 1 to
k = 1. At each time tk, we compute

xs
i (tk) = xa

i (tk) +Ks(tk)
(
xs
i (tk+1)− xf

i (tk+1)
)
(14)

where Ks(tk) is the n × n Kalman smoother gain

matrix given by Pa(tk)
(
Pf (tk+1)

)−1
. The Gaussian

distribution of the updated state estimate is given by
the sample mean and covariance respectively denoted
by xs(tk) and Ps(tk). The sample covariance of the
state between two consecutive times is computed us-
ing

Ps(tk, tk−1) =
1

N − 1

×
N∑
i=1

(xs
i (tk)− xs(tk)) (x

s
i (tk−1)− xs(tk−1))

>
.

(15)

5 Results

5.1 Identical twin-experiment

In order to evaluate the technique, twin experiments
are used. In this case, the observations are ob-
tained under the assumption of perfect model; in
other words the SSO scheme is assumed to give
the true tendencies when the physical parameters
θt = (1, 1, 0.25, 1, 1, 0.5) are used as the true param-
eters. Then we suppose that the state, i.e. the phys-
ical parameters, is unknown and we try to estimate
it via the state-space model (3)-(4) using the gen-
erated mountain drag observations. As schematized
in Figure 6, we estimate the statistical parameters
ψ =

(
xb,B,Q,R

)
of the state-space model via the

EM algorithm in order to improve the estimation of
the physical parameters, θ. At iteration j = 1, we de-

liberately initialize the state vector x̂
(1)
b far from the

true state values (corresponding to the true parame-

ters). The corresponding covariance B̂(1) is chosen as
the unit matrix I6 to generate large initial spreads of
the members. Throughout the filter evolution, the
members are randomly perturbed by the constant
covariance matrix Q̂(1) = 0.1 × I6 in (8). The co-
variance of the measurement errors in (9) is set to

11



R̂(1)(tk) = 1000× I100 ∀k ∈ {1, . . . ,K} that is of the
same order as the mean value of the cost function
J given in (2). We use N = 100 members and 25
iterations of the EM algorithm.

The innovation log-likelihood function and the to-
tal RMSE of the physical parameters for the con-
ducted twin experiments are shown in Figure 7(a)
as a function of the EM iteration. The results in-
dicate that the innovation log-likelihood is a good
synthetic indicator of the filter quality that follows
the inverse variations of the total RMSE. In Figure
7(b), we decompose the total RMSE for each physi-
cal parameter. We find a good convergence of all the
physical parameters after j = 10 iterations except for
Cd, HNC and G that need more EM iterations. The
evolution of these two last physical parameters as a
function of time for different iterations (j = 1, 10, 25)
of the EM algorithm are shown in Figure 8. For
both physical parameters, the EM algorithm is able
to adapt the filter conditions and to give, along the
iterations j, more and more accurate initial distri-
butions of the physical parameters (given by the xb

and B maximum likelihood estimates). However, at
the last iteration j = 25, the temporal convergence
(near k = 20) is higher than the other physical pa-
rameters (not shown here). Note that the results
using deterministic values of ψ instead of estimat-
ing them via the maximum likelihood method, show
the inability of the filter to converge to the solution
θt. This is shown with the blue curves of Figure 8
corresponding to the first iteration of the EM algo-
rithm (i.e. this could be interpreted as a standard
EnKF estimation). Even if we use more realistic but

uniform values of covariance matrices B̂(1), Q̂(1) and
R̂(1)(tk) ∀k ∈ {1, . . . ,K}, the standard EnKF is un-
able to converge to a stable and accurate solution.

Figure 9(a) shows the matrix Q after 25 EM it-
erations. A negative correlation between HNC and
G physical parameters is clearly detected. This con-
firms the observation we made from Figure 5 in the
weak sensitivity region of the cost function J . The
elements of the Q estimated by the maximum like-
lihood method for the covariance between HNC and
G and the variances of HNC and G are respectively
−1.5×10−5, 1.5×10−5 and 3×10−5 . These variances

correspond to the optimal perturbations of the mem-
bers in (3) at each time of the filter. Note that the
amplitude of Q tends to decrease along the iterations
of the EM algorithm since the model becomes perfect
and the observations are produced with the optimal
physical parameters. Concerning the estimated am-
plitude of the observation error covariance R(tk), i.e.
the covariance of ε(tk) ∀k ∈ {1, . . . ,K}, it varies with
the forcing terms, particularly the surface wind speed
conditions. The results for the low wind speed condi-
tions are shown in Figure 9(b) and for the high wind
speed conditions in Figure 9(c). We distinguish dif-
ferent parts on these estimated matrices. The top left
and the bottom right parts correspond respectively to
the zonal and meridional error covariances of the ob-
servation equation given in (4). The top right and
bottom left parts correspond to the cross covariance
between the zonal and meridional components. The
x-axis and y-axis indicate the vertical level of the dif-
ferent components. For instance, the level 1000 hPa
is given in the indexes 1 and 51 whereas the level
5 hPa is given in the indexes 50 and 100. The results
indicate a checkerboard structure in the covariances
inside groups of vertical levels and especially a larger
variability of the observation error in the levels close
to the surface in both cases. We also remark a cross
covariance between the zonal and meridional error
terms in this altitude for the low wind speed con-
ditions. The main difference between the two esti-
mated matrices is the amplitude of the variability. In
strong wind speed conditions, the variance is globally
enhanced by a factor of 103. Therefore, the method
proposed here is able to model a flow dependent (typi-
cally the wind speed) and not necessarily diagonal er-
ror covariance matrix R. [Miyoshi et al.(2012)] has
also proposed to retrieve the shape of R in a data
assimilation problem conducting twin experiments.
More precisely, they extended the adaptive estima-
tion method proposed by [Li et al.(2009)] to include
off-diagonal terms of R.
We make two remarks on results that are not shown

here. Firstly, the use of N = 500, 1000 members in
the ensemble (not shown) gives similar results as the
case with N = 100 presented here. Thus, an ensem-
ble of 100 members is sufficient to capture the highly
nonlinear behavior of the SSO scheme and to estimate
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properly the statistical parameters of the state-space
system. Secondly, the maximum likelihood statisti-
cal parameter ψ estimates are independent of the ini-
tial conditions of the EM algorithm. Different initial

guess parameters x̂
(1)
b and different covariances B̂(1)

give similar rate of convergence.

5.2 Changes in orography resolution

When the resolution of a GCM is increased, or when
a new dataset is used to feed the physical parameter-
izations, the physical parameters of the GCM need
to be adjusted. There is no systematic way to pro-
duce these adjustments in the schemes so far. The
technique introduced in this work can be used to do
this. In particular, the standard parameters that are
currently used in the SSO scheme shown in Table
1 have been manually tuned using PYREX data by
[Lott and Miller(1997)]. This set of parameters are
used operationally in the LMDz model. The tun-
ing was conducted with a version of the SSO scheme
that uses the low resolution orography (10′ × 10′, see
Figure 10(a)). Suppose that the higher resolution
(2′ × 2′, see Figure 10(b) and [NOAA(2001)]) orog-
raphy dataset is used to improve LMDz at a given
horizontal resolution. The parameters of the scheme
should be adjusted for this new orography dataset.
We conducted an experiment to examine if the tech-
nique is able to determine a new set of optimal pa-
rameters for this high resolution orography dataset.
The conducted data assimilation experiments use the
SSO tendencies predicted by the SSO scheme using
the low resolution orography (10′ × 10′) as observa-
tions. The assimilation then uses the SSO tendencies
predicted with a higher resolution orography dataset.
In this way, the operator Hk used in the assimilation
has an error.

In this experiment in which the SSO scheme is
not ”perfect” due to the resolution change, we found
that the results depend on the initial guess condi-
tions, in opposition to the identical twin experiments.
As convergence could not be reached easily, one hun-
dred filter experiments with different random initial

guess conditions x̂
(1)
b of the EM algorithm were con-

ducted. Among these 100 experiments, we find re-
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Figure 7: Evolution of (a) the innovation log-
likelihood (left y-axis and blue line), the total phys-
ical parameter RMSE summed by time (right y-axis
and red line) and (b) detailed RMSE of each phys-
ical parameters along j = 25 iterations of the EM
algorithm.
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(x-axis) for different iterations of the EM algorithm:
j = 1 (blue), j = 10 (red) and j = 25 (black). The
straight lines correspond to the true physical param-
eter values. The physical parameters (θ, not x) are
shown.
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sults with recurrent estimations reaching to the same
log-likelihood as those shown in Figure 11(a). The
parameter estimations after j = 25 EM iterations for
five selected cases are shown in Figure 11(b).
From Figure 11(b), we notice that there is one

parameter that does not need to be changed much
when resolution is changed, Cl. This is not a sur-
prise since Cl is an almost linear lift coefficient, which
is related to a mountain lift force which amplitude
varies linearly with the difference between the moun-
tain and valley height. We also find that Cd needs
to be reduced by a factor near two. Considering (16)
in [Lott and Miller(1997)], the scheme measures the
number of mountains that there is in a subgrid scale
area, and multiply the low-level drag by this num-
ber of ridges. This yields a multiplicative factor in
the mountain slope. When we move to a higher res-
olution grid, the estimate of the slope necessarily in-
creases, so Cd needs to decrease. The same conclusion
could be drawn for the parameter G that controls the
gravity wave drag, but here the technique gives two
possible solutions. One where G is almost unchanged
or a weak increase and one where it is decreased
substantially, as expected. As the solution with un-
changed G is the most surprising, it is important to
notice that they are also related to a smaller β, they
therefore correspond to more trapped waves which
apply low-level drag again. As at low level, it is Cd

that essentially controls the drag. We have therefore
increased the gravity wave drag by increasing G but
placed that drag at low level where the effect is small
compared to that of Cd. Another important result of
the analysis is that the value of the critical Richard-
son number converges clearly to Ric = 1.5. As this
high-resolution orography case likely has larger am-
plitude gravity waves, this larger Richardson number
than the one used with the low-resolution orography
dataset needs to be enhanced so that the waves prop-
agate at high levels without breaking systematically
at lower levels.
In general, the parameter estimations present a

very large spread, except for Ric, particularly for
those parameters acting at low levels. For these, it
should be remembered that the drag at low levels is
always treated via implicit methods in part for sta-
bility, and in part because overestimated drags could

yield wind reversals at low levels, which contradict
the nature of drag forces. Clearly, the assimilation
technique indicates us that some physical considera-
tions should be done to make these parameters more
efficient in controlling the drag. Among the possibil-
ities, the SSO scheme does not consider that when
there is several mountains in a gridbox area, some
sheltering should be taken into account not to decel-
erate the same flow twice in a succession. This is
currently handled implicitly by the scheme, but the
low-level drag should take into account this horizon-
tal sheltering when we increase the orography resolu-
tion.
Figure 11(b) shows that the filter converges to-

wards two possible optimal states, in which HNC and
G clearly present bimodal distribution. This result is
associated with the high correlation that was found
in the cost function between HNC and G as shown
in Figure 5. The presence of model error in this im-
perfect model experiment appears to add complexity
to the cost function with the presence of these two
local minima. This is coherent with the results ob-
tained by [Schirber et al.(2013)] in an online param-
eter estimation under the presence of model error.
From a physical perspective, this bimodal result is
not surprising since large HNC yields low blocking
levels, and a more efficient mountain elevation to ex-
cite gravity waves. When there is a larger amount
of gravity wave drag, a good fraction of the corre-
sponding gravity waves is likely to break at low level,
this may be an effect hidden in the low-level drag dis-
cussed before. Also, this bimodality may be inherent
to the nonlinear low-level flow dynamics the scheme
tries to represent.
Figure 12 shows the five profiles of the SSO ten-

dency intensity (i.e. the norm of the SSO tendency)
generated with the estimated parameters for two
wind speed conditions. Figure 12(a) shows for weak
surface wind conditions (on 5 July 2000) and Fig-
ure 12(b) for strong surface wind conditions (on 25
July 2000). In both surface wind conditions, the sets
of estimated parameters with large G tend to un-
derestimate the low level drag (between 900 hPa and
1000 hPa) and to overestimate the drag at high levels
(between 650 hPa and 900 hPa). On the other hand,
the sets of estimated parameters with small G and
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(a)

(b)

Figure 10: (a) Low 10′ × 10′ and (b) high 2′ × 2′

topographical resolution near the location 46◦ south,
71◦ west (black dot) in the South Andes.

(large Hnc) tend to overestimate the drag at low lev-
els and also on higher levels (but they are relatively
closer to the observed one than in the cases with large
G at those levels). The spread in β parameter also
appears to play a role.

6 Conclusion and perspectives

In this paper, we use a filtering technique to esti-
mate the physical parameters of a subgrid-scale oro-
graphic scheme. The estimation is conducted offline,
without estimating the state of the atmosphere and
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Figure 11: Evolution of 5 cases, with N = 100 mem-
bers and the high-resolution orographic scheme, of
(a) the innovation log-likelihood along the EM iter-
ations (x-axis) and (b) the physical parameters esti-
mated by the EnKF along time (x-axis) at iteration
j = 25 of the EM algorithm. The straight dashed
lines in (b) correspond to the physical parameter val-
ues of the low-resolution orographic scheme. In (b),
the physical parameters (θ, not x) are shown.
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Figure 12: Profiles of the SSO tendency amplitude
generated with the five sets of estimated parameters
obtained with the SSO scheme using the high resolu-
tion dataset, (a) on 5 July 2000 and (b) on 25 July
2000. The profiles used as observations and gener-
ated with the SSO scheme using the low resolution
dataset are shown with dashed lines.

thus reducing the size of the state vector. As forc-
ing terms, we use simulations of a general circulation
model. The estimation problem is written as a non-
linear state-space system. This formulation is flexi-
ble and overcomes the main difficulties such as the
boundaries on the physical parameters (strictly pos-
itive), the unknown background covariances and the
high nonlinearity of the orographic scheme. In this
state-space model, we suppose that the state and ob-
servation equations have additive Gaussian noise and
that we know the a priori distribution of the physical
parameters. The choice of these statistical param-
eters constitutes an important condition of conver-
gence of the system to the true physical parameters.
Thus, we estimate them via a maximum likelihood
method. We use an iterative algorithm that com-
putes the expected total log-likelihood function and
maximizes it with respect to the statistical parame-
ters.
The estimation technique is evaluated in a single

vertical column and using synthetic observations (i.e.,
without using real observations but those produced
by the SSO scheme). We imagine that an observa-
tional campaign takes place near the Perito Moreno
Glacier in the Andes, where the topographical condi-
tions are ideal to study mountain drag. First, we use
twin experiments: we prescribe a true set of physi-
cal parameters and generate synthetic observations of
mountain drag. Then, we apply the estimation tech-
nique using these generated observations and com-
pare the estimated parameters to the true ones. The
results indicate a convergence of the filter to the true
parameters after ∼ 20 iterations of the expectation-
maximization algorithm. Even if the user initializes
the error covariances and initial guess conditions with
inappropriate values, these statistical parameters are
iteratively updated and will converge towards the op-
timal values. The technique is able to detect corre-
lations between parameters, to weight the observa-
tions as a function of the external forcing terms and
to generate adaptive a priori information on the pa-
rameters. This overcomes the results obtained with
deterministic values of statistical parameters which
are usually arbitrarily prescribed since they are un-
known.
We also examined if the estimation technique is

17



useful to determine whether the physical parameter
should be changed when the horizontal resolution of
an input dataset of the general circulation model is
increased. In this case, the SSO scheme is imper-
fect and our filter takes into account this model error
adding Gaussian noises controlled by time dependent
covariance matrices. The results show that our tech-
nique is a useful tool to determine the changes in
the parameter when the resolution of the input orog-
raphy dataset increases. However, model error de-
grades the estimated drag profiles, some features of
the observed drag profile in Figure 12 can not be re-
produced by the estimated drag profiles that use the
high-resolution orography dataset. A technique with
model bias treatment as in [Dee and Da Silva(1998)]
may be required to diminish the differences in the
drag profiles. We also detected that some parame-
ters may have a range of values for which the RMSE
and the likelihood (cf. Figure 11(a)) almost do not
change. These results show that there are no sensitiv-
ity to these parameters and therefore determine a pre-
cise value of these parameters is not important. We
attribute this to the fact that in the SSO scheme, a lot
of drag is applied at low level and handled implicitly.
In the scheme also, the low level drag is multiplied
by the number of ridges present in the gridbox area,
a number that is around 1 or 2 when the US Navy
10′ × 10′ dataset becomes much larger when a more
refined dataset is used. Ideally, we should take into
account that when a mountain exerts a drag, a wake
downstream is associated to it so that for the moun-
tains in the lee but still in the gridbox, the incident
flow should be much reduced. Currently, when we in-
crease the orography resolution this effect is handled
by an implicit treatment. Numerically this situation
is satisfying, but clearly call for further understand-
ing of the dynamical sheltering, and its impact on
the large-scale flow. It may explain the difficulty to
estimate the parameters and the difference between
the drags generated with low and high resolutions
orographic datasets in Figure 12.
The technique presented here is an efficient method

to resolve offline physical parameter estimation. The
advantages are (i) the flexibility of the state-space
formulation that can be applied to a large number
of applications, (ii) the ability to estimate the back-

ground state and the eventually flow dependent and
not necessarily diagonal error covariance matrices Q
and R of the EnKF and (iii) the relative low com-
putational cost of the technique where a relatively
small number of members and few iterations of the
expectation maximization algorithm are needed. One
possible extension of the technique is the estimation
of biases in more realistic cases with different kind of
model errors.
This work is focused on the evaluation of the

technique using first twin experiments and an ex-
periment also with synthetic observations but using
a higher resolution orographic dataset so that the
model (used in the data assimilation system) in this
case is imperfect. In a real application, the tech-
nique requires vertical profiles of small-scale momen-
tum forcing. We envisage two possible sources of
small-scale momentum forcing that can be used to
constrain orographic parameters. The most signifi-
cant one is from intensive observational campaigns
that measure over mountainous areas. One of the
most representative ones was the Pyrénée Experi-
ment (PYREX, [Bougeault et al.(1990)]). Currently,
there are several proposed campaigns to measure in-
tensively over mountains, with airplanes, lidars and
radiosondes. These combined instruments can give
significant information on momentum fluxes and di-
vergences of momentum fluxes. They are planned
over the Andes, over New Zealand island and over
Scandinavia. These potential campaigns could be
an important source of observational data to esti-
mate parameters of the subgrid-orography schemes
using the proposed technique. A second possible
observational data source of small-scale momentum
forcing can be obtained from data assimilation tech-
niques. [Pulido and Thuburn(2005)] show that four-
dimensional variational assimilation can be used to
estimate the missing momentum forcing term in the
model equations. The technique is applied to ob-
tain missing momentum forcing profiles in the mid-
dle atmosphere where a significant part of system-
atic model errors can be associated with gravity wave
drag since the other physical parameterization active
at those levels, the radiative transfer scheme, con-
tains well-known parameters. On the other hand,
in the troposphere several parameterizations are cou-
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pled between them so that the source of missing mo-
mentum is not readily identified with a particular
parameterization. Therefore, the data assimilation
techniques might be potentially useful to constrain
subgrid orography schemes using only the momen-
tum forcing profile in the stratosphere. However, the
impact of model errors from different sources in the
parameter estimation problem needs to be further in-
vestigated. Another point that needs to be further
investigated in an actual application of this offline
technique, is the possible feedbacks between the pa-
rameterization and the low-level flow, these feedbacks
processes can affect the optimal parameters.
A follow-up work is to apply this estimation tech-

nique for online parameter estimation in strongly
nonlinear systems. A first step will be to evaluate the
method in a low dimension system. Parameter esti-
mation in a low dimensional model was previously
done in [Annan and Hargreaves(2004)] using deter-
ministic values of the background state and the er-
ror covariance matrices. The advantage of applying
our technique is to estimate them properly via the
expectation maximization algorithm. Some first sim-
ulations we have performed give promising results.
A simplified version of the method may also be use-
ful in a larger dimension online parameter estimation
problem, for instance when there are a few statistical
parameters that are unknown and are essential to be
estimated precisely.
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Appendix A: E-step

At each iteration j of the EM algorithm, we need the
following conditional expectations:

E
[
x(tk)x(tk)

>|y1:K , ψ̂
(j−1)

]
=

xs(tk)x
s(tk)

> +Ps(tk)

E
[
x(tk)x(tk−1)

>|y1:K , ψ̂
(j−1)

]
=

xs(tk)x
s(tk−1)

> +Ps(tk, tk−1)

E
[
Hk (x(tk)) |y1:K , ψ̂

(j−1)
]

=

Hk (x
s(tk))

E
[
Hk (x(tk))Hk (x(tk))

> |y1:K , ψ̂
(j−1)

]
=

Hk (x
s(tk))Hk (x

s(tk))
>
+Ps

yy(tk)

where Ps
yy(tk) is the sample covariance of the

Hk (x
s
i (tk)) ∀i ∈ {1, ..., N}.
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Appendix B: M-step

The maximum likelihood estimates of the statistical
parameters are given by:

x̂
(j)
b = E

[
x(t1)|y1:K , ψ̂

(j−1)
]

B̂(j) = V ar
[
x(t1)|y1:K , ψ̂

(j−1)
]

Q̂(j) =
1

T − 1

T∑
k=2

E
[
x(tk)x(tk)

>|y1:K , ψ̂
(j−1)

]
− 1

T − 1

T∑
k=2

E
[
x(tk)x(tk−1)

>|y1:K , ψ̂
(j−1)

]
− 1

T − 1

T∑
k=2

E
[
x(tk)x(tk−1)

>|y1:K , ψ̂
(j−1)

]>
+

1

T − 1

T∑
k=2

E
[
x(tk−1)x(tk−1)

>|y1:K , ψ̂
(j−1)

]
R̂(j)(tk) = y(tk)y(tk)

>

−E
[
Hk (x(tk)) |y1:K , ψ̂

(j−1)
]
y(tk)

>

−y(tk)E
[
Hk (x(tk)) |y1:K , ψ̂

(j−1)
]>

+E
[
Hk (x(tk))Hk (x(tk))

> |y1:K , ψ̂
(j−1)

]
where the conditional expectations are computed in
the E-step via the EnKS.

Appendix C: innovation likeli-
hood

The innovation likelihood function is given by

l (x,ψ) =

K∏
k=1

exp

(
−1

2
d(tk)

> (
Pf

yy(tk) +R(tk)
)−1

d(tk)

)
× (2π)

−p/2 (
det

(
Pf

yy(tk) +R(tk)
))−1/2

with the covariance matrix Pf
yy(tk) and the innova-

tion vector d(tk) respectively given in (12) and (13).
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