
HAL Id: hal-01194529
https://hal.science/hal-01194529v1

Submitted on 7 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimating the Frequency of Data Items in Massive
Distributed Streams

Emmanuelle Anceaume, Yann Busnel, Nicolò Rivetti

To cite this version:
Emmanuelle Anceaume, Yann Busnel, Nicolò Rivetti. Estimating the Frequency of Data Items in
Massive Distributed Streams. IEEE 4th Symposium on Network Cloud Computing and Applications
(NCCA), Jun 2015, Munich, Germany. pp.9, �10.1109/ncca.2015.19�. �hal-01194529�

https://hal.science/hal-01194529v1
https://hal.archives-ouvertes.fr

Estimating the Frequency of Data Items in Massive
Distributed Streams

Emmanuelle Anceaume
IRISA / CNRS
Rennes, France

Emmanuelle.Anceaume@irisa.fr

Yann Busnel
Crest (Ensai) / Inria

Rennes, France
Yann.Busnel@ensai.fr

Nicolò Rivetti
LINA / Université de Nantes

Nantes, France
Nicolo.Rivetti@univ-nantes.fr

Abstract—We investigate the problem of estimating on the fly the
frequency at which items recur in large scale distributed data streams,
which has become the norm in cloud-based application. This paper
presents CASE, a combination of tools and probabilistic algorithms from
the data streaming model. In this model, functions are estimated on a
huge sequence of data items, in an online fashion, and with a very small
amount of memory with respect to both the size of the input stream
and the values domain from which data items are drawn. We derive
upper and lower bounds on the quality of CASE, improving upon the
Count-Min sketch algorithm which has, so far, been the best algorithm
in terms of space and time performance to estimate the frequency of
data items. We prove that CASE guarantees an (ε, δ)-approximation of
the frequency of all the items, provided they are not rare, in a space-
efficient way and for any input stream. Experiments on both synthetic
and real datasets confirm our analysis.

Index Terms—Data stream model; frequency estimation; randomized
approximation algorithm.

I. INTRODUCTION

Huge data flows have become very common in the last decade.
This has motivated the design of online algorithms that allow the
accurate estimation of statistics on very large data flows. A rich body
of algorithms and techniques have been proposed for the past several
years to efficiently compute statistics on massive data streams. In
particular, estimating the number of times data items recur in data
streams in real time enables, for example, the detection of worms
and denial of service attacks in intrusion detection services, or the
traffic monitoring in cloud computing applications.

Two main approaches exist to monitor in real time massive data
streams. The first one consists in regularly sampling the input streams
so that only a limited amount of data items is locally kept. This
allows to exactly compute functions on these samples. However,
accuracy of this computation with respect to the stream in its entirety
fully depends on the volume of data items that has been sampled
and their order in the stream. Furthermore, an adversary may easily
take advantage of the sampling policy to hide its attacks among
data items that are not sampled, or in a way that prevents its
“malicious” data items from being correlated [1]. In contrast, the
streaming approach consists in scanning each piece of data of the
input stream on the fly, and in locally keeping only compact synopses
or sketches that contain the most important information about these
data. This approach enables us to derive some data streams statistics

This work was partially funded by the French ANR project SocioPlug (ANR-13-
INFR-0003), and by the DeSceNt project granted by the Labex CominLabs excellence
laboratory (ANR-10-LABX-07-01).

with guaranteed error bounds without making any assumptions on
the order in which data items are received at nodes. Sketches highly
rely on the properties of hashing functions to extract statistics from
them. Sketches vary according to the number of hash functions they
use, and the type of operations they use to extract statistics.

In this paper we focus on the Count-Min sketch algorithm proposed
by Cormode and Muthukrishnan [2]. This data structure so far
predominates all the other ones in terms of space and time needed
to guarantee an additive ε-accuracy on the estimation of item
frequencies. Briefly, this technique performs t random projections of
the set of items of the input stream into a much smaller co-domain of
size k, with k = de/εe and t = dlog(1/δ)e where 0 < ε, δ < 1. The
user defined parameters ε and δ represent respectively the accuracy
of the approximation, and the probability with which the accuracy
holds. However, because k is typically much smaller than the total
number of distinct items in the input stream, hash collisions do occur.
This affects the estimation of item frequency when the size of the
stream is large. More precisely, this significantly biases the frequency
estimation of all the items except those which are very frequent
with respect to the other ones. To mitigate this saturation issue two
main approaches have been proposed. Dimitropoulos et al. [3] keep
only fresh items of the input stream so that the number of distinct
items that appear in the sketch does not increase with the size of the
stream. While effective to decrease the number of collisions, such an
approach opens the door to adversarial behaviors, and in particular
dormant attacks, where the adversary from time to time floods the
stream with its own items, eclipsing accordingly most of the other
items in the sketch. The second approach, proposed by Estan and
Varghese [4], consists in limiting the number of updates by first
updating the smallest of the counters normally, and by setting the
other counters to the maximal of their old value and the new value
of the smallest counter. Such an approach requires that only items
with positive values are received.

In this paper, we present an alternative approach to reduce the
impact of collisions on the estimation of item frequency. The
intuition of our idea is that by keeping track of the most fre-
quent items of the stream, and by removing their weight from
the one of the items with which these frequent items collide,
the over-estimation of non frequent items is drastically decreased.
We show that our algorithm, called CASE for Count-Any Sketch
Estimator for Frequency Approximation, significantly improves upon
the CM sketch by proving that our solution provides an (ε, δ)-
multiplicative approximation of the frequency of items that recur
sufficiently often in the stream. No matter how items are distributed

in the streams, the quality of our solution remains unchanged.
In particular, we guarantee that for any ε, δ in (0, 1), our algo-
rithm (ε, δ)-approximates item frequency by using small workspace,
i.e., O ((b+ (log(1/δ)/ε)(b+ 1/ε)) (logm+ log n)) bits of space,
where m represents the total number of items read so far in the
stream, n is the number of distinct data items among the m ones
and, b represents the number of the most frequent items monitored.
For very rare items, an additive approximation of their frequency is
only provided. We then propose to judiciously distribute this local
sketch to estimate the global frequency of any item that may recur
in multiple streams. This distributed algorithm organizes nodes of
the system in a distributed hash table (DHT) such that each node
implements a tiny local sketch on a reduced number of items. By
doing so we guarantee a greater accuracy of the estimation of item
frequency. Finally, simulations both on synthetic and real traces that
exhibit skews in various ways confirm the accuracy of CASE. To the
best of our knowledge, we are not aware of any comparable work.

The remaining of the paper is organized as follows. Section II
presents the model this work relies on. Section III describes and
analyses CASE, the sketch we propose to mitigate the impact of
collisions on the estimation of item frequency. Section IV presents
a simple way to distribute sketches among all the nodes so that
distributed streams can be efficiently monitored. Section V evaluates
the minimum effort the adversary needs to exert to bias item fre-
quency estimation. Finally, the main results of extended simulations
are presented in Section VI. Section VII concludes.

II. MODEL AND BACKGROUND

A. Model

We present the computation model under which we analyze our
algorithms. We consider a large scale system S, such that each node
i ∈ S receives a large sequence σ(i) of data items or symbols <
u, v, w, . . . > drawn from a very large universe N (these data items
can for example model TCP/IP packets, or HTTP requests [5]). In
the following we denote the different items by integers 1, . . . , n, with
n = |N |. The number of times item u appears in a stream is called
the frequency of item u, and is denoted by fu. Items arrive regularly
and quickly, and due to memory constraints, items must be processed
sequentially and in an online manner. In the following we only focus
on the frequency estimations of the items that effectively appear in
the stream [6]. We refer the reader to [7] for a detailed description
of data streaming models and algorithms.

B. Adversary

We assume the presence of malicious (i.e., Byzantine) nodes that
collectively try to subvert the system by manipulating the prescribed
algorithms. We model these behaviors through an adversary that fully
controls and manipulates these malicious nodes. We suppose that
the adversary is strong in the sense that it may actively tamper with
the data stream of any node i ∈ S by observing, and injecting a
potentially large number ` of items. Indeed, the goal of the adversary
is to judiciously increase the frequency of its ` items to bias the
frequency estimation of the items generated by correct nodes. The
number ` is chosen by the adversary according to the parameters
of the sketches at correct nodes. By correct, we mean a node
present in the system which is not malicious. Note that correct
nodes cannot a priori distinguish items sent by correct nodes from

the ones sent by malicious ones. Classically, we assume that the
adversary can neither drop a message exchanged between two correct
nodes nor tamper with its content without being detected. This is
achieved by assuming the existence of a signature scheme (and
the corresponding public-key infrastructure) ensuring the authenticity
and integrity of messages. This refers to the authenticated Byzantine
failure model [8]. We finally suppose that any algorithm run by any
correct node is public knowledge to avoid some kind of security by
obscurity. However the adversary has not access to the local random
coins used in the algorithms.

C. Preliminaries

We present background on data streams analysis that make this
paper self-contained.

a) 2-universal Hash Functions: In the following, we use hash
functions randomly picked from a 2-universal hash functions family.
A collection H of hash functions h : {1, . . . ,M} → {0, . . . ,M ′} is
said to be 2-universal if for every two different items x, y ∈ [M],
Ph∈H{h(x) = h(y)} ≤ 1

M ′ , which is the probability of collision
obtained if the hash function assigned truly random values to any
x ∈ [M].

b) Randomized (ε, δ)-approximation Algorithm: A randomized
algorithm A is said to be an (ε, δ)-approximation of a function φ
on σ if for any sequence of items in the input stream σ, A outputs
φ̂ such that P{| φ̂ − φ |> εφ} < δ, where ε, δ > 0 are given as
parameters of the algorithm.

c) Frequency moments: Frequency moments are important sta-
tistical tools that have been introduced by Alon et al. [9]. Computing
frequency moments Fj allows us to quantify the amount of skew in
a data stream. For each j ≥ 0, the j-th frequency moment Fj of
σ is defined as Fj =

∑
v∈N fkv , where fv represents the number

of occurrences of v in the stream. Among the remarkable moments,
F0 represents the number of distinct items in a stream while F1

corresponds to the size of the stream.

III. THE CASE ALGORITHM

In this section, we describe how we improve upon the Count-
Min sketch [2] to get an (ε, δ)-multiplicative approximation of the
frequency of items that recur sufficiently often in the stream. The
intuition is that by keeping track of the most frequent items of the
stream, and by removing their weight from the one of the items with
which these frequent items collide in the sketch, the over-estimation
of item frequency is limited. Prior to presenting the Count-Min sketch
and our extension, we first describe two algorithms that our solution
uses as building blocks. One is due to Bar-Yossef et al. [10] to
estimate F0, the number of distinct items in the stream, while the
second one has been proposed by Metwally et al. [11] to determine
the most frequent items in a stream. Note that both algorithms are
data-stream algorithms.

A. Estimating F0, the number of distinct items in the stream

The problem of estimating the number of distinct elements has
received a lot of attention in the data stream model. First, the seminal
work of Flajolet and Martin [12] has shown that it is possible
to compute such an estimate using only logarithmic space in F0

by relying on properties of hash functions. Afterwards, follow-up

Algorithm 1: BJKST algorithm
Input: An input stream σ; r1 and r2 settings;
Output: The estimate F̂0 of the number of distinct elements in the

stream
1 Choose r1 2-universal hash functions h : [n]→ [n];
2 Choose r1 2-universal hash functions g : [n]→ [r2];
3 Initialization of r1 buffers Bj of size r2;
4 for j ∈ [1 . . . r1] do ξj = 0;Bj = ∅
5 for ai ∈ σ do
6 v = ai;
7 for j ∈ [1 . . . r1] do
8 z = zeros(hj(v));
9 if z ≥ ξj and g(v, z) 6∈ Bj then

10 Bj = Bj ∪ {g(v, z)};
11 while | Bj |> s do
12 Bj = Bj \ {g(v′, z′)} with z′ = ξj ;
13 ξj = ξj + 1;

14 return F̂0 = median1≤j≤r2
ξj |Bj |;

enhancements have improved the accuracy of the estimation [10]1.
Thereafter, we briefly sketch the BJKST algorithm proposed by
Bar-Yossef et al. [10]. The BJKST algorithm is based on the
coordinating sampling algorithm of Gibbons and Tirthapura [14].
The BJKST algorithm, whose pseudo-code is given in Algorithm 1,
consists in running r instances of the same procedure, such that
procedure j ∈ {1, . . . , r} uses hash function hj . The hash function
hj determines the “level” of items from the stream such that half
of the items have a level equal to 1, a quarter of them have a level
equal to 2, . . . , until finally 1

2i of them have a level equal to i. This
level is provided by the function zeros(v) that returns the number of
trailing zeros in the binary representation of v.

Theorem 1 ([10]) The Bar-Yossef et al. [10] algorithm with param-
eters ε and δ outputs F̂0 such that P{|F̂0−F0| > ε} < δ. The worst-
case running time for each input symbol is O(log(1/δ)/ε2), and the
total space required by the algorithm is O((log(1/δ) log n)/ε2) bits.

B. Determining the most frequent data items

The problem of determining the most frequent items in a stream
has also been extensively studied in the data stream literature, and
in particular by Misra and Gries [15], and then by Metwally et
al. [11]. Thereafter, we recall the main principles of the algorithm
of Metwally et al. [11]. This algorithm, called Space Saving, takes
two parameters: ε and b, such that 0 < 1/b ≤ ε ≤ 1. It maintains
b 〈tuple, counter〉 couples, and returns all items whose frequency
of occurrences are greater than or equal to mε. This algorithm is
deterministic. Initially, all the b counters are set to (⊥, 0). Upon
receipt of an item v, if v is already monitored, the associated counter
is incremented. In the negative and if there exists a free tuple, then
it is allocated to v and its counter is set to the minimum value of
all the counters plus 1. Finally, if there is no more free tuple, then v
replaces the item associated to the counter with the minimum value
(if there are several such items, then one of them is randomly chosen)
and the associated counter is incremented by one.

1A comprehensive survey describing the literature on distinct elements in this model
is presented by Gibbons in [13].

Theorem 2 ([11]) The Space Saving algorithm with parameters b
and ε, with b ≥ 1/ε > 1, returns for any item v an estimate f̂

(SS)

v

such that fv − mε ≤ f̂
(SS)

v ≤ fv with O(b(logm + log n)) bits of
space.

C. Estimating the frequency of each data item

Cormode and Muthukrishnan [2] propose a probabilistic data
structure, the Count-Min sketch (CM), that allows the computation,
for any item v read from the input stream σ, of an estimation f̂

(CM)

v of
the number of times v has occurred since the inception of the stream.
The estimation is computed by maintaining a two-dimensional array
C of t × k counters and by using a collection of 2-universal hash
functions {h1, . . . , ht}. Each time an item v is read from the input
stream, this causes one counter per line to be incremented. When a
query is issued to get f̂

(CM)

v the returned value is equal to the minimum
among the t values C[i][hi(v)] for i = 1, . . . , t. This sketch has
so far been considered as the best one in terms of space and time
performance to estimate data item frequency.

Theorem 3 ([2]) The Count-Min sketch algorithm with parameters
k = de/εe and t = dlog(1/δ)e returns for any item v in σ an
estimate f̂

(CM)

v such that P{| f̂ (CM)

v − fv |> ε(m − fv)} < δ with
O(log(1/δ)(logm+ log n)/ε) bits of space.

D. The Count-Any Sketch Estimator (CASE)

Our algorithm works by partitioning all the items uniformly at
random into groups, by estimating their frequency, and then by
removing the weight of heavy hitters (a.k.a very frequent items),
computed with the Space Saving algorithm, from the group of items
with which heavy hitters collide. Indeed, in the CM algorithm,
because k is typically much smaller than the item identifiers space,
hash collisions do occur. This significantly affects the accuracy of
the estimation when items frequently recur in the input stream, that
is when the size m of the input stream becomes large. Our approach
guarantees that the error of the estimator in answering a query for
f̂v is within an error εfv with probability 1− δ for non rare items.
Algorithm 2 presents the pseudo-code of CASE. The update phase
(Lines 5 to 13), made of Tasks T1, T2, and T3 run in parallel, updates
the three data-structures described previously upon receipt of items
from the stream, while the query phase (Lines 14 to 17) returns the
frequency estimation of any item v after having removed, if needed,
the over-estimation introduced by highly frequent items that collide
with v.

We prove below that for any ε and δ, and for any non rare data item
v read from the input stream, CASE gives an (ε, δ)-approximation
of fv . The following theorem proceeds in three steps to derive the
quality of the estimation. Namely, the estimation is derived for highly
frequent items, for frequent items and for rare items. In the two
former case, (ε, δ)-approximation is guaranteed, while in the latter
one, an additive (ε, δ)-approximation is ensured.

Theorem 4 CASE, run with parameters k = d2(b − 1)/εe, t =
dlog(1/δ)e and 1 < b ≤ 4/ε3, returns for any item u an estimate
f̂u such that

P

{
|f̂u − fu| ≥ εfu

}
≤ δ if ∀v ∈ N, fv ≤

ε2m

2k

Algorithm 2: Count-Any Sketch Estimator
Input: An input stream σ, precision parameters ε, δ, b;
Output: Estimation of the frequency of any item v in σ

1 k ← d2(b− 1)/εe;
2 t← dlog(1/δ)e;
3 m = 0;
4 Choose t 2-universal hash functions h1, . . . , ht : [|Ω|]→ [k];
5 for v ∈ σ do
6 m← m+ 1;
7 Task T1 :
8 for i = 1 to t do
9 C[i][hi(v)]← C[i][hi(v)] + 1;

10 Task T2 :
11 Update B with v according to the Space Saving algorithm

initialized with parameters ε and b;

12 Task T3 :
13 Update F0 with v according to the BJKST algorithm

initialized with parameters 1/ε2 and log(1/δ);

14 Upon query of f̂u :
15 f̂

(CM)

u ← min1≤i≤t (C[i][hi(u)]);
16 if u ∈ B and f̂

(CM)

u ≥ mε then return f̂
(CM)

u else return
f̂

(CM)

u · k/F0

or P

{
|f̂u − fu| ≥ εfu

}
≤ δ if fu ≥ m/b

P

{
|f̂u − fu| ≥ ε(m− fu)

}
≤ δ elsewhere

using O ((b+ (log(1/δ)/ε)(b+ 1/ε)) (logm+ log n)) bits of space.

Proof: We suppose that fu > 0, for any u in the input stream
(which corresponds to the cash-register data stream model [7]).

Case 1 – Suppose that ∀v ∈ N, fv ≤ ε2m
2k . Then, we have also

∀v ∈ N, fv ≤ m/b, thus, Line 17 of Algorithm 2 is triggered.
Moreover, every counter C[i][hi(u)] is equal to the sum of the exact
frequencies of all data items that collide with u, that is, that share
the same hashed value as u (i.e., all v ∈ N such that hi(v) = hi(u)).
We denote by Xu,i the random variable that measures the value of
C[i][hi(u)] · k/F0. We have Xu,i = k/F0

∑
v∈N fu1{hi(u)=hi(v)},

where notation 1{A} denotes the indicator function, which is equal
to 1 if condition A is true and 0 otherwise. By the 2-universality
property of the family from which hash function hi is drawn, we
have E[hi(v) = hi(u)] ≤ 1/k, for any v. Thus, by linearity of the
expectation,

E[Xu,i] =
k

F0

∑
v∈N

E
[
fv1{hi(u)=hi(v)}

]
≤ k

F0

m

k
=
m

F0
.

Moreover, we have

Var[Xu,i] = E[X
2
u,i]−E[Xu,i]

2

=
k2

F 2
0

(∑
v∈N

f2vE
[
12
{hi(u)=hi(v)}

])
− m2

F 2
0

=
1

F 2
0

(
k

(∑
v∈N

f2v

)
−m2

)
.

Given that ∀v ∈ N, fv ≤ ε2m
2k , it is easily checked that

max
∑

v∈N f2v ≤ ε2m2

2k + F0 and that

Var[Xu,i] ≤
1

F 2
0

(
k
ε2m2

2k
−m2 + kF0

)
≤ E[Xu,i]

2 kε
2

2k
.

Using Chebyshev’s inequality, we obtain

P {|Xu,i −E[Xu,i]| ≥ εE[Xu,i]} ≤
Var[Xu,i]

ε2E[Xu,i]2
≤ 1

2
.

This relation holds for any i ∈ {1, . . . , t} estimators. By using t
such estimators, mutually independent, we can estimate the excess
of CASE as the minimum of Xu,i over all i ∈ {1, . . . , t}. Then, we
obtain

P

{
|f̂u − fu| ≥ εfu

}
≤ P

{
min

i∈{1,...,t}

∣∣∣∣Xu,i −
m

F0

∣∣∣∣ ≥ ε mF0

}
=

∏
i∈{1,...,t}

P {|Xu,i −E[Xu,i]| ≥ εE[Xu,i]} ≤
1

2t
≤ δ

concluding the first case.
Case 2 – Suppose that fu ≥ m/b. We have m− fu ≤ m− m

b ≤
fu(b− 1). Thus, we obtain

P

{
|f̂u − fu| ≥ εfu

}
≤ P

{
|f̂u − fu| ≥ ε

m− fu
b− 1

}
.

Let us first analyse the excess of a given counter C[i][hi(u)], i ∈
{1, . . . , t}. We denote by Yu,i the random variable that measures this
specific excess. We have

Yu,i =
∑

v∈N\{u}

fv1{hi(v)=hi(u)}.

Note that Xu = fu+mini∈{1,...,t} Yu,i. Again, by the 2-universality
property and by linearity of the expectation, we get that

E[Yu,i] =
∑

v∈N\{u}

E
[
fv1{hi(v)=hi(u)}

]
≤ m− fu

k
.

Since for every u in the stream, fu ≥ 1 and Yu,i ≥ 0 for any
i ∈ {1, . . . , t}, we can apply the Markov’s inequality. Moreover, as
k = d 2(b−1)ε e, we get

P {Yu,i ≥ εfu} ≤ P
{
Yu,i ≥ ε

m− fu
b− 1

}
≤ E[Yu,i](b− 1)

ε(m− fu)

≤ b− 1

kε
≤ 1

2
. (1)

This finally leads to

P

{
f̂u − fu ≥ εfu

}
= P

{
min

i∈{1,...,t}
Yu,i ≥ εfu

}
=

∏
i∈{1,...,t}

P {Yu,i ≥ εfu} ≤
1

2t
≤ δ.

Finally, the former evaluation of CM algorithm in [2] gives us the
last case of the theorem, which concludes the proof.

Input stream !(3)

Cloud

CASE

C

B

Node 3

Input stream !(1)

Input stream !(6)

Node 6

Node 1
Node 2

Node 7

Node 4

Node 5

Input stream !(4)

Input stream !(5)

CASE

C

B

CASE

C

B

CASE

C

B

CASE

C

B

CASE

C

B

CASE

C

B

Input stream !(2)

Input stream !(7)

F0

F0
F0

F0

F0

F0

F0

Figure 1: Distributed algorithm structure, where each node runs a
CASE instance over a DHT.

IV. A DISTRIBUTED SKETCH FOR FREQUENCY ESTIMATION

In the previous section, we have presented CASE, a sketch
that gives for, any ε and any δ, an (ε, δ)-approximation of item
frequencies, for any item received in an input stream. We are now
ready to present a distributed algorithm that allows to estimate the
global frequency of items that appear in distributed streams. This
algorithm combines the features of both the streaming model and
large scale distributed overlays. As in the streaming model, the input
is read on the fly and processed with a minimum workspace and
time. As in large scale overlays, the load of the system is partitioned
among all the nodes of a cloud system. Specifically, all the nodes
of the system are self-organized in a structured overlay. Structured
overlays, also called Distributed Hash Tables (DHTs), build their
topology according to structured graphs. For most of them, the
following principles hold: The identifier space is partitioned among
all the nodes of the overlay. Nodes self-organize within the graph
according to a distance function d based on nodes identifiers (e.g.,
two nodes are neighbors if their identifiers share some common
prefix), plus possibly other criteria such as geographical distance.
Each application-specific object, or data-item, is assigned a unique
identifier, called key, which is the hashed value of the object. In our
context, we consider that this hash function is picked among the 2-
universal family. Both keys and node identifiers belong to the same
identifier space. Each node owns a fraction of all the data items
of the system. The mapping derives from the distance function d.
All the proposed DHTs have been proven to be highly satisfactory
in terms of both efficiency and scalability (their key-based routing
mechanism guarantees operations whose complexity in messages and
latency logarithmically scale with system size).

These principles directly apply to our context. All the nodes of S
self-organize in a DHT (see Figure 1), and are responsible for the
frequency estimation of all the items whose key are closer to them
according to the distance d implemented in the DHT. Let Ii be the
set of items whose keys are closer to node i than to any other nodes,
and σ(i) denote the input stream of node i. Then, each node i ∈ S
locally maintains a CASE sketch that solely estimates the frequency
of all the items that belong to Ii. For all the other items v that appear
in σ(i) but that do not belong to Ii, node i routes them to node j such
that v ∈ Ij . Finally, a query for getting the frequency of any item v
simply consists in sending this query to the (single) node in charge
of v. As will be shown in Theorem 5, this construction guarantees

the (ε, δ)-approximation of items frequency, and is space-efficient.
Indeed, the total workspace needed by the distributed algorithm (that
is the sum of each CASE space implemented at each node i ∈ S)
is strictly equal to the workspace that would be needed by a single
CASE to estimate the frequency of all the items recurring in the
union of all the distributed streams. Actually, our approach allows
us to do statistics over distributed streams without bringing any
additional cost with respect to a centralized approach in terms of
space however incurs some communication costs. Indeed, each time
a node i receives in its input stream an item v that does not belong
to Ii, item v must be forwarded to the node j such that j is closer
to v key. Note that in expectation this is achieved in a logarithmic
number of hops in the size of S. In the following, m =

∑
i∈S m

(i).
Recall that n is the size of the domain from which data items belong
to.
Theorem 5 The distributed algorithm executed on s = |S| nodes,
each one running an instance of CASE with parameters k =
de/(sε)e, t = dlog(1/δ)e and b < 4/ε3, returns for any item v
an estimate f̂v such that the error bounds of Theorem 4 hold using
O ((b+ (log(1/δ)/ε)(b+ 1/ε)) (logm+ log n)/s) bits of space per
node.

Proof: Let hDHT be the hash function used for the key
assignment in the DHT. By the properties of hash functions, the key
space can be split into s = |S| mutually exclusive subsets forming a
partition of N . Suppose that all the CASE arrays, spread over the s
nodes, are concatenated into a huge unique array whose size is equal
to dlog(1/δ)e × de/εe. The probability that any two items u and v
share the same cell on each line is equal to the probability that both
u and v are assigned to the same node (which is lower than 1/s
by the 2-universality properties of hDHT) and that they share the
same cell on this node (which is lower than 1/k). By assumption,
the t hash functions are pairwise independent, and by construction,
k = de/(sε)e. Thus this probability is lower than or equal to ε/e,
which corresponds to the probability obtained with a unique CASE
instance with parameter k = de/εe and t = dlog(1/δ)e.

We now focus on the Space Saving algorithm run on each node
in S with parameter b ≤ 4/ε3. Each node in charge of n/s
items receives a stream of size m/s in average. Thus according to
Theorem 2, for every v in the any stream, we have

fv ≥ f̂
(SS)

v ≥ fv −
m/s

b
> fv −

m

b
.

Thus the guarantee brought by the union of all instances of the
enhanced Space Saving on each node in S is strictly greater to the
one guaranteed by a single CASE instance with the same parameter
b ≤ 4/ε3.

Direct application of Theorem 4 concludes the proof.

V. EFFORT NEEDED BY THE ADVERSARY TO SUBVERT THE
DISTRIBUTED ALGORITHM

As previously said, we suppose that the adversary has enough
resources to generate a large number of items, and to judiciously
inject them in the input stream σ(i) of any correct node i ∈ S , so
that items frequency are over-estimated.

From Algorithm 2, this can be only achieved by increasing the
error made on the estimations f̂

(CM)

v of item v as by Theorem 2 we
have that fv − m/b ≤ f̂

(SS)

v holds. Thus to disrupt the estimation

Table I: Key values of Ek

k
10 50 250

(ε ∼ 0.3) (ε ∼ 0.05) (ε ∼ 0.01)

η 10−1 10−4 10−1 10−4 10−1 10−4

Ek 44 110 306 651 1, 617 3, 363

Table II: Dataset Statistics.

Datasets stream size (m) distinct items (F0) max. freq.
NASA (Jul.) 1,891,715 81,983 17,572
NASA (Aug.) 1,569,898 75,058 6,530
ClarkNet (Aug.) 1,654,929 90,516 6,075
ClarkNet (Sep.) 1,673,794 94,787 7,239
Saskatchewan 2,408,625 162,523 52,695

f̂
(CM)

v of any item v, the adversary has to generate sufficiently many
items u1, . . . , u` such that for all the lines q, q = 1, . . . , t of array
C, there exists an item uj such that hq(uj) = hq(v). Recall that the
t hash functions are locally chosen, thus the adversary cannot know
which identifiers map to h1(v), . . . , ht(v). By injecting numerous
times these items u1, . . . , u`, the estimation f̂

(CM)

v will be arbitrarily
overestimated. Note that the adversary will blindly bias the frequency
estimation of many items, including its owns.

By conducting an analysis similar to the one achieved in [16],
we can derive the minimum effort that needs to be exerted by the
adversary to make its attack successful with probability 1−η, where
η < 1. This is achieved by modeling an attack as a urn problem,
where each entry of C is modeled as an urn and each received distinct
item as a ball. N` is the random variable that counts the number of
non empty urns among any set of k urns at time `. Let Uk be the
number of balls needed in order to obtain all the k urns occupied,
i.e., with at least one ball. It is easily checked that P{U1 = 1} = 1
and that, for ` ≥ k ≥ 2, we have

Uk = ` =⇒ N`−1 = k − 1.

From [16], we get, for k ≥ 2 and ` ≥ k,

P{Uk = `} = 1

k`−1

k−1∑
r=0

(−1)r
(
k − 1

r

)
(k − 1− r)`−1.

Finally, we consider the integer Ek which counts the number of
balls needed to get a collision in all the k × t urns. Note that this
number is independent of t as by definition, the t experiments in
parallel are identical and independent. Thus, filling entirely a set of
k urns leads to obtain all the t sets of k urns occupied. For given
value of k and η ∈ (0, 1), integer Ek is defined by

Ek = inf

{
` ≥ k

∣∣∣∣∣∑̀
i=k

P{Uk = i} > 1− η

}
. (2)

Recall that parameters k of Algorithm 2 are common knowledge
(except the random local coins) and thus the adversary is capable
of deriving Ek according to the desired probability η. Finally, the
adversary needs to inject in the input stream Ek + a items to bias
the frequency estimation of all the items that have been received in
the input streams.

The main results of this analysis are summarized in Table I. The
most important result is that the effort that needs to be exerted by the
adversary to subvert the estimation can be made arbitrarily large by
any correct node by just increasing the size of the array. This also
entails that the adversary effort is not related with the population
size.

VI. PERFORMANCE EVALUATION OF CASE

This section describe the main results obtained from the exper-
iments evaluating the quality of CASE to estimate on the fly the
frequency of a very large number of items in a massive stream.

A. Experimental Setup

We have implemented CASE and run a series of experiments on
different types of streams and for different parameter settings. We
have fed our algorithm with both real-world data sets and synthetic
traces. Real data give a realistic representation of some existing
systems, while the latter ones allow us to capture phenomenon
which may be difficult to obtain from real-world datasets, and thus
allow us to check the robustness of our strategies. We have varied
all the significant parameters of the algorithms, that is, the size
of the Space Saving algorithm memory b, the number of entries
k in each line of the CM matrix, and the number t of lines
of this matrix. We have then compared the frequency estimation
provided by CASE with the one provided by CM algorithm. For
each parameter setting, we have conducted and averaged 100 trials
of the same experiment, leading to a total of more than 1, 000, 000
experiments for the comparison of the Count-Min algorithm and
ours. The datasets have been downloaded from the repository of
Internet network traffic [17]. We have used three large datasets
among the available ones, representing different periods of HTTP
requests to WWW server of respectively NASA Kennedy Space
Center, ClarkNet provider and University of Saskatchewan. Table II
shows the stream size (m), the population size (F0) and the number
of occurrences of the most frequent item of these datasets. Note
that all these benchmarks share a Zipfian behavior, with a lower α
parameter for the University of Saskatchwan. For more information
on these datasets, an extensive analysis is available in [18].

B. Main Lessons drawn from the experiments

We now present the main lessons drawn from these experiments.
Due to space constraints, only a subset of all the conducted ex-
periments are included in this paper. In order to compare the
accuracy of the presented algorithms, we measure the distance
between the frequency of the items in the input stream and the
one computed by the CM algorithm and the CASE algorithm. The
distance we use is the euclidean distance. Specifically, given two
vectors of dimension n, v and w, the euclidean distance is defined
by D(v, w) =

√∑n
i=1(vi − wi)2. In the following, we denote

with “CM [Same precision]” the results achieved by CM when
initialized with the same ε and δ values of CASE. On the other
hand, “CM [Same Memory]” denotes the results achieved by CM
when initialized with values of ε and δ such that the CM has the
same memory usage (number of bits) of CASE (i.e., the CM matrix
is larger). To identify the impact of F0 estimation on the quality of

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 200 400 600 800 1000

It
em

 f
re

q
u
en

cy

Item identifier

Exact Distribution
CM [Same precision]
CM [Same memory]
EV [Same precision]

CASE [F0 known]
CASE [F0 unknown]

(a) Uniform distribution

 10

 100

 1000

 10000

 100000

 0 200 400 600 800 1000

It
em

 f
re

q
u
en

cy

Item identifier

Exact Distribution
CM [Same precision]
CM [Same memory]
EV [Same precision]

CASE [F0 known]
CASE [F0 unknown]

(b) Zipfian-like distribution – α = 1

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 200 400 600 800 1000

It
em

 f
re

q
u
en

cy

Item identifier

Exact Distribution
CM [Same precision]
CM [Same memory]
EV [Same precision]

CASE [F0 known]
CASE [F0 unknown]

(c) Truncated Poisson distribution

 10

 100

 1000

 10000

 100000

 0 200 400 600 800 1000

It
em

 f
re

q
u
en

cy

Item identifier

Exact Distribution
CM [Same precision]
CM [Same memory]
EV [Same precision]

CASE [F0 known]
CASE [F0 unknown]

(d) Zipfian-like distribution – α = 4

Figure 2: Item frequency as a function of their identifiers. Settings: m = 100, 000; F0 = 1, 000; ε = 0.1; δ = 0.1.

CASE, we provide the results both when CASE knows the exact
value of F0, denoted as “CASE [F0 known]”, and when it relies
on the estimation of F0 provided by the BJKST algorithm, denoted
as ‘CASE [F0 unknown]”. Finally, “EV [Same precision]” denotes
results obtained with the algorithm proposed in [4], providing a
comparison with respect to related work, when initialized with the
same ε and δ values of CASE.

Figure 2 compares, for different input stream shapes, the frequency
estimation provided by CM and CASE algorithms. The main obser-
vation drawn from this figure is that CASE clearly outperforms CM
algorithm. In accordance with the analysis, in presence of an input
stream uniformly distributed (Figure 2(a)) or Poisson-distributed
(Figure 2(c)), CASE perfectly estimates item frequency in contrast
to CM. Indeed, in both scenarios, all the items (or most of them in
the Poisson case) show the same frequency which allows CASE to
exhibit its optimum behaviour. Notice also that providing more space
to CM still does not suffice to reach CASE accuracy. Now for highly
skewed distributions (Figures 2(b) and 2(d)), CASE overestimates a
little bit the frequency of rare items (by a factor 1.2), while CM, in
the best case, overestimates them by a factor 100. Note that in both
cases, the frequency of rare items are lower-bounded by 50, in order
to emphasize the precision of CASE estimation (indeed, as shown
in Theorem 4, the precision of both CASE and CM is similar for
strongly rare items). Notice that as expected both CM and CASE

perfectly estimate highly frequent items.
On the other hand, Figure 3(a) compares the quality of both CM

and CASE to estimate item frequency when they are fed with massive
real datasets. This figure confirms that CASE clearly outperforms
CM estimation. Indeed, the error made by CM is function of the
size of the stream, which is not the case for CASE except for rare
items.

We now compare the behavior of both algorithms by focusing on
their parameters. Figure 3(b) shows the euclidean distance between
the exact frequency distribution and the one estimated by CM and
CASE. When the number of distinct items is close to k (the number
of columns of the matrix) both algorithms output correct estimations
since almost all the distinct items have their own cell in the matrix.
On the other hand, for very large values of F0, the distance between
the exact frequency distribution and the estimated one does augment
because the number of collisions is extremely high, even for CASE.
Figure 3(c) confirms the results obtained with real datasets, that is,
that CASE outperforms CM in presence of very large input streams.
Finally, Figure 3(d) illustrates the intuitive idea that augmenting
the memory space used by the sketch increases the precision of
estimation. This figure clearly confirms the theoretical analysis.

VII. CONCLUSION

In this paper we have investigated the problem of estimating on
the fly the frequency at which items recur in massive distributed data

 0

 1x10
6

 2x10
6

 3x10
6

 4x10
6

 5x10
6

 6x10
6

 7x10
6

 8x10
6

N
A

SA
-Jul

N
A

SA
-A

ug

C
larkN

et-A
ug

C
larkN

et-Sep

Saskatchew
an

D
is

ta
n

ce
 w

it
h

 E
x

ac
t

d
is

tr
ib

u
ti

o
n

Distribution

CM [Same precision]
CM [Same memory]
CASE [F0 known]
CASE [F0 unknown]

(a) CM and CASE are fed with real datasets
Setting: ε = 0.01 and δ = 0.1

 1

 10

 100

 1000

 10000

 100000

 100 1000 10000

D
is

ta
n
ce

 w
it

h
 E

x
ac

t
d
is

tr
ib

u
ti

o
n

Value of F
0

CM [Same precision]
CM [Same memory]
CASE [F0 known]
CASE [F0 unknown]

(b) ED as a function of the number of distinct items
Setting: m = 100, 000; ε = 0.1; δ = 0.1.

 10

 100

 1000

 10000

 10000 100000 1x10
6

D
is

ta
n
ce

 w
it

h
 E

x
ac

t
d
is

tr
ib

u
ti

o
n

Value of F
1

CM [Same precision]
CM [Same memory]

CASE [F0 known]
CASE [F0 unknown]

(c) ED as a function of the size of the stream
Setting: F0 = 1, 000; ε = 0.1; δ = 0.1.

 1

 10

 100

 1000

 10000

 100000

 1 10 100

D
is

ta
n
ce

 w
it

h
 E

x
ac

t
d
is

tr
ib

u
ti

o
n

Value of k

CM [Same precision]
CM [Same memory]

CASE [F0 known]
CASE [F0 unknown]

(d) ED as a function of the Count-Min sketch parameter k
Setting: m = 100, 000; F0 = 1, 000; δ = 0.1

Figure 3: Euclidean Distance (ED) between the frequency of the items when generated by real datasets (case (a)) and by a Poisson
distribution (cases (b), (c) and (d)) and the frequency of the items estimated by the Count-Min sketch and the CASE algorithm.

streams. Our approach, denoted CASE algorithm, combines tools and
probabilistic algorithms from the data streaming model. By doing so,
we have improved upon the Count-Min sketch algorithm by provid-
ing an algorithm that guarantees an relative (ε, δ)-approximation of
item frequency estimation, provided these items are not too rare.
We have also provided a distributed algorithm that allows us to
globally determine the frequency of all the items that recur in these
streams. Experiments on both synthetic and real datasets validate our
theoretical analysis.

REFERENCES

[1] E. Anceaume, Y. Busnel, and S. Gambs, “On the Power of the Adversary to
Solve the Node Sampling Problem,” Transactions on Large-Scale Data- and
Knowledge-Centered Systems (TLDKS), vol. 8290, no. 11, pp. 102–126, 2013.

[2] G. Cormode and S. Muthukrishnan, “An improved data stream summary: the
count-min sketch and its applications,” Journal of Algorithms, vol. 55, no. 1,
pp. 58–75, 2005.

[3] X. Dimitropoulos, M. Stoecklin, P. Hurley, and A. Kind, “The eternal sunshine
of the sketch data structure,” Computer Networks, vol. 52, no. 17, 2008.

[4] C. Estan and G. Varghese, “New directions in traffic measurement and ac-
counting: Focusing on the elephants, ignoring the mice,” ACM Transactions
on Computer Systems (TOCS), vol. 21, no. 3, pp. 270–313, 2003.

[5] E. D. Demaine, R. López-Ortiz, and J. I. Munro, “Frequency estimation of
internet packet streams with limited space,” in In Proceedings of the 10th Annual
European Symposium on Algorithms. Springer-Verlag, 2002, pp. 348–360.

[6] G. Cormode and S. Muthukrishnan, “An improved data stream summary: The
count-min sketch and its applications,” Journal of Algorithms, vol. 55, no. 1,
pp. 58–75, 2005.

[7] Muthukrishnan, Data Streams: Algorithms and Applications. Now Publishers
Inc., 2005.

[8] N. Lynch, Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
[9] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approximating

the frequency moments,” in Proc. of the 28th annual ACM symposium on Theory
of computing (STOC), 1996, pp. 20–29.

[10] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan, “Count-
ing distinct elements in a data stream,” in Proc. of the 6th International Workshop
on Randomization and Approximation Techniques (RANDOM). Springer-Verlag,
2002, pp. 1–10.

[11] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation of frequent
and top-k elements in data streams,” in Proceedings of the 10th International
Conference on Database Theory, ser. ICDT’05. Springer-Verlag, 2005, pp.
398–412.

[12] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data base
applications,” Journal of Computer and System Sciences, vol. 31, no. 2, pp.
182–209, 1985.

[13] P. Gibbons, Data Streams Management: Processing High-Speed Data Streams.
Elsevier, 2007.

[14] P. B. Gibbons and S. Tirthapura, “Estimating simple functions on the union of
data streams,” in Proc. of the Thirteenth Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA), 2001, pp. 281–291.

[15] J. Misra and D. Gries, “Finding repeated elements,” Science of Computer
Programming, vol. 2, no. 2, pp. 143–152, 1982.

[16] E. Anceaume, Y. Busnel, and B. Sericola, “Uniform node sampling service
robust against collusions of malicious nodes,” in Proc. of the 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), Budapest, Hungary, June 2013.

[17] the Internet Traffic Archive, “http://ita.ee.lbl.gov/html/traces.html,” Lawrence
Berkeley National Laboratory, Apr. 2008.

[18] M. F. Arlitt and C. L. Williamson, “Web server workload characterization: the

search for invariants,” SIGMETRICS Performance Evaluation Review, vol. 24,
no. 1, pp. 126–137, 1996.

