
HAL Id: hal-01194523
https://hal.science/hal-01194523

Submitted on 7 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Complexation of europium(III) by hydroxybenzoic acids:
a time-resolved luminescence spectroscopy study

Pauline Moreau, Sonia Colette-Maatouk, Pierre Vitorge, Pierre Gareil, Pascal
E. Reiller

To cite this version:
Pauline Moreau, Sonia Colette-Maatouk, Pierre Vitorge, Pierre Gareil, Pascal E. Reiller. Complex-
ation of europium(III) by hydroxybenzoic acids: a time-resolved luminescence spectroscopy study.
Inorganica Chimica Acta, 2015, 432, pp.81-88. �10.1016/j.ica.2015.03.036�. �hal-01194523�

https://hal.science/hal-01194523
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


1 

 

Complexation of Europium(III) by Hydroxybenzoic 

Acids: A Time-Resolved Luminescence Spectroscopy 

Study 

Pauline Moreau
a,†

, Sonia Colette-Maatouk
a,‡

, Pierre Vitorge
b
, Pierre Gareil

c
, 

Pascal E. Reiller
a,*

  

a
 Commissariat à l’Énergie Atomique et aux énergies alternatives, CE Saclay, 

CEA/DEN/DANS/DPC/SEARS, Laboratoire de développement Analytique, Nucléaire, 

Isotopique et Élémentaire, Bâtiment 391 PC 33, F-91191 Gif-sur-Yvette CEDEX, France 

b
 Commissariat à l’Énergie Atomique et aux énergies alternatives, CE Saclay, 

CEA/DEN/DANS/DPC/SECR, Laboratoire de Radiolyse et de la Matière Organique, 

Bâtiment 391 PC 33, F-91191 Gif-sur-Yvette CEDEX, France. 
c
 Chimie Paris-Tech, 

Laboratory of Physicochemistry of Electrolytes, Colloids, and Analytical Sciences, 11 rue 

Pierre et Marie Curie, F-75005, Paris, France. 

KEYWORDS. Europium; lanthanides; hydroxybenzoic acids; phenolic acids; complexation; 

Time-resolved Luminescence Spectroscopy 

* Corresponding author: Tel: +33 1 6908 4312; fax: +33 1 6908 9475. E-mail address: 

pascal.reiller(at)cea.fr 

Present address:  
†
BRGM, Direction des Laboratoires, 3 Avenue Claude Guillemin – BP 

36009, 45060 Orléans CEDEX 02, France. 
‡
Commissariat à l’Énergie Atomique et aux 

énergies alternatives, CE Saclay, DEN/DPIE/SA2P, Bâtiment 516P, 91191 Gif-sur-Yvette 

CEDEX, France. 



2 

 

Abstract. 

Complexation of Eu(III) by two hydroxybenzoic acids, namely p-hydroxybenzoic acid 

(4-dihydroxybenzoic, HPhbH), and protocatechuic acid (3,4-dihydroxybenzoic, HProtoH2), is 

studied by time-resolved luminescence spectroscopy (TRLS) in mildly acidic solution. 

Comparable formation constants are determined at 0.1 mol.L
-1

 NaCl for EuPhbH
2+

 – 

log10β°(EuPhbH
2+

) = 2.18  0.09 (1) – and 0.01 mol.L
-1

 NaCl for EuProtoH2
2+

 – 

log10β°(EuProtoH2
2+

) = 2.72  0.07 (1). The stoichiometry and carboxylate complexation of 

the EuProtoH2
2+

 complex is ascertained by varying both pH and ligand concentration. The 

luminescence decay time of EuPhbH
2+

 (τ = 107 ± 5 µs) is comparable with that of Eu(H2O)n
3+

 

(τ = 110 ± 3 µs), suggesting that luminescence quenching processes compensate the expected 

increase in decay time due to the dehydration associated with complexation. For EuProtoH2
2+

, 

the luminescence decay time is even shorter (τ = 20 ± 5 µs), evidencing intricate quenching 

processes. 

1 Introduction 

The use of lanthanides (Ln), part of the rare earth elements (REEs) family, is increasing in 

modern industry, e.g., for solid lasers, permanent magnets, microelectronics… Their 

importance in the understanding of geochemical processes, their presence in the fission 

products from the nuclear industry and their analogy with some actinides (An) at their +3 

oxidation state also justify a better understanding of their environmental chemistry, 

particularly their behaviour in waters, soils and sediments, and their toxicity [1-4]. For 

instance, under superficial conditions, REEs are used to trace matter and water transfer, and to 

understand weathering processes. 
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Ln(III) form complexes with naturally organic ligands containing carboxylate and phenolate 

groups [5-10]. The understanding of the binding processes with these chemical functions is 

relevant because they occur greatly in nature. These chemical functions are found in 

decomposition products of lignin, and afterwards in humic and fulvic acids, which also show 

high interactions with lanthanides [4,11,12]. Among these compounds are the hydroxybenzoic 

acids p-hydroxybenzoic acid (4-hydroxybenzoic, HPhbH) and protocatechuic acid (3,4-

dihydroxybenzoic, HProtoH2) – HAHn symbolism was chosen to distinguish the carboxylic 

proton, on the left hand side, from the phenolic ones, on the right hand side –, the structure of 

which are shown on Figure 1. 

O OH

OH  

O OH

OH

OH

 

Figure 1. Structures of HPhbH (left), and HProtoH2 (right). 

In the environment, HPhbH and HProtoH2 were identified in the humus, wood, bark, straw, 

leaves, and fruit [13-17]. They also have appreciable adsorption properties onto mineral 

surfaces [18,19 and references therein]. The chosen acids only differ from one another by 

adding an OH-group to the benzoic ring in the meta position with respect to the carboxylate 

group. 
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Europium(III) is a good candidate for complexation studies as it is a non-radioactive analogue 

of different lanthanides contained in radioactive wastes, and actinides at their +III redox state, 

e.g. Pu(III), Am(III), and Cm(III) , and has suitable spectroscopic properties [8-10,20-33]. To 

our knowledge, neither the complexation constants nor the stoichiometries of the complexes 

between Eu(III) and HProtoH2 have been determined yet. Only scarce complexation data are 

available for other metal-HProtoH2 systems [34,35]. However, the complexation 

characteristics of Eu(III) with other hydroxybenzoic acids of similar structures have been 

reported. Wang et al. [24] proposed 1:1 and 1:2 Eu(III)-benzoate complexes from titrations 

between pH 3 and 5.5 (log10β1 = 1.84, log10β2 = 2.92, I = 0.1 mol.L
-1

 NaClO4, 25° C). The 

unidentate character was estimated from luminescence decay time analysis. The complexation 

of Eu(III) or Am(III) with salicylic acid (2-hydroxybenzoic acid) have been studied using 

potentiometry [5], and time-resolved luminescence spectroscopy (TRLS) [7,10,30,33,36]. A 

value of log10β1 = 2.0 ± 0.1 at I = 0.1 mol.L
-1

 NaClO4, T = 20°C and pH 4, was proposed from 

TRLS and potentiometry measurements [5,7]. 

TRLS has been extensively used as a sensitive and selective technique to study complexation 

of luminescent Ln(III), especially Eu(III), by a variety of ligands [2,9,21,26,37]. The 

luminescence spectra and decay times analyses probe the properties of the complexes formed 

[20,38], and typically allow determining the complexation constants and degree of symmetry 

[10,37]. Complexation in aqueous solutions is usually associated with an increase of the 

luminescence decay time. Upon complexation the water molecules that act as luminescence 

quenchers are expelled from the first hydration sphere of the luminescent cation. The implied 

increase in decay time has been used to estimate the number of water molecules in the first 

hydration sphere using empirical relationships [20,22,23,25]. High resolution steady state and 
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TRLS studies under cryogenic conditions (4.7 K) indicated that Eu(III) binds to HPhbH 

through the carboxylic group at pH 5 and that the point symmetry group is C1, C2 or CS [10]. 

The f-block elements usually give hard cations that form stable complexes with hard donor 

atoms [39]. Complexation constant values are usually similar along the Ln(III) series with a 

slight increase of β1 due to the Ln contraction [1,40,41]. 

The aim of this study is to obtain the formation constants and stoichiometries of 

Eu(III)-HPhbH and -HProtoH2 complexes. The complexation equilibria are probed by the 

changes in the Eu(III) time-resolved luminescence spectra as a function of ligand 

concentration at both fixed pH, and varying pH at fixed ligand concentration. The decay times 

are also reported and discussed with respect to the quenching effects. 

2 Experimental Section 

2.1 Preparation of samples. 

All solutions were prepared using freshly purified water (18.2 MΩ.cm
-1

, Thermo EASYPURE 

II, Saint Herblain, France). HPhbH, HProtoH2, and NaCl were purchased from Sigma-Aldrich 

(Saint-Quentin-Fallavier, France). The hydroxybenzoic acid stock solutions were obtained 

after dissolution in 0.1 or 0.01 mol.L
-1

 NaCl media. Europium(III) stock solution (10
-3

 

mol.L
-1

) was obtained after the dissolution of 99.99 % Eu2O3 (Johnson Matthey, Roissy, 

France) in 3.5 10
-3

 mol.L
-1

 HCl. 
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2.2 Complexation batch samples. 

First, the experiments were carried out at (20 ± 1)° C, pH 5.5, with fixed concentrations of 

Eu(III), 10
-6

 and 10
-5

 mol.L
-1

. The concentration of the acid varied from 0 to 0.048 mol.L
-1

, 

and 0 to 0.092 mol.L
-1

 for HPhbH and HProtoH2, respectively. The ionic strength was fixed at 

0.1 and 0.01 mol.L
-1

 NaCl for HPhbH and HProtoH2, respectively. Second, the carboxylate 

complexation Eu-HProtoH2 system was checked at varying pH, [Eu(III)] = 10
-4

 mol.L
-1

, 

[HProtoH2] ≈ 0.03 mol.L
-1

, and fixed ionic strength 0.1 mol.L
-1

 NaCl.  Batch samples were 

left for a 24 hour equilibration time before analysis. The pH values were measured using a 

combined glass electrode (Mettler-Toledo, Viroflay, France) connected to a Seven Easy S20 

Mettler-Toledo pH meter. The calibrations were done using commercial buffers (Bioblock 

Scientitic, 3.99, 7.01, and 10.06 at 20°C) 

2.3  Time-resolved luminescence spectroscopy (TRLS). 

The experimental set up has already been described elsewhere [29,31]. During these 

experiments the average energy at the excitation wavelength (394 nm, vide infra) was less 

than 1 mJ. The luminescence signal was collected during a gate width (W) of 300 µs, after an 

initial delay time (D) of 10 µs after the excitation laser flash. To increase the signal-to-noise 

ratio, 300 to 1000 accumulations were performed for each spectrum. It is worthy to note that 

independent batches of solutions were analysed in a random order. The excitation wavelength 

was set at exc = 394 nm, i.e. in the 
7
F0→

5
L6 transition of Eu

3+
 [42]. After inner conversion 

from the 
5
L6 excited state, only the transitions from the 

5
D0 excited state to the ground 

7
Fj 

manifold are responsible for the recorded luminescence at D greater than 10 µs [42,43]. In the 

acquisition window, these transitions are the 
5
D0→

7
F0 transition (max ≈ 579 nm), forbidden 
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for magnetic and electric reasons, the 
5
D0→

7
F1 transition (max ≈ 592 nm), a magnetic dipole 

transition, and the 
5
D0→

7
F2

 
transition (max ≈ 618 nm) described as a hypersensitive transition 

[38] as it is highly correlated to the chemical environment of Eu(III). For each previously 

obtained spectrum the background noise was subtracted and the luminescence was divided by 

the average of the laser energy before and after the acquisition (pyroelectric detector RJ-7610, 

probe RJ-734, Laser Precision Corp., USA), and by the number of acquisitions 

(accumulations). In that manner, all the spectra were directly comparable. The stabilities of 

the acids were tested comparing UV-Visible spectra before and after an 394 nm laser 

irradiation, and no differences were obtained (data not shown). 

The luminescence decay parameters are obtained from the peak area of either the 
5
D0→

7
F1 or 

5
D0→

7
F2 transition at varying delay D values with the same gate width W. The obtained decay 

is described by a first order kinetics, and for a purely integrative system like a CCD camera 

the luminescence signal of a species i is given by equation (1), 

Fi = 




D

D+W
F

o

i  exp






– 

t

τi

 dt = F
o

i  τi exp






– 

D

τi

 






1 – exp







– 

W

τi
  (1) 

where Fo,i and τi are the initial luminescence intensity and decay time of the species i, 

respectively; they were obtained by a non-linear fitting of the experimental results (Fi), at 

varying D values (typically 10 µs steps) to equation (1) as already detailed elsewhere [29,31]. 

2.4 Determination of complexation constants by TRLS studies. 

The complexation of Eu
3+

 with an ionized acid A
-
 is recalled in the Appendix 1 of the 

supporting information (SI). The ionized carboxylic acid A
-
 stands here for PhbH

-
 and 
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ProtoH2
-
 (pKa° in Table 1). The peak area ratio between the 

5
D0→

7
F2 and the 

5
D0→

7
F1 

transition – referred as the asymmetry ratio 
7
F2/

7
F1 – is often used to estimate complexation 

constants considering that the intensity of the 
5
D0→

7
F1 transition is not modified upon 

complexation [9,21,36]. Even if the extent of modification for the 
5
D0→

7
F1 transition is much 

lower compared to the 
5
D0→

7
F2 one [44], the non-modification of area under the peaks, and 

shapes of peaks, is not always verified [26,37,45]. Hence, we adapted an approach where no 

hypothesis on the 
5
D0→

7
F1 transition is made [2,27]. Basic assumptions as well as interim 

calculations accounting for ionization of the acids and side complexation reactions (hydrolysis 

and Cl
-
 complexation) are recalled in the SI. 

The [EuA
2+

]/[Eu(III)]nc experimental concentration ratio, where [Eu(III)]nc refers to non-

complexed with hydroxybenzoic acid Eu(III) – Eu(OH)n
(3-n)+

 and mostly EuClm
(3-m)+

 under our 

conditions, see Table S1 of the SI –, is calculated from the 
7
F2/

7
F1 experimental ratio, and 

from the 
7
Fi,j (i = 1 or 2, j = 0 or 1) molar intensities measured at the beginning (

7
Fi,0) and the 

end (
7
Fi,1) of the titration. The experimental [EuA

2+
]/[Eu(III)]nc concentration ratio (Equation 

S9 of the SI) is reported into the law of mass action yielding equation (2). 

log10
[EuA

2+
]

[Eu]nc

 = log10
app

β(EuA
2+

) + log10[A
-
] (2) 

The stoichiometry is checked by the linearity of the log-log plot of ([EuA
2+

]/[Eu(III)]nc) vs. 

[A
-
], and by the value of the slope. The complexation constant (

app
β) is given at the intercept. 
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3 Results and Discussion 

3.1 Luminescence Spectra 

The time-resolved luminescence (TRL) spectra of Eu(III), normalized to the area of the 

5
D0→

7
F1 transition (trapezoid method between 582 and 605 nm), with increasing HPhbH and 

HProtoH2 concentrations are given in Figure 2. For both acids, the 
5
D0→

7
F0 transition appears 

upon adding the ligand evidencing that the chemical environment of Eu(III) losses its centro-

symmetry upon complexation [46]. The position of the 
5
D0→

7
F0 transition is approximately 

579 nm. This indicates a low charge of the complexing unit [47] and a low coordination 

number [48]. Normalizing the spectra to the total area between 570 and 640 nm permits 

evidencing isosbestic points (Figure S1 of the SI), and hence the formation of only one 

complex for each ligand. 

As awaited almost no change in the shape of the 
5
D0→

7
F1 transition is noted (λmax ≈ 592 nm): 

there is no noticeable difference between Eu(III)-HPhbH and -HProtoH2 (see Figure S2 of the 

SI). The net intensity of the 
5
D0→

7
F1 increases with [HPhbH]total but slightly decreases with 

[HProtoH2]total (Figure S3 of the SI). The increase in intensity of the 
5
D0→

7
F2 hypersensitive 

transitions on addition of ligands indicates the change in the symmetry around Eu(III) atom for 

each complexes (Figure S3 of the SI). The 
5
D0→

7
F2 relative intensities and shapes do not 

seem to be different for Eu(III)-HPhbH and -HProtoH2 (
7
F2/

7
F1 ≈ 3, λmax ≈ 616 nm, Figure 2 

and Figure S2 of the SI) given the noisy signal obtained for the latter complex. Comparison of 

the different transition intensities and shapes indicates a very similar symmetry for both 

complexes. No assignment of point symmetry group can be done given the noisy character of 

the spectra. 
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Figure 2. Normalized time-resolved luminescence spectra of Eu(III) complexed with HPhbH 

(a) and HProtoH2 (b) the intensities were normalized to the area of the 
5
D0→

7
F1 transition for 

the sake of comparison; D = 10 µs, W = 300 µs, [Eu(III)] = 10
-6 

mol.L
-1

, I = 0.1 mol.L
-1

 NaCl, 

pH 5.5; The thick black lines represent uncomplexed Eu
3+

. 



11 

 

3.2 Complexation constant determination. 

The luminescence spectra evolutions were taken as complexometric titration. The formation 

of EuAi
(3-i)+

 is considered to be complete as both TRL spectra and decay times are no longer 

modified after further additions of acid. In that respect, the solubility of HPhbH is not enough 

to reach the titration end-point. Consequently, the end-point was determined by fitting 

experimental data with equation (S1) to (S9) for a 1:1 complex. 

The initial luminescence of the 
5
D0→

7
F1 and 

5
D0→

7
F2 transitions was determined for each 

sample using equation (1). Plot of equation (2) is presented in Figure 3. Parallel straight lines 

with slopes close to unity – i.e. 0.94 ± 0.04 for HPhbH, 1.0 ± 0.1 for HProtoH2 – were 

obtained for the two acids. This confirms that only one complex of 1:1 stoichiometry is 

formed under these conditions for both EuPhbH
2+

 and EuProtoH2
2+

. The log10β1 at the 

intercept values are summarized in Table 1 together with otherwise published data for similar 

complexes [7,9,24,49-56]. 

Extrapolation to zero ionic strength of the complexation constants were applied using an 

extended Debye-Hückel expression using the parameters tabulated in Kielland [57] in 

agreement with the used thermodynamic data in Hummel et al. [58]. The PhbH
-
 and ProtoH2

-
 

parameters, ai = 6 and b = 0, were taken from other aromatic acids in analogy [57]. The 

determined apparent constants with the unity slope are log10
app

β(EuPhbH
2+

) = 1.53 ± 0.07 

(1) and log10
app

β°(EuProtoH2
2+

) = 2.46 ± 0.07 (1σ). Accounting for chloride complexation, 

the constant at the experimental ionic strengths are log10β
0.1M

(EuPhbH
2+

) = 1.72 ± 0.09 (1) 

and log10β
0.01M

(EuProtoH2
2+

) = 2.49 ± 0.07 (1σ). Finally, the extrapolated thermodynamic 
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constant values at I = 0 are log10β°(EuPhbH
2+

) = 2.18 ± 0.09 (1) and log10β°(EuProtoH2
2+

) = 

2.72 ± 0.07 (1σ) in the framework of Kielland’s model [57]. 

The use of the specific ion theory (SIT) implies analogy with Am
3+

 data in Guillaumont et al. 

[59], and requires the estimation of the value of ε(Eu
3+

,A
-
). The compilation of Eu(III)-acetate 

[9,49-52,54,56] and Am(III)-acetate [55] data from literature in SI gives log10β°(EuPhbH
2+

) = 

2.30 ± 0.09 and log10β°(EuProtoH2
2+

) = 2.73 ± 0.07. 

The slight differences between the values of the two close formation constants are not 

straightforward to interpret. One may think about the differences between the pKa of the acids, 

but the linear free-energy relationships are not always exactly followed (vide post). 
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Figure 3. Determination of Eu(III) complex stoichiometries and formation constants from 

TRLS results using equation (2), at pH 5.5, [Eu(III)] = 10
-6

 mol.L
-1

 (empty symbols), and 

[Eu(III)] = 10
-5

 mol.L
-1

 (filled symbol), for EuPhbH
2+

 (triangles, I = 0.1 mol.L
-1

 NaCl), 

EuProtoH2
2+

 (circles, I = 0.01 mol.L
-1

 NaCl). 

The possibility of a complex with the catechol functionality could eventually be raised, even 

if it can be postulated that higher λmax of the 
5
D0→

7
F0 transition should be observed due to the 

chelate formation and due to a higher charged complex [47,48]. This kind of complex was 

proposed for Al(III) complexed by cathecol [60], caffeic acid – 3-(3,4-dihydroxyphenyl) 
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2-propenoic acid – [61,62], gallic acid [63], and HProtoH2 [61,64], but not for the less 

hydrolysable and softer Pb(II) complexed by caffeic acid [65]. It also worthy to note that 

lanthanides do not seem to form significant catechol complexes at pH lower than 6 [66]. 

Given the agreement between log10β° in the correlation in Figure 6, it is likely that Eu(III) is 

forming a complex with the carboxylate function, but the verification of this kind of chelate 

formation is desirable by verifying the pH dependence of the complexation. 

The formation of such catechuic complexes would yield, 

M
z+

 + nH
+
 + Proto

3–
 ⇄ HnProtoM

(z+n-3)+
 

in the case of protocatechuic acid, M
z+

 would be complexed by the catechuic function, and the 

carboxylic proton remains acidic (n = 0 or 1) 

Given the second and third pKas of protocatechuic acid, the formation of such complexes in 

our case would lead to log10°1 = -7.3 for, 

Eu
3+

 + HProtoH2 = HProtoEu
+
 + 2H

+ 

and log10β°1 = 13 for 

Eu
3+

 + Proto
3-

 ⇄ ProtoEu
0
 

A verification of the EuProtoH2
2+

 stoichiometry has been done at [Eu(III)] = 10
-4

 mol.L
-1

, 

[Proto] = 0.03 mol.L
-1

, ionic strength 0.1 mol.L
-1

 NaCl, and varying pH.that should lead to a 

half reaction point at pH ca. 4 as seen in the predominance and repartition diagrams in 

Figure 4a,b calculated using Phreeplot [67,68]. From the formation constants of the catechol 
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complexes of lanthanides [66], the half-reaction point between Eu
3+

 and potentially 

HProtoEu
+
 and ProtoEu

0
 are awaited at pH ca. 5 and 6, respectively – see predominance and 

repartition diagrams in Figure S4 of the SI. The normalized spectra are shown in Figure 5a 

and asymmetry ratio in Figure S5 of the SI. Using equation (2), the calculated log10β = 2.27 ± 

0.06 for the 1:1 complex (Figure 5b), gives log10β°(EuProtoH2
2+

) = 2.72 ± 0.07 using 

Kielland’s model [57]. This is in perfect agreement with the value determined at fixed pH, 

and the half reaction point ca. 4 indicates the formation of EuProtoH2
2+

. 
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Figure 4. Predominance plot of the Eu(III)/Proto system at [Eu(III)] = 10
-4

 mol.L
-1

 and I = 0.1 

mol.L
-1

 NaCl (a), and repartition plot of the Eu(III)/Proto system under EuProtoH2
2+

 

hypothesis (b) – Eu(III)nc is defined in the text and SI. 
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Figure 5. Normalized time-resolved luminescence spectra of Eu(III) complexed with 

HProtoH2 at varying pH (a), and determination of Eu(III) complex stoichiometries and 

formation constants from TRLS results using equation (2), at varying pH (b); the intensities 

were normalized to the area of the 
5
D0→

7
F1 transition for the sake of comparison; D = 10 µs, 

W = 300 µs, [Eu(III)] = 10
-4 

mol.L
-1

, [HProtoH2]tot ≈ 0.03 mol.L
-1

, I = 0.1 mol.L
-1

 NaCl. 
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3.3 Comparison with other ligands 

Linear free energy relationships between log10°1 and the pKa of the ligands have been 

proposed for organic ligands [69] including lanthanides [5,53,56,70,71], and for complexation 

of various lanthanides(III) and actinides(III)
 
by inorganic small ligands with O-donor atoms, as 

typically SO4
2-

 or CO3
2-

 (red dotted line in Figure 6) proposed by Vitorge et al. [72]. Am
3+

, 

which can be considered as an analogue of Eu
3+

 for O-donor ligands, complexes with H2PO4
-
, 

SiO(OH)3
-
, and even the very weak NO3

-
 complex – taken from the critically assessed 

thermodynamic data base in Guillaumont et al. [59] –, following the Hoffmeister’s series, also 

fall onto this latter correlation. Data for Eu(III) complexes with NO3
-
, H2PO4

-
, and CO3

2-
 [73] 

are also very close to this correlation. These relationships occur for ligands that show very 

similar structure, and are seldom exactly followed [69]. 

These kinds of correlations were proposed for the complexation of Ln(III) with aromatic 

(poly)carboxylic acids and the sum of pKa [24,71]. This correlation, recalled in Figure 6 

(circles, plain line) corrected to 0 ionic strength using Davies equation [74], shows a less 

steeper slope than the one obtained for inorganic O-donor ligands. If one only considers the 

non-chelate ligands, the slope is even much steeper (blue circles, dotted line), which is in 

agreement with the awaited comportment for chelates [75]. It appears that the thermodynamic 

constants of Eu(III) and Am(III) with other non-chelate aromatic organic acids from literature 

[5,9,53,70,71] in Table 1, are in fair agreement with both previous correlation with 

(poly)carboxylic aromatic ligands. Eu(III)-acetic and -chloroacetic acid complexes – estimated 

in SI from literature data [9,49-53,76] using the SIT [59] – are also in fair agreement with the 

proposed correlations. Nevertheless, it can be see that the increase of log10β with pKa values is 

not exactly followed as stressed by Irving and Rossotti [69]. 



18 

 

Interestingly, log10β° for EuPhbH
2+

 and EuProtoH2
2+

 fall into the dispersion of this group 

when only considering the pKa of the carboxylic function. This means that the para and meta 

OH-groups do not seem to influence the complexation mechanism under our pH conditions. 

There is no possibility of a chelate formation that would include the carboxylate function, and 

the perturbation of the acidity of the carboxylate function is rather weak (see Table 1). 

Conversely, complexation constants with o-hydroxybenzoic acid – (Eu,Am)(III)-salicylic acid 

[5,7,36] – and overall α-hydroxyphenylacetic acid – Eu(III)-mandelic acid [5] –, and lactic 

acid [77] that can form five-membered chelates are slightly above the trend, which is in 

agreement with the general stabilities of the chelates [75]. The particular case of lactic acid 

was revised recently, and pK of the OH group should be taken into account [78]. In the case 

of o-methoxybenzoic and α-methoxyphenylacetic acid complexes the thermodynamic 

constants are closer to the correlation [5] as the five-membered chelates cannot form. 
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Table 1. First pKa values of the organic acids and formation constants for their 1:1 complex 

with Eu(III), or Am(III) when noted. 

Acid pKa° (I=0) Ref log10β1 log10β°1 I (mol.L
-1

) T (K) Technique Ref 

HPhbH 4.58  a 1.72±0.09 2.18±0.09 0.1 293 TRLS f 

HProtoH2 4.49 a 2.49±0.07 2.72±0.07 0.01 293 TRLS f 

Acetic acid 4.76 ± 0.002 b  2.81±0.07 0 298 or 

293 

 g 

    2.5±0.2 0 298 Solvent 

extraction 

h 

Propionic acid 

Isobutyric acid 

4.87 

4.86 

b 1.98 

1.98 

2.24 

2.24 

2 

2 

298 

298 

pot i 

Benzoic acid 4.20 ± 0.003 b  2.5±0.2  298 TRLS j 

o-methoxybenzoic 

acid 

4.13 c 2.28±0.02 2.92±0.02 0.1 298 pot c 

Salicylic acid 2.97 ± 0.00 b  2.7±0.05 

2.8±0.2 

 293 pot/cal 

TRLS 

c 

k 

   1.84±0.08 

1.53±0.13 

2.47 

2.48 

0.1 

1 

298 TRLS d 

Phenylacetic acid 4.00 ± 0.03 e  2.9±0.3 

2.1±0.02 

0.1 n.m. 

298 

TRLS 

pot/cal 

l 

e 

α-methoxyphenyl-

acetic acid 

3.18 c 2.17±0.02 2.81±0.02 0.1  pot c 

Chloroacetic acid 2.83  m  1.8 2 298 pot/cal m 

Dichloroacetic acid 1.3 m  1.7 2 298 pot/cal m 

TRLS/pot/cal, determination using TRLS, potentiometry, and calorimetry, respectively. a Erdemgil et al. [79]; b Smith & 

Martell [80]; c recalculated at 0 ionic strength from Hasegawa et al. [5] using Davies equation [74]; d Am(III)-salicylic acid, 

Barkleit et al. [36]; e Hasegawa et al. [6]; f this work; g compilation of data for Eu(III)-acetate complex [9,49-52,54,56] (for 

calculation details, see Appendix 2, Table S2, and Figure S6 of the SI); h Am(III)-acetic acid from Moore et al. [55], 

extrapolated at 0 ionic strength using the specific interaction theory (for calculation details, see Appendix 2, Table S2, and 

Figure S6 of the SI); i recalculated at 0 ionic strength from Choppin and Graffeo [70] using the acetate complex parameters 

determined in Appendix 2 of SI; j recalculated at 0 ionic strength from Wang et al. [24] using Davies equation [74]; 

k recalculated at 0 ionic strength using Davies equation [74] from Aoyagi et al. [7]; l recalculated at 0 ionic strength from 

Plancque et al. [9] using Davies equation [74]; m recalculated at 0 ionic strength from Ensor and Choppin [53] using the 

acetate complex parameters determined in Appendix 2 of SI; n.m., not mentioned by the authors. 
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Figure 6. Linear free energy relationships between log10β°1 and pKa° for complexation of 

AmSO4
+
, AmCO3

+
, AmH2PO4

2+
, AmC2O4

+
, AmSiO(OH)3

2+
, and AmNO3

2+
 (red cross from 

[59,81], dashed line is the linear correlation), experimental results from this study 

(EuProtoH2
2+

 green triangle, and EuPhbH
2+

 red square), data from aromatic (poly)carboxylic 

acids [24] (blue circles are non-chelate, open circles are possible chelates), Eu
3+

 complexes 

with acetic/chloroacetic (from SI), and phenylacetic acid (from [6,9] in Table 1, open 

diamonds); complex of Eu
3+

 with propionic acid [70] (straight-crossed square); complexes of 

Am
3+

 or Eu
3+

 with salicylic [5,7,36] (open inversed triangles), and Eu(III) with 

o-methoxybenzoic (closed inversed triangle), mandelic (2-hydroxy-2-phenylacetic acid, open 

pentagon), α-methoxyphenylacetic (closed pentagon) acids [5], and lactic acid (tilted-crossed 

square) [77] are shown for comparison; the plain line is the correlation in ref. [24] between 

log10β° and pK°total recalculated at 0 ionic strength using Davies equation [74]; the dotted line 

is the correlation accounting only for the non-chelate ligands (blue circles). 
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3.4 Luminescence decay 

The variations of the Eu(III) luminescence decay times for EuPhbH
2+

 and EuProtoH2
2+

 as a 

function of ionized ligand concentration calculated using the 
5
D0→

7
F1 transition are given in 

Figure 7 – calculation on the 
5
D0→

7
F2 transition are showing comparable results. The decay 

time for EuPhbH
2+

 (τ = 107 ± 5 µs) is comparable to the one for Eu(H2O)n
3+

 – typically Eu3+ = 

(110 ± 5) µs [20]. Upon complexation with HProtoH2 the luminescence decay of EuProtoH2
2+

 

is even faster than that of Eu(H2O)n
3+

 reaching τ = (20 ± 5) µs. This was not unexpected since 

it has already been reported that the decay times of Eu(III)-phenylacetate [9] (50 µs) and 

-salicylate [30,33] (90 µs) complexes are faster than Eu(H2O)n
3+. Nevertheless, as for the 

inorganic ligands [20,25], most of Eu(III) complexes with other carboxylates have shown an 

increase in the decay time, which originates from the departure of water molecules from the 

first hydration sphere after addition of ligand [8,9,20,24,30,78,82]. 
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Figure 7. Decay time of Eu(III) at pH 5.5 as a function of ionized ligand concentrations (A
-
 

stands for PhbH
-
 and ProtoH2

-
, pKa in Table 1): PhbH

-
 (triangles, [Eu(III)] = 10

-6 
mol.L

-1
, I = 

0.1 mol.L
-1

 NaCl) and ProtoH2
-
 (circles, [Eu(III)] = 10

-5 
mol.L

-1
, I = 0.01 mol.L

-1
 NaCl). 

According to kinetics theory, during a complexometric titration in TRLS, two different 

species – Eu(H2O)n
3+

 and the complex, or two different complexes – should lead to two 

different excited states and to a bi-exponential decay [83], except if Eu(III) is exchanging 

faster than observation time between free and bound ligand. For instance, Rao et al. [84] only 

seem to observe one decay time when their pyridine monocarboxylate ligands seem to form 

several successive complexes with Eu(III).  
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Upon complexation with PhbH
-
, the obtained luminescence decay can be interpreted as mono-

exponential because the decay of free and complexed Eu(III) are very close and cannot be 

distinguished by our fitting procedure using equation (1). The Stern-Volmer plot, 

0


 = 1 + kq τ0 [A

-
] (3) 

where  and 0 are the decay times with and without quenching species, respectively, does not 

vary significantly from 1 (Figure 8a). Nevertheless, the mechanism does not seem to be a 

purely static quenching as the luminescence of Eu(III) increases with total HPhbH 

concentration (Figure S3 of the SI). A non-radiative de-excitation pathway, operating in 

EuPhbH
2+

 complex,
 
seems to mostly compensate the awaited increase in decay time. This 

result is consistent with the one evidenced by Barkleit et al. in the case of Am(III) complexed 

with small organic acids [32], and of Hilder et al. who showed that no Eu(III) luminescence 

was observed for Eu(PhbH)3(H2O) complex in the solid state [85]. 

The decrease in the Eu(III) decay time in the presence of HProtoH2 may indicate that the 

complexed acid provides a more efficient non-radiative de-excitation pathway for Eu(III) 

fluorescence than H2O, in addition to the other radiative and non-radiative pathways [25]. 

The Stern-Volmer plot (Figure 8b) does not show a straight line over the whole HProtoH2 

concentration range. 

Using the second form of equation (3), 

1


 = 

1

0
 + kq [A

-
] (4) 
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up to ca. 4.5 mmol.L
-1

 HProtoH2, i.e. 4.2 mmol.L
-1

 ProtoH2
-
, there seems to be a straight line 

evolution with kq = (3.8 ± 0.4) 10
6
 L mol

-1
 s

-1
 and τ0 = (104 ± 6) µs, which can represent the 

quenching of Eu
3+

 by ProtoH2
-
. At higher concentration, a second evolution is visible where 

the EuProtoH2
2+

 complex is formed and increasing ProtoH2
-
 quenches the EuProtoH2

2+
 

luminescence. A kq = (5 ± 1) 10
5
 L mol

-1
 s

-1
 and τ0 = (34 ± 7) µs can be calculated. A 

comparable evolution has been noted in UO2
2+

/anionic surfactant systems around the critical 

micellar concentration evidencing a change in the quenching of U(VI) associated to micelles 

[86,87]. Under our conditions, a change in the organization of the medium is unlikely, but a 

relative protection of Eu(III) from the quenching of ProtoH2
-
 can be considered. This dynamic 

quenching mechanism is likely of a charge transfer origin as the absorption spectrum of 

HProtoH2 does not overlap the emission spectrum of Eu(III). 

In the case of the ProtoH2
-
, the quenching is so important that the luminescence of Eu

3+
 

becomes undetectable, and only mono-exponential decay is measured. As recalled earlier, for 

strong complexes like dipicolinic acid [88], two decay times are observed [83], one can also 

think that the observed mono-exponential decays are the consequence of the lability (fast 

exchange) of the EuProtoH2
2+

 complex. 

Assuming a linear dependence between the number of water molecules in the first hydration 

sphere and the radiative constant k = 1/ [22,23], it could be inferred that no water molecule 

should be expelled from the first coordination sphere of Eu(III) upon addition of HPhbH and 

HProtoH2 and that EuPhbH
2+

 and EuProtoH2
2+

 would form outer-sphere complexes, which is 

very unlikely in view of the 
7
F2/

7
F1 asymmetry ratio (vide ante), and thermodynamic 

parameters of other carboxylic ligands [70,71]. Moreover, the validity of these relationships 
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was not tested in this particular system and the more complete relationships proposed 

otherwise should be used instead [20,25]. 

This evidences a complex process for Eu(III) luminescence quenching by the hydroxybenzoic 

acids that has never been observed to our knowledge on such large concentration scales. 

Charge transfer has been proposed for Eu(III)-humate [28] and -salicylate complexes [33] to 

explain the quenching. The latter authors showed non-trivial energy transfers in the 

Eu(III)-salicylate system. Kuke et al. [30] found a decay time of 80 µs for the Eu(III)-salicylate 

complex with [Salicylic acid]:[Eu(III)] of 3:1 at pH 5 and showed that luminescence 

quenching cannot be attributed to regular OH-mechanism. They also showed that additional 

ligand specific quenching contributions have to be taken into account in the case of 

Eu(III)-salicylic acid complex. 
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Figure 8. Stern-Volmer plot for [Eu(III)] = 10
-5 

mol.L
-1

 , pH 5.5, for (a) HPhbH, I = 0.1 

mol.L
-1

 (NaCl), and (b) H2ProtoH2 I = 0.01 mol.L
-1

 (NaCl). Error bars are 2σ calculated from 

the propagation of error of the fitted τ values 
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4 Conclusions 

The hydroxybenzoic acids studied, HPhbH and HProtoH2, clearly form 1:1 complexes with 

Eu(III) of similar stabilities for EuPhbH
2+

 and EuProtoH2
2+

. The obtained thermodynamic 

constants are in good agreement with other comparable mono-carboxylic acids. The phenolic 

groups do not seem to have a marked influence on the complexation. The structures of these 

complexes are very similar from TRLS spectra. The analyses of the decay times revealed that 

complex quenching processes are occurring for the two complexes, which prevented the  

evaluation of the number of water molecules that are expelled from the first hydration sphere. 

Supporting Information. Two appendices, six Figures and two Tables. Recall of the method of 

complexation constant determination using time-resolved luminescence spectroscopy. 

Stability and solubility constants for Eu(III) complexes and solids. TRLS spectra normalized 

to the total signal between 570 and 640 nm. Comparison of normalized spectra of the final 

complexes for Eu(III)-HPhbH and -HProtoH2 systems. Compared evolutions of the 

luminescence of  Eu(III)-HPhbH and -HProtoH2 systems during complexometric titrations. 

Theoretical predominance diagram for HProtoEu
+
 and ProtoEu

0
 complexes. Plot of 

asymmetry ratios for EuProtoH2
+
 complex at varying pH. Data selection of EuCH3COO

2+
 and 

AmCH3COO
2+

 complexation constants. Extrapolation to zero ionic strength of 

log10β°(EuCH3COO
2+

) and log10β°(AmCH3COO
2+

). 
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