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Abstract—We consider the problem of estimating a determinis-
tic finite alphabet vector f from underdetermined measurements
y = Af , where A is a given (random) n×N matrix. Two new
convex optimization methods are introduced for the recovery
of finite alphabet signals via `1-norm minimization. The first
method is based on regularization. In the second approach, the
problem is formulated as the recovery of sparse signals after a
suitable sparse transform. The regularization-based method is
less complex than the transform-based one. When the alphabet
size p equals 2 and (n,N) grows proportionally, the conditions
under which the signal will be recovered with high probability
are the same for the two methods. When p > 2, the behavior of
the transform-based method is established. Experimental results
support this theoretical result and show that the transform
method outperforms the regularization-based one.

I. INTRODUCTION

The source separation problem is an important research
topic in a variety of fields, including speech and audio pro-
cessing [1], radar processing [2], medical imaging [3], and
communication [4]. As such, it has been intensively inves-
tigated in the literature in the past three decades. Basically,
source separation aims to estimate original source signals
from their mixtures. Approaches in this area can be classified
according to the nature of the mixing process (instantaneous,
convolutive) and the ratio between the number of sources and
the number of sensors of the problem (determined, underde-
termined, overdetermined). The more difficult case is clearly
the underdetermined case, where the number of sources is
more than the number of observed signals and for which
solutions cannot be derived without additional assumptions.
For instance, the sources can be separated thanks to their
sparse representation in the time-frequency domain [5], [6], a
source being said to be sparse in a given signal representation
domain if most of its samples are close to zero. Another
approach can be based on geometric properties of signals as
in [7].

In the present paper, we address separation of finite alphabet
signals in the instantaneous case with underdetermined known
mixing matrix. This problem is important in data communi-
cations for symbol demodulation, in image processing and in
operations research. In this respect, we pose the problem in
the noiseless case as in [8]–[11]. However, in contrast to the
aforementioned references that are tailored to alphabets with
two elements only, we study the case of alphabets with any
finite size without assuming that the signal to reconstruct is

necessarily sparse. In this respect, we propose two criteria
different from those introduced in [8]–[10]. Both criteria
involve reformulating the initial problem so as to introduce
sparsity constraints. We thus follow an approach similar to
that proposed in [12] and [13], where an `0-norm optimization
problem is relaxed into a sparse recovery problem involving
`1-norm optimization. More specifically, we show that sep-
arating finite alphabet signals in the instantaneous case with
underdetermined known mixing matrix can be rewritten as two
distincts sparse recovery problems. Each of these problems
can then be relaxed into `1-norm optimization. This convex
relaxation provides good recovery performance for generic
random mixing matrices [8], satisfying appropriate asymptotic
properties.

This is mathematically proved for both methods, when the
alphabet has two elements. For any alphabet size, the result
is established for only one of the two methods, namely the
transform-based method. Experimental results show that the
transform-based method outperforms the other one, called the
regularization-based method. The regularization-based method
is however less computationally expensive than the transform-
based one for any alphabet size above 2. When the alphabet
size equals 2, the two methods have slightly the same com-
plexity as that proposed in [8].

Henceforth, bold upper cases denote real-valued matrices.
The transpose of a given matrix A is denoted by AT . All
vectors will be column vectors unless transposed. Throughout
the paper, 0 stands for the null vector and 1m is the (column)
vector of Rm with one entries only. For a vector x the notation
xi will stand for the ith component of x. As usual, for any
integer m, J1,mK stands for {1, 2, . . .m}.

II. PROBLEM STATEMENT

The notation and terminology introduced in this section are
used throughout the rest of the paper with always the same
meaning. We hereafter consider the underdetermined linear
system of equations or noise free mixing model

y = Ax, (1)

where x = [x1, x2, · · · , xN ]T is the N × 1 source vector,
y = [y1, y2, · · · , yn]T is the n × 1 observed vector and A is
an n×N real-valued generic random matrix with n < N . For
the sake of readiness, we recall the following definition.
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Definition II.1 : Generic random matrices [8] A given matrix
A is an n×N generic random matrix if all sets of n columns
are linearly independent with probability 1 and each column
is symmetrically distributed about the origin.

System (1) is underdetermined. To discard the case when it
has no solution, we shall assume throughout that A has full-
rank, which implies that the image of A is Rn and that the
solutions of Eq. (1) form a vector space. In telecommunication
systems, most signals are generated via some finite alphabet.
For practical applications, it thus makes sense to assume that
Eq. (1) has solutions in FN where F = {α1, α2, · · · , αp} is
a given finite alphabet. We then study the conditions under
which, given y such that:

y = Af , f ∈ FN , (2)

f is actually the unique solution to this equation and how
this unique solution can then be recovered in polynomial time
under these conditions.

In this respect, we propose two new frameworks for the
recovery of finite alphabet signals. These two frameworks are
presented in Sections III. Both are based on reformulations
of the finite alphabet constraints as sparsity constraints in
incomplete measurements. The resulting sparse problems can
then be relaxed as for sparse reconstructions in [12] and
[13], by `1-norm optimization. Simulations results are given
in Section V.

III. SPARSITY-BASED RECOVERY METHODS

A solution to Eq. (2) is given in [8] for the special case
F = {−1, 1}. This solution is obtained by solving the `∞-
norm minimization

(P∞) : argmin
x∈RN

‖x‖∞ subject to y = Ax, (3)

since solutions in FN to Eq. (2) are basically vertices of the
hypercube [−1, 1]N . Readily, (P∞) can be solved by linear
programming. A straightforward extension to any alphabet
F = {α1, α2} with α1 < α2 is always possible via a
simple translation. The solutions are then among the vertices
of the hypercube [α1, α2]

N . Nevertheless, by construction, this
method does not apply to alphabets with cardinality p > 2. In-
deed, when F = {α1, α2, . . . , αp} with α1 < α2 < . . . < αp,
the set of solutions in FN to Eq. (2) may involve any point
of the hypercube [α1, αp]

N .
To overcome this limitation, we hereafter propose two

criteria aimed at solving Eq. (2) by seeking sparse solutions
of a possibly transformed linear system of equations. The first
method presented in the next section is regularization-based.
The second one in Section III-B involves a suitable sparse
transform.

A. Regularization-based method

Our first approach is to consider the finite alphabet con-
straint as prior knowledge to incorporate into the penalty
function. A basic way to involve this constraint is simply to
use the `0-norm to count the coordinates of any given x ∈ RN

that do not belong to F . Thence, the use of
p∑
i=1

‖x− αi1N‖0
as the cost to minimize. Actually, we have the following result.

Proposition III.1 Given f ∈ FN with F =
{α1, α2, . . . , αp}, f is the unique solution in FN to
Eq. (2) if and only if f is the unique solution to the
optimization problem:

(PF,0) : argmin
x∈RN

p∑
i=1

‖x− αi1N‖0 subject to y = Ax.

Proof Let x ∈ RN such that y = Ax. For any i ∈ J1, pK, let

Ni = card {j ∈ J1, NK : xj = αi} .

Then,
p∑
i=1

‖x− αi1N‖0 = Np−
p∑
i=1

Ni ≥ N(p− 1).

Equality is attained when
p∑
i=1

Ni = N and, thus, when x ∈

FN . It follows that the solutions in FN to Eq. (2) are exactly
the solutions in RN to (PF,0), which straightforwardly leads
to the conclusion.

Solving a `0-norm minimization problem is generally complex
and may require exhaustive search strategy, which can be
intractable in practice for large values of N or p. Therefore, by
mimicking literature on sparse reconstruction [14], we propose
to replace the `0-norm by the `1-norm. Thus, we address the
much simpler problem:

(PF,1) : argmin
x∈RN

p∑
i=1

‖x− αi1N‖1 subject to y = Ax.

On the practical side, unlike the `0-norm, the `1-norm is
convex. Furthermore, (PF,1) can be solved by linear program-
ming and, thus, in polynomial time. However, problem (PF,1)
does not always have the same solution as (PF,0). For the
special case p = 2, the next result leads to the conditions
under which (PF,1) yields the unique solution to Eq. (2) with
high probability. To state this result, we need the notion of
proportional growth, of which we hereafter recall the definition
for readiness.

Definition III.1 : Proportional Growth Setting [15]
A sequence of couples (n,Nn) will be said to grow propor-

tionally if there is δ ∈ (0, 1) so that n
Nn
→ δ when n →

+∞. To alleviate the notation, subscript n will henceforth be
omitted.

Theorem III.1 For F = {α1, α2} (p = 2) where α1 < α2,
we have:

(i) f ∈ FN is the unique solution to Eq. (2) if and only
if f is the unique solution to (PF,1);

(ii) If A is an n × N generic random matrix, the
probability that (PF,1) has a unique solution in FN
is Pn,N given by

Pn,N = 2−N+1
n−1∑
i=0

(
N − 1

i

)
. (4)
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When (n,N) grows proportionally, this probability
tends to 0 when n

N < 1
2 and tends to 1 when n

N > 1
2 .

Proof By using the triangular inequality, we have that

∀x ∈ RN , ‖x− α11N‖1 + ‖x− α21N‖1 ≥ N(α2 − α1)

with equality if and only if, for every i ∈ J1, NK,

|xi − α1|+ |xi − α2| = α2 − α1.

Since [α1, α2] = {t ∈ R : |t− α1|+ |t− α2| = α2 − α1} , it
follows that:

argmin
x∈RN

(
‖x− α11N‖1 + ‖x− α21N‖1

)
= [α1, α2]

N

Therefore, when p = 2, solving (PF,1) is equivalent to solving

y = Ax, subject to x ∈ [α1, α2]
N . (5)

By setting x′ = (x−α11N )+(x−α21N )
α2−α1

, the linear problem (5)
is equivalent to:

y′ = Ax′, subject to x′ ∈ [−1, 1]N , (6)

with y′ = 1
α2−α1

(2y − (α2 + α1)A1N ). Statement (i) fol-
lows.

According to [8], the probability that there exists a unique
solution in {−1, 1}N to Eq. (6) is Pn,N given by Eq. (4).
Thence, statement (ii).

The behavior of the regularization-based method for p > 2
is an open issue. However, the experimental results provided
in Section V show that this method performs less well than
the transform-based method proposed in the next section.

B. Transform-based method

In this section, we propose a solution based on a suitable
sparse transform so as to benefit, as in [16], from the com-
bination of sparsity and finite alphabet constraints. To do so,
we plunge FN into RNp, so that any element f ∈ FN is
represented by a sparse vector s(f) ∈ RNp. This sparse vector
is composed of N consecutive p-uples, such that each p-uple
contains one 1 only and p − 1 zeros. By so proceeding, the
initial problem (2) becomes equivalent to a problem of sparse
signal recovery from highly incomplete measurements.

To do so, for any given f ∈ FN , we define:

s(f) = [ε1, ε2, . . . , εN ]T ∈ RNp (7)

with εi = [I(fi = α1), I(fi = α2), · · · , I(fi = αp)] and where
I(fi = αj) is the indicator function equal to one if fi = αj
and zero otherwise. This transform is a complete disjunctive
coding such as that used in data analysis.

We also introduce the matrices Bα and B1 in RN×Np
defined by:

Bα = IN ⊗αT and B1 = IN ⊗ 1Tp , (8)

where α = [α1, · · · , αp]T and ⊗ is the Kronecker product.
By construction, we have:

f = Bαs(f) and B1s(f) = 1N . (9)

Therefore, we have:

Φ s(f) = b with Φ =

(
ABα

B1

)
and b =

(
y

1N

)
. (10)

For any i ∈ J1, NK, we henceforth put Ti = J(i−1)p+1, ipK.
Note that, for any u = [u1, u2, . . . , uNp] ∈ RNp,

∑
j∈Ti

uj is the

ith coordinate of B1u. This simple remark will prove helpful
in the sequel.

On the basis of the above transform, the following proposi-
tion states that the recovery of finite alphabet signal f amounts
to recovering the sparse signal s(f) from measurements b.

Proposition III.2 If f ∈ FN is the unique solution to Eq.
(2), vector s(f) given by definition (7) is the unique solution
to the optimization problem:

(TPF,0) : argmin
u∈RNp

‖u‖0 subject to Φu = b.

Proof : Let u ∈ RNp be any solution to (TPF,0). We thus
have B1u = 1N , which implies that ‖u‖0 ≥ N . With the
notation of the statement, it follows from Eqs. (7) and (10) that
s(f) is solution to (TPF,0) since ‖s(f)‖0 = N . Therefore,
‖u‖0 = N .

Now, set u = [u1, u2, . . . , uNp]. Since B1u = 1N and
‖u‖0 = N , all the values uj for j ∈ Ti are null except one,
which equals 1. Therefore, Bαu ∈ FN . Moreover, because u
is solution to the optimization problem (TPF,0),Bαu satisfies
Eq. (2). Since f is assumed to be the unique solution of (2),
it follows that Bαu = f . According to the first equality in
(9), we thus have Bαu = Bαs(f). Taking into account that
‖s(f)‖0 = ‖u‖0 = N , we conclude that u = s(f).

When Eq. (2) has a unique solution f in FN , the recovery
of f may require an exhaustive search strategy to seek the
unique solution to (TPF,0) before applying the linear trans-
formBα to this solution. For the same reasons as those evoked
in the previous section, we aim at reducing the complexity cost
of the optimization by relaxing the `0-norm into the `1-norm.
In this respect, consider the optimization problem:

(TPF,1) : argmin
u∈RNp

‖u‖1 subject to Φu = b.

Although the set of solutions to (TPF,1) is not guaranteed
to involve s(f) only, it is however expected that f = Bαs
for any solution s to (TPF,1). Theorem III.2 answers to this
point. In particular, it gives a necessary and sufficient condition
under which a unique solution to Eq. (2) is the unique element
of the image by Bα of the set of all the solutions to (TPF,1).

Theorem III.2 With the notation introduced above, let S
stand for the set of solutions in RNp to (TPF,1). Suppose
that f ∈ FN is a solution to Eq. (2). Then:

(i) Vector s(f) defined by Eq. (7) belongs to S,
(ii) Bα(S) = f +Bα

(
KerΦ ∩ KN,pf

)
, where

KN,pf =
{
h ∈ RNp : ∀i ∈ J1, NK,−1 ≤ hni(f) ≤ 0 &

∀j ∈ Ti \ {ni(f)}, hj ≥ 0 &
∑
j∈Ti

hj = 0
}

(11)
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and, for every given i ∈ J1, NK, ni(f) is the unique
element of Ti such that the ni(f)

th coordinate of
s(f) is 1.

(iii) f is the unique element of Bα(S) if and only if

KerΦ ∩ KN,pf ⊂ KerBα. (12)

Proof Let u ∈ RNp. By the triangle inequality, we have

‖u‖1 =

Np∑
i=1

|ui| =
N∑
i=1

∑
j∈Ti

|ui| ≥
N∑
i=1

∣∣∣∣∣∣
∑
j∈Ti

ui

∣∣∣∣∣∣ .
Since

∑
j∈Ti

ui is the ith coordinate of B1u,∑N
i=1

∣∣∣ ∑
j∈Ti

ui

∣∣∣ = ‖B1u‖1. Therefore:

‖u‖1 ≥ ‖B1u‖1 . (13)

For all u ∈ RNp such that Φu = b, we have B1u = 1N and
thus, according to (13)

Φu = b ⇒ ‖u‖1 ≥ N. (14)

Suppose that f ∈ FN is a solution to Eq. (2). By construction
of s(f), ‖s(f)‖1 = N . It thus follows from (10) and (14) that
s(f) is a solution to (TPF,1). Therefore, any solution s to
(TPF,1) satisfies ‖s‖1 = N . According to the foregoing that
the set S of solutions to (TPF,1) can be written as

S =
{
s(f) + h : Φh = 0 and ‖s(f) + h‖1 = N

}
= s(f) +

(
KerΦ ∩ CN,pf

)
, (15)

with CN,pf =
{
h ∈ RNp : ‖s(f) + h‖1 = N

}
and the con-

vention x+D = {x+ d : d ∈ D} for any x ∈ RNp and any
D ⊂ RNp. According to appendix A, we have

KerΦ ∩ CN,pf = KerΦ ∩ KN,pf . (16)

From (15) and (16), we derive that

S = s(f) +
(
KerΦ ∩ KN,pf

)
.

Thereby, according to Eq. (9),

Bα(S) = Bα s(f) +Bα

(
KerΦ ∩ KN,pf

)
= f +Bα

(
KerΦ ∩ KN,pf

)
Then, f is the unique element of Bα(S) if and only if
Bα

(
KerΦ ∩ KN,pf

)
= {0}, which is equivalent to KerΦ ∩

KN,pf ⊂ KerBα.

When p = 2, the necessary and sufficient condition stated by
Theorem III.2 reduces to the equality KN,2f ∩ Ker (ABα) =
{0}, so that S contains s(f) only. This is established in
Appendix B.

Similarly to Theorem III.1, the next result now gives the
conditions under which, when Eq. (2) has a unique solution,
this unique solution can be derived with high probability from
the solutions to (TPF,1).

Theorem III.3 With the notation of Theorem III.2 and given
F = {α1, α2, . . . , αp} with p > 2, we have:

(i) f ∈ FN is the unique solution to Eq. (2) if and only
if Bα(S) ∩ FN = {f},

(ii) If A is an n×N generic random matrix and Eq. (2)
holds with f randomly chosen with uniform distribu-
tion in FN , the probability that Bα(S)∩FN = {f}
is given by:

Qn,N (p) =
n−1∑
k=0

(
N

k

)(
2

p

)N−k (
p− 2

p

)k
(1− PN−n,N−k)

(17)

where Pn,N is given by Eq. (4),
(iii) Under the hypotheses of statement (ii) and by assum-

ing that (n,N) grows proportionally, Qn,N (p) tends
to 0 when n

N < p−1
p and tends to 1 when n

N > p−1
p .

Proof
Proof of statement (i): We begin with the direct implication.
Suppose that f is the unique element of FN that satisfies
Eq. (2). According to Theorem III.2 (ii), f is an element of
Bα(S) ∩ FN since the null vector is an element of KN,pf .
If f ′ ∈ Bα(S) ∩ FN , Theorem III.2 (ii) also implies the
existence of h ∈ KerΦ ∩ KN,pf such that f ′ = f + Bαh.
Since h ∈ KerΦ, ABαh = 0. It follows that f ′ satisfies Eq.
(2). Thereby, f ′ = f .

Conversely, let us assume that Bα(S) ∩ FN = {f}. If
f ′ ∈ FN satisfies y = Af ′, then f ′ ∈ Bα(S) by Theorem
III.2 (i), which implies that f ′ = f .

Proof of statement (ii): Suppose that y = Af for f
randomly chosen with uniform distribution in FN . According
to statement (i), the probability that Bα(S) ∩ FN = {f} is
the probability that f be the unique solution of Eq. (2). We
can transform F into G =

{
αi−α1

αp−α1
: i ∈ J1, pK

}
⊂ [0, 1] by

assuming, with no loss of generality, that α1 < α2 < . . . < αp.
We can thus transform FN into GN ⊂ [0, 1]N . The elements
of GN are all k-simple vectors. We recall that a k-simple
vector in RN is any element of [0, 1]N with exactly k entries
in (0, 1) [15, Lemma 5.2]. Via this transform, f ∈ FN is
the unique solution to (2) if and only if its transform f ′

is the unique solution to y′ = Ag with g ∈ GN , where
y′ is the transform of y. According to [15, Theorem 1.8
and Lemma 5.2], the probability that f ′ be the unique k-
simple solution to this transformed system is 1− PN−n,N−k,
for any k ∈ J0, n − 1K. Since f is randomly chosen with
uniform distribution in FN , f ′ is randomly chosen with
uniform distribution in GN . Therefore, the probability that f ′

be k-simple is
(
N
k

) (
2
p

)N−k(
p−2
p

)k
. By Bayes’s axiom, the

probability that f ′ is k-simple and the unique solution to Eq.

(2) is
(
N
k

) (
2
p

)N−k (
p−2
p

)k
(1− PN−n,N−k). Thereby, Eq.

(17) is actually the probability that f be the unique solution
to Eq. (2).

Proof of statement (iii): We have Qn,N (p) = E
[
1 −
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PN−n,N−KN

]
, where KN follows the binomial distribution

with parameters N and p−2
p with mean N p−2

p and vari-
ance N 2(p−2)

p2 . Moreover, we remark that 1 − PN−n,N−k =
Pn−k,N−k for all k ∈ J0, n − 1K. Therefore, Qn,N (p) =
E
[
Pn−KN ,N−KN

]
.

For p = 2, Eq. (17) reduces to Qn,N (2) = Pn,N and
the result straightforwardly follows from [8]. Henceforth, we
assume p > 2.

By using Hoeffding’s inequality [17, Theorem 1, Eq.(2.2)]
with µ = 1/2, g(µ) = 2 and t = 2n−N−1

2(N−1) , we have:{
Pn,N > 1− en,N for 2n > N + 1
Pn,N 6 en,N for 2n < N + 1

with en,N = exp
(
− 1

2
(2n−N−1)2

N−1

)
. It follows that:{

Pn−k,N−k > 1− en−k,N−k for k < 2n−N − 1
Pn−k,N−k 6 en−k,N−k for k > 2n−N − 1

First, suppose that n
N < 1

2 . We then have
Pn−KN ,N−KN

6 en−KN ,N−KN
, which implies that

Qn,N (p) 6 E [en−KN ,N−KN
]. Moreover, en−k,N−k 6 en,N

for any k ∈ J0, n − 1K, so that Qn,N (p) 6 en,N . Since
en,N → 0, we conclude that lim

N→+∞
Qn,N (p) = 0 when

n
N < 1

2 and (n,N) grows proportionally.

We now suppose that 1
2 <

n
N < p−1

p . We can write that:

Qn,N (p) = E
[
Pn−KN ,N−KN

1[06KN62n−N−1]
]
+

E
[
Pn−KN ,N−KN

1[2n−N6KN6n−1]
]
. (18)

On the one hand, E
[
Pn−KN ,N−KN

1[06KN62n−N−1]
]

6
P [KN 6 2n−N − 1]. On the other hand, there exists 0 <
ε < p−2

2p such that 1
2 <

n
N < p−1

p − ε so that:

P
[
KN 6 2n−N − 1

]
6 P

[
KN 6 N

(
p− 2

p
− 2ε

)
− 1

]
.

Since 1
NKN is asymptotically normal [18, Sec. 1.5.5] — and

we write that 1
NKN∼AN

(
p−2
p , 2(p−2)Np2

)
—, it follows that

for any η > 0:∣∣∣∣P [KN 6 N

(
p− 2

p
− 2ε− 1

N

)]
−

FN
(

p−2
p ,

2(p−2)

Np2

)(p− 2

p
− 2ε− 1

N

) ∣∣∣∣ 6 η.

for N large enough, where FN
(

p−2
p ,

2(p−2)

Np2

) stands for the

cumulative distribution function (cdf) of the normal distribu-
tion N

(
p−2
p , 2(p−2)Np2

)
. With the same notation as in [18, Sec.

1.5.4], the convergence in distribution:

N
(
p− 2

p
,
2(p− 2)

Np2

)
d→ 1[ p−2

p ,∞[, (19)

when N tends to ∞ and Slutsky’s theorem [18, Sec. 1.5.4, p.
19] imply that:

lim
N→∞

FN
(

p−2
p ,

2(p−2)

Np2

)(p− 2

p
− 2ε− 1

N

)
= 1[ p−2

p ,∞[

(
p− 2

p
− 2ε

)
= 0

Thence, lim
N→∞

E
[
Pn−KN ,N−KN

1[06KN62n−N−1]
]

= 0

since η is arbitrary. Now, the 2nd term in Eq.
(18) tends to 0 as well when N tends to ∞ since
E
[
Pn−KN ,N−KN

1[2n−N6KN6n−1]
]

6 E [en−KN ,N−KN
]

and en−k,N−k 6 exp(− 1
2(N−1) ) for 2n−N 6 k 6 n− 1.

Let us now consider the case p−1
p < n

N < 1. Similarly to
the foregoing, we can write that:

E
[
Pn−KN ,N−KN

]
= E

[
Pn−KN ,N−KN

1[06KN62n−N−2]
]
+

E
[
Pn−KN ,N−KN

1[2n−N−16KN6n−1]
]

(20)

First, we have Pn−KN ,N−KN
1[06KN62n−N−2] >

(1 − en−KN ,N−KN
)1[06KN62n−N−2]. Since we have

1− en−k,N−k > 1− exp(− 1
2(N−1) ) again, it follows that:

Pn−KN ,N−KN
1[06KN62n−N−2] >(

1− exp

(
− 1

2(N − 1)

))
1[06KN62n−N−2]

and

E
[
Pn−KN ,N−KN

1[06KN62n−N−2]
]
>(

1− exp

(
− 1

2(N − 1)

))
P
[
KN 6 2n−N − 2

]
. (21)

There exists 0 < ε < 1/p such that p−1p < p−1
p + ε < n

N < 1.
Thereby,

P
[
KN 6 2n−N − 2

]
> P

[
KN 6

(
p− 2

p
+ 2ε

)
N − 2

]
.

Given η > 0, the asymptotic normality of 1
NKN implies that:∣∣∣∣P [KN 6 N

(
p− 2

p
+ 2ε− 2

N

)]
−

FN
(

p−2
p ,

2(p−2)

Np2

)(p− 2

p
+ 2ε− 2

N

) ∣∣∣∣ 6 η

for N large enough. Slutsky’s theorem [18, Sec. 1.5.4, p. 19]
and the weak convergence (19) induce that:

lim
N→∞

FN
(

p−2
p ,

2(p−2)

Np2

)(p− 2

p
+ 2ε− 2

N

)
= 1[ p−2

p ,∞[

(
p− 2

p
+ 2ε

)
= 1.

Since η is arbitrary, we have

lim
N→∞

P
[
KN 6 N

(
p− 2

p
+ 2ε− 2

N

)]
= 1. By

injecting this result into (21), we obtain that
lim
N→∞

E
[
Pn−KN ,N−KN

1[06KN62n−N−2]
]

= 1. It follows

that the 2nd term in Eq. (20) tends to 0 and the proof is
complete.

IV. COMPLEXITY ANALYSIS

In practice, the minimization of each cost considered above
requires linear programming. A well-known and typical tool-
box such as CVX [19], [20] relies on the interior point method,
whose complexity for problems such as those treated in this
paper is given by [21]. Specifically, a convex optimization
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problem over Rm under d constraints requires, in the worst
case, O(

√
d) iterations for a computational cost of order

O(m2d) per iteration and, thus, to a total computational cost
of order O(m2d3/2). Applied to the 3 convex optimization
problems treated in the paper, we obtain the following com-
putational costs:

According to these estimations, (P∞) and (PF,1) have
roughly the same computational cost, although the former
is theoretically more costly than the later without any pro-
gramming optimization. On the other hand, (TPF,1) becomes
significantly more costly than the other two, when p increases.
The experimental results of the next section, beyond recon-
struction assessment, provides computational time estimations
on a standard computer.

V. EXPERIMENTAL RESULTS

The following simulation results are aimed at illustrating
the theoretical framework exposed above and make it possible
to assess the regularization- and transform-based approaches
in terms of complexity and performance for different alpha-
bet sizes. This assessment will also involve Mangasarian &
Recht’s approach [8] as a reference in the specific case p = 2.
Thanks to these comparisons, we will conclude on the use and
relevance of these different methods.

The experimental set-up, common to all the simulations
whose results are given below, is the following one. We use
even values for p and choose F = {±(2k − 1) : k =
1, . . . , p/2}. For each simulation, we fix N ∈ {128, 256, 512}
and make n vary so as to assess a significant number of
values for ratio n/N . For each pair (n,N) and each method
assessed, 1000 iterations of the experiment are carried out.
For each iteration, we generate a realization of the generic
random matrix A with size n×N by drawing its entries from
the normal distribution. We then generate a vector f with
entries drawn uniformly from F . Once f is generated, we
compute y = Af and solve (P∞) — when p = 2 —, (PF,1)
and (TPF,1). We compute the solutions to these optimization
problems by using the Matlab CVX toolbox [19], [20], a
package for solving convex problems. Finally, we compare
the solution f̂ returned for a given optimization problem to
the true signal f . The recovery is said to be correct if the

relative error
‖f̂−f‖

2

‖f‖2
is less than 10−6.

Figures 1, 2 and 3 are the phase diagrams for the case
p = 2. They involve Mangasarian and Recht’s approach [8].
These phase diagrams show that the three methods perform
equivalently. They also corroborate Theorems III.1 and III.3.
In particular, we observe that the breakpoint is actually n/N =
1/2, as established theoretically. In accordance with Table
I, the optimization problem (PF,1) is computationally less
costly than the other two. This is illustrated by Figures 4,
5 and 6. These results were obtained by using a PC with OS
Linux Ubuntu 14.04 with processor Intel Core i3-2350M 2.3
GHz and 8 GB of RAM memory. The values of ratio n/N
considered in these figures are those for which the algorithms
under consideration recover the solution with high probability,
in accordance with the phase diagrams and the theoretical
results of Theorems III.1 and III.3. According to the foregoing,

it is recommended to use the regularization-based approach for
p = 2, since this method provides the least computational load
for the recovery performance guaranteed by the theoretical
results.
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Figure 1. Phase diagrams of Mangasarian and Recht’s approach [8],
regularization- and transform-based methods for the case p = 2 and
N = 128.
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Figure 2. Phase diagrams of Mangasarian and Recht’s approach [8],
regularization- and transform-based methods for the case p = 2 and
N = 256.

We now address the case p > 2, for which the approach
in [8] is not applicable. Figures 7, 8, 9 and 10 provide the
phase diagrams of the regularization-based and transform-
based methods for p = 4, p = 6 and different values of
N . The regularization-based approach has a much higher
breakpoint and thus performs less well than the transform-
based one. The breakpoint of the transform-based approach
is actually the value given by Theorem III.3. On the other
hand, when p increases, the transform-based approach deals
with much higher dimensions than the regularization-based
one. Therefore, the computational time required by the former
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Table I
COMPUTATIONAL COST ANALYSIS

Dimension # constraints # iterations Computational cost per iteration Total

(P∞) N 2N + n O(
√
2N + n) O(N2(2N + n)) O(N2(2N + n)3/2)

(PF,1) N n O(
√
n) O(N2n) O(N2n3/2)

(TPF,1) pN N + n O(
√
N + n) O(p2N2(N + n)) O(p2N2(N + n)3/2)
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Figure 3. Phase diagrams of Mangasarian and Recht’s approach [8],
regularization- and transform-based methods for the case p = 2 and
N = 512.
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Figure 4. Computational time in seconds of Mangasarian and Recht’s
approach [8], regularization- and transform-based methods for the case p = 2
and N = 128.

can significantly be larger than that of the latter, as predicted
by the complexity analysis of Section IV.
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Figure 5. Computational time in seconds of Mangasarian and Recht’s
approach [8], regularization- and transform-based methods for the case p = 2
and N = 256.
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Figure 6. Computational time in seconds of Mangasarian and Recht’s
approach [8], regularization- and transform-based methods for the case p = 2
and N = 512.

VI. DISCUSSION

The `∞-norm optimization of [8], the regularization-based
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Figure 7. Phase diagrams of the regularization-based method, for p = 4 and
N ∈ {128, 256, 512}.
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Figure 8. Phase diagrams of the transform-based method, for p = 4 and
N ∈ {128, 256, 512}.

method of Section III-A and the transforma-tion-based method
of Section III-B involve minimizing (P∞), (PF,1) and
(TPF,1), respectively. The transform-based method requires
an additional step, which is the application of Bα to the set S
of solutions to (TPF,1). In this discussion, as well as the
conclusion of the paper, we designate each of these three
methods by the criterion it minimizes. This slight language
abuse is convenient without entailing any confusion.

A. Performance and complexity assessment

For p = 2, Theorems III.1 and III.3, corroborated by
experimental results, guarantee that (PF,1) and (TPF,1) yield
same recovery performance as (P∞). Moreover, the complex-
ity analysis of Section IV and the experimental computational
times show that (PF,1) is slightly less computationally expen-
sive than (TPF,1) and (P∞). Therefore, for p = 2, (PF,1)
should be used instead of the other two.
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Figure 9. Phase diagrams of the regularization-based method, for p = 6 and
N ∈ {128, 256, 512}.
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Figure 10. Phase diagrams of the transform-based method, for p = 6 and
N ∈ {128, 256, 512}.

For p > 2, (P∞) does not apply. In addition, the recovery
performance of (TPF,1) is experimentally better than that of
(PF,1) and the complexity analysis shows that the former
is less costly than the latter. Therefore, the choice between
the two methods proposed in this paper depends on the
application: if more emphasis must be given to recovery
performance, then (TPF,1) is better than (PF,1) and if more
emphasis on computational load is required, (PF,1) can be
preferred.

B. Complementary remarks

Via the following three remarks, we now discuss to what
extent some notions and results, complementary to those men-
tioned above, relate to the theoretical framework developed in
the present paper.
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1) We recall that the Kruskal rank Krank(A) of any given
matrix A is the maximal L such that every L columns are
linearly independent. The computation of Krank(A) is NP-
complete [22]. On the other hand, it is known that the system
y = Ax of linear equations is well-posed for k-sparse
vectors x if and only if 2k ≤ Krank(A). For the transform-
based model of Eq. (10), we derive from Theorem B.1 that
Krank(Φ) ≥ 2N since s(f) is N -sparse.

2) Since s(f) belongs to {0, 1}Np, s(f) is 0-simple in
the sense given in [15, Section 5.2, p. 540]. By applying
[15, Theorem 1.8 & Lemma 5.2], the probability that s(f)
be the unique solution to ABαu = y is 0. Therefore, the
constraint B1u = 1N plays a crucial role in the optimization
problems (TPF,0) and (TPF,1) to guarantee the uniqueness
of the solution in Proposition III.2 and Theorem III.3.

3) Although RIP conditions [23], [24] are the most priv-
ileged sufficient conditions to guarantee the uniqueness of
a sparse solution to `1-norm optimization problems, these
conditions are not appropriate to study the relaxation from
(TPF,0) to (TPF,1). Indeed, for p = 2, Theorem B.1 states
that the N -sparse vector s(f) is the unique solution to both
(TPF,0) and (TPF,1) in R2N . For p > 2, the two problems
are not equivalent because experiments show that the set of
solutions to (TPF,1) do not involve s(f) only.

VII. CONCLUSION

Two frameworks have been proposed for the underdeter-
mined source separation problem of finite alphabet signals.
The first one is based on regularization and the second one
relies on a suitable sparse transform. Both frameworks are
based on convex relaxation aimed at recovering the ideal finite
alphabet signal by solving `1-norm optimization problems.
Simulation results illustrate the effectiveness of the proposed
approaches, although the RIP condition is not satisfied. For
p = 2, the regularization-based approach should be used for
reasons detailed in Section VI. For p > 2, the computational
cost of the regularization-based approach remains lesser than
that of the transform-based one. However, the recovery perfor-
mance measurements of the latter exceed those of the former.

As mentioned in the introduction, the results presented
above apply to various problems such as source separation,
wireless communication systems, operations research. In par-
ticular, they can help choose the number of transmitters and
receivers, as well as the type of modulation, in wireless
communication systems, even in presence of noise. For in-
stance, [25], [26] deals with signal recovery in massive MIMO
systems, where finite alphabets are used and the decoding
can be performed by underdetermined sparse source recovery
via `1-norm minimization. In [25], [26], noise is taken into
account by slightly modifying the criterion of the transform-
based approach. As a continuation of the results exposed in
[25], [26], a full theoretical study dedicated to the extension of
the present work to noisy signals is in-progress. In this respect,
a comparison with the approach proposed in [27] should be
undertaken. Then, a combination of the two approaches could
be particularly relevant in a communication context. Indeed,
prior knowledge of the communication signals can be taken

into account so as to define new transforms beyond the full
disjunctive coding exploited in the present paper.
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APPENDIX A
PROOF OF EQUALITY (16)

A. Proof of direct inclusion KerΦ ∩ KN,pf ⊂ KerΦ ∩ CN,pf .

For j ∈ {1, 2, . . . , Np}, let sj(f) be the jth coordinate of
s(f). Given any h ∈ KN,pf , we have

‖s(f) + h‖1 =

N∑
i=1

∑
j∈Ti

|sj(f) + hj |

=

N∑
i=1

 ∑
j∈Ti\{ni(f)}

|hj |+
∣∣hni(f) + 1

∣∣
since sj(f) = 0 if j 6= ni(f) and sj(f) = 1, otherwise.
According to the definition of KN,pf , the absolute values are
inconsequential in the last equality above. Thereby,

‖s(f) + h‖1 =

N∑
i=1

 ∑
j∈Ti\{ni(f)}

hj + hni(f) + 1


= N +

N∑
i=1

∑
j∈Ti

hj = N

by definition of KN,pf . Therefore, KN,pf ⊂ CN,pf , which
implies that

KerΦ ∩ KN,pf ⊂ KerΦ ∩ CN,pf (22)

B. Proof of converse inclusion KerΦ ∩ CN,pf ⊂ KerΦ ∩
KN,pf .

Let h be any element of KerB1 ∩ CN,pf . We have:

‖s(f) + h‖1 = N and B1h = 0 (23)

We derive from Eq. (9) that

B1(s(f) + h) = 1N . (24)

According to Eqs. (23), (24) and Lemma A.1, h ∈ KN,pf . We
thus have KerB1 ∩ CN,pf ⊂ KN,pf . Since KerΦ ⊂ KerB1,
it follows from the foregoing that

KerΦ ∩ CN,pf = KerΦ ∩ KerB1 ∩ CN,pf ⊂ KerΦ ∩ KN,pf .

Lemma A.1 The coordinates of any u ∈ RNp such that
B1u = 1N and ‖u‖1 = N are non-negative.

Proof If u = [u1, u2, . . . , uNp] ∈ RNp is such that B1u =
1N , then

∑
j∈Ti

uj = 1 for every i ∈ {1, 2, . . . , N}. It follows

that
N∑
i=1

∑
j∈Ti

uj = N. If, in addition, ‖u‖1 = N , we have

N∑
i=1

∑
j∈Ti

|uj | =
N∑
i=1

∑
j∈Ti

uj , which implies that each uj ≥ 0.
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APPENDIX B
Theorem B.1 For F = {α1, α2} (p = 2) where α1 < α2,
f ∈ FN is the unique solution to Eq. (2) if and only if s(f)
is the unique solution to (TPF,1).

Proof Given any f ∈ FN and any i ∈ J1, NK, we define:

εi(f) =

{
1, if ni(f) = 2i− 1

−1, if ni(f) = 2i
.

Let h be any element of KN,2f . Since Ti = {2i − 1, 2i} for
any i ∈ J1, NK, we set

γi = |h2i−1| = |h2i| ∈ [0, 1].

We have:

h2i−1 = −εi(f) γi and h2i = εi(f) γi.

Then h = (Dε(f)γ)⊗ [−1 1]T with γ = (γ1, · · · , γN )T and

Dε(f) = diag(ε1, ε2, · · · , εN ) (25)

Conversely, any vector (Dε(f)γ)⊗[−1 1]T where γ ∈ [0, 1]N

belongs to KN,2f . Therefore,

KN,2f =
{
(Dε(f)γ)⊗ [−1 1]T : γ ∈ [0, 1]N

}
. (26)

We now prove that (12) when p = 2 is equivalent to KN,2f ∩
Ker (ABα) = {0}. In other words, we want to prove the
equivalence:[
KN,2f ∩ KerΦ ⊂ KerBα

]
⇐⇒

[
KN,2f ∩ Ker (ABα) = {0}

]
(27)

In the sequel, we use the following property. For any h =
(Dε(f)γ) ⊗ [−1 1]T ∈ KN,2f , it follows from (8) and usual
properties of the Kronecker product that:

Bαh =
(
IN ⊗αT

) (
(Dε(f)γ)⊗ [−1 1]T

)
=

(
IN Dε(f) γ

)
⊗
(
αT [−1 1]T

)
= (α2 − α1)Dε(f) γ. (28)

We begin by the direct implication in (27). So, we suppose
that KN,2f ∩ KerΦ ⊂ KerBα. By definition of Φ, KerΦ =

KerB1 ∩ Ker (ABα) and by definition 1 of KN,2f , KN,2f ⊂
KerB1. Therefore:

KN,2f ∩ KerΦ = KN,2f ∩ KerB1 ∩ Ker (ABα)

= KN,2f ∩ Ker (ABα) (29)

Since KN,2f ∩ Ker (ABα) in not empty because the null
vector 0 of RN belongs to it, let h be one of its elements.
We then have h ∈ KN,2f and ABαh = 0. It follows from
(12) with p = 2 that Bαh = 0. According to Eqs. (26) and
(28), h = (Dε(f)γ)⊗ [−1 1]T with γ ∈ [0, 1]N and Bαh =
(α2−α1)Dε(f) γ. Since α1 6= α2, Bαh = 0 is equivalent to
Dε(f) γ = 0 and the unique solution in γ to this equality is
γ = 0 since the determinant of Dε(f) is non null. Thereby,
h = 0 so that KN,2f ∩ Ker (ABα) = {0}. The converse is
straightforward.

1Note thatKN,p
f ⊂ KerB1 for actually any p since, with the same notation

as in Eq. (11), ∀i ∈ J1, NK,
∑

j∈Ti

hj = 0
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