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Abstract

Shewanella algae strain C6G3, isolated from the 2 uppermost centimeters of muddy sediment of Arcachon Bay (SW
Atlantic French coast, sampled in October 2007) has the capability to use a large panel of terminal electron acceptors
under anaerobic condition, such as nitrate, nitrite and metal-oxide, and presents a great metabolic versatility. Here, we
present the non-contiguous draft-genome sequence of Shewanella algae C6G3, which consists of a 4,879,425 bp. The
chromosome contains 5792 predicted genes. In total, the genome consists of 24 rRNA genes, 86 tRNA genes and 5660
genes assigned as protein-coding genes.
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Introduction
The genus Shewanella comprises several Gram-negative
species which are widely distributed in marine and fresh-
water environments. Shewanella algae (formerly classi-
fied as S. putrefaciens) has been frequently isolated from
marine water samples and spoiling fish [1–3]. They are
capable of reducing trimethylamine N-oxide (TMAO) to
trimethylamine and producing hydrogen sulfide, both of
which are main components of the fishy odor present
during low temperature storage. They were also isolated
from human feces, skin and other clinical samples [4, 5].
The collected strains were heterogeneous with G + C
values ranging from 43 % to 55 %. However, there were
differences between environmental and clinical isolates.
Most of the strains isolated from human clinical speci-
mens and identified as S. putrefaciens showed beta-
hemolysis on sheep blood agar whereas environmental
strains were nonhemolytic [6, 7]. During a screening
study of heterotrophic bacteria from the sediment of
Arcachon Bay [8], a large set of isolates was obtained
from different sampling sites and years (2). Among the
24 isolates, 15 strains belong to Shewanella genus and
were able to reduce Mn(III/IV) and/or nitrate. The
genus seems to play an important role in the turnover of
organic matter coupled to anaerobic respiration electron
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acceptors, such as Fe(III), Mn(III/IV) and NO2/3. Here we
report on further taxonomic and physiological studies on
strain Shewanella algae strain C6G3 and present its main
genomic features.
Organism information
Classification and features
The genus Shewanella currently contains 62 species [9]
including Shewanella algae ATCC 51192T, the first
described [2]. Ribosomal gene of strain C6G3 exhibits
99 % similarity with available ribosomal gene of Shewanella
algae (strains ATCC 51192T, ACDC [3], BrY [10] and
FeRed [11]) and was affiliated to this specie (Fig. 1).
Cells of strain C6G3 are straights rods (Fig. 2),
Gram-negative, motile, free-living and non-sporulating.
Different growth temperatures, pH and % NaCl were
tested (Table 1). Optimal growth occurs at 30 °C, pH 8
and 10 % NaCl (w/v). For strain C6G3, ATCC 51192T

and S. oneidensis MR-1T [12], the use of 95 carbon
sources was tested with Biolog GN2 microplate™
(Microlog) (Additional file 1: Table S1). Strain C6G3
presents 32 positive results: 5/30 carbohydrates, 14/29
organic acids, 8/19 amino-acids. Similar results were
obtained for strain ATCC 511392T (38/95). Among the
two strains of S. algae, slightly different patterns of car-
bon source were noticed; however, profil of S oneidensis
MR-1T was different (16/95). Some electron acceptors
were also tested for strain C6G3 according to genome
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Shewanella arctica IR12T (GU564402)
Shewanella frigidimarina ACAM 591T (U85903)*

Shewanella denitrificans OS-217T (AJ311964)*
Shewanella baltica NCTC10735T (AJ000214)*

Shewanella oneidensis MR-1T (AF005251)*
Shewanella gelidimarina ACAM456T (U85907)

Shewanella atlantica HAW-EB5T (AY579752)
Shewanella canadensis HAW-EB2T (AY579749)
Shewanella sediminis DSM17055T (FR733715)*

Shewanella amazonensisT (AF005248)*
Shewanella haliotis DW01T (EF178282)*

Shewanella algae FeRed (X81622)
Shewanella algae ATCC 51192T (AF005249)*

Shewanella algae C6G3 (Locus Tag SA002_05211)*
Shewanella algae ACDC (Locus Tag ACDC_00040000)*

Shewanella alga BrY (X81621)
Escherichia coli CFT073 (AE014075)
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Fig. 1 Phylogenetic position of Shewanella algae C6G3 relative to the genus Shewanella and other strains of Shewanella algae. This Neighbor-
joining tree is based on 1243 aligned characters of the 16S rRNA gene. The bootstrap percentages higher than 50 % are indicated at the node
after 1000 resampled data sets. Branch length corresponds to sequence differences as indicated on the scale bar (substitutions per position).
The proposed Shewanella species have been chosen from the List of Prokaryotic names with Standing in Nomenclature (type strain and sequence
accession number) for their ability to use nitrate, nitrite and / or metal oxides. Species whose genome has been sequenced are marked with star (*).
Escherichia coli [44] was used as out-group
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annotation and Shewanella algae literature [1] (Additional
file 1: Table S1).

Chemotaxonomic data
The fatty acid analysis was performed on two strains of S.
algae (C6G3, ATCC 51192T) and on S. oneidensis MR-1T

(Additional file 1: Table S2). At the end of aerobic culture,
fatty acids were extracted from cell pellet by alkaline
hydrolysis and analyzed using chromatography-electron
Fig. 2 Phase contrast micrograph of Shewanella algae C6G3. Bar scale: 2 μm
ionization mass spectrometry (GC-EIMS) following the
protocol described in Zabeti et al., [13]. The overall
fatty acid pattern of S. algae C6G3 is rather common
for the genus Shewanella. The major ones were
C16:1ω7 (35.2 %), C16:0 (34.6 %) (generally reported
between 16–55 % and 5–31 %, respectively [14]) and
3OH-C12:0 (7.7 %). Interestingly, the C15:0 br is much
lower in strain C6G3 (2.3 %) than in S. algae ATCC
51192T and S. oneidensis MR-1T (27.4 % and 20.4 %,
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Table 1 Classification and general features of S. algae C6G3 [17]

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [45–47]

Phylum Proteobacteria TAS [48]

Class Gammaproteobacteria TAS [49, 50]

Order Alteromonadales TAS [51]

Family Shewanellaceae TAS [52]

Genus Shewanella TAS [53, 54]

Species Shewanella algae TAS [2]

(Type) strain: C6G3 IDA

Gram stain Negative IDA

Cell shape Straights rods IDA

Motility Motile IDA

Sporulation Nonsporulating NAS

Temperature range 10–40 °C (die at 45 °C) IDA

Optimum temperature 30 °C IDA

pH range; Optimum 6–9; 8 IDA

Carbon source Disaccharides, some organic acids, amino acids IDA

MIGS-6 Habitat Muddy interdidal sediments IDA

MIGS-6.3 Salinity 0-10 % NaCl (w/v); 10 % NaCl (w/v) IDA

MIGS-22 Oxygen requirement Facultative anaerobic IDA

MIGS-15 Biotic relationship Free-living IDA

MIGS-14 Pathogenicity Biosafety level 1 for ATCC 51192 TAS [2]

MIGS-4 Geographic location Arcachon Bay, Aquitaine, France IDA

MIGS-5 Sample collection October, 2007 IDA

MIGS-4.1 Latitude N44° 40’ IDA

MIGS-4.2 Longitude W1° 10’ IDA

MIGS-4.3 Depth Top 10 cm of sediment IDA

MIGS-4.4 Altitude Sea level IDA
aEvidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement
(i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from
the Gene Ontology project [55]. You will find the table of associated MIGS Record in additional file (Additional file 2)
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respectively). S. algae C6G3 presents also a relatively
higher percentage of short-chain fatty acids (shorter
than C15, 16.0 %) than both S. oneidensis MR-1T and S.
algae ATCC 51192T (8.5 %).

Genome sequencing information
Genome project history
S. algae C6G3 was isolated from intertidal marine
sediment on the basis of its ability to use large range
of electron acceptors particularly nitrate, nitrite and
metal-oxides [8]. The genome of S. algae C6G3 is the
second to be reported from that species, the other
one being S. algae ACDC [15]. The genome project
of S. algae C6G3 is deposited in the Genome On
Line Database [16]. A summary of the project and
information on compliance with MIGS version 2.0
[17] are shown (Table 2).
Growth conditions and DNA isolation
S. algae C6G3 was grown aerobically at 30 °C under stir-
ring condition on artificial sea water [18] amended with
lactate (3 g/L), yeast extract (1 g/L) and tryptone (5 g/L).
DNA was extracted from cells collected in exponential
growth phase using the protocol of Marteinsson et al.
[19]. DNA concentration and purity were checking on
biophotometer® (Eppendorf ) before sequencing.

Genome sequencing and assembly
The genome sequencing of S. algae C6G3 was generated
at the Molecular Research LP MR DNA Laboratory
(USA). De novo whole-genome shotgun sequencing was
performed using the Ion Torrent PGM (Life Technologies
[20]) sequencing platform. This produced 1,444,981 reads
with an average length of 200 bp for a total number of
sequenced bases of 288,996,200 representing a sequencing
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Table 2 Genome project information

MIGS
ID

Property Term

MIGS
31

Finishing quality Non-contiguous finished

MIGS-
28

Libraries used Fragments (mean size 200 pb)

MIGS
29

Sequencing
platforms

Semiconductor Ion Torrent PGM

MIGS
31.2

Fold coverage 50×

MIGS
30

Assemblers SeqMan NGen® (DNASTAR)

MIGS
32

Gene calling
method

GLIMMER2 (RAST), GeneMark (v.2.6.r),
GenePRIMP (IMG DOE-JGI)

Locus Tag fig|22.6.peg. (RAST), SA002_ (IMG DOE-JGI)

Genbank ID JPMA00000000 (JPMA01000001-
JPMA01000043)

GenBank Date of
Release

March 19, 2015

GOLD ID Gi0073428

BIOPROJECT PRJNA255462

MIGS
13

Source Material
Identifier

SAMN02921234

Project relevance Environment

Table 4 Number of genes associated with general COG functional
categories

Code Value % age Description

J 145 5.71 Translation, ribosomal structure and biogenesis

A 2 0.08 RNA processing and modification

K 190 7.49 Transcription

L 111 4.37 Replication, recombination and repair

B 0 0 Chromatin structure and dynamics

D 25 0.99 Cell cycle control, Cell division, chromosome
partitioning

V 42 1.65 Defense mechanisms

T 176 6.93 Signal transduction mechanisms

M 142 5.59 Cell wall/membrane biogenesis

N 104 4.10 Cell motility

U 92 3.62 Intracellular trafficking and secretion

O 130 5.12 Posttranslational modification, protein turnover,
chaperones

C 176 6.93 Energy production and conversion

G 85 3.35 Carbohydrate transport and metabolism

E 182 7.17 Amino acid transport and metabolism

F 60 2.36 Nucleotide transport and metabolism

H 129 5.08 Coenzyme transport and metabolism

I 90 3.55 Lipid transport and metabolism

P 136 5.36 Inorganic ion transport and metabolism

Q 43 1.69 Secondary metabolites biosynthesis, transport
and catabolism

R 237 9.34 General function prediction only

S 241 9.50 Function unknown
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depth of 50-fold. The assembly of S. algae C6G3 genome
was generated at MR DNA Laboratory using the SeqMan
NGen® software assembler (DNASTAR). The final assem-
bly identified 43 contigs generating a genome size of
4,9 Mb.
Table 3 Genome statistics of S. algae C6G3 (IMG/ER DOE-JGI)

Attribute Value % of Totala

Genome size (bp) 4,879,425 100.00

DNA coding (bp) 4,205,943 86.20

DNA G + C (bp) 2,589,944 53.08

DNA scaffolds 43 -

Total genes 5792 100

Protein coding genes 5660 97.72

RNA genes 132 2.28

Pseudo genes 0 0

Genes in internal clusters 4072 70.30

Genes with function prediction 4098 70.75

Genes assigned to COGs 2275 39.28

Genes with Pfam domains 4318 74.55

Genes with signal peptides 519 8.96

Genes with transmembrane helices 1268 21.89

CRISPR repeats 3 -
aThe total is based on either the size of the genome in base pairs or the total
number of protein coding genes in the annotated genome

- 3517 60.72 Not in COGs

The total is based on the total number of protein coding genes in the genome
Genome annotation
Genome annotation was performed on two platforms:
on RAST [21] and on IMG/ER [22] (DOE Joint Gen-
ome Institute [23]). The tRNAscan-SE tool [24] (RAST
and IMG/ER) was used to find tRNA genes, whereas
ribosomal RNAs were detected using RMAmmer [25]
(IMG/ER) and tool “search_for_rnas” (developed by
Niels Larsen (available by the author), RAST). Open
Reading Frames (ORFs) were predicted using GLIM-
MER2 [26] in RAST and using GeneMark (v.2.6.r) [27]
and GenePRIMP [28] as a part of the DOE-JGI genome
annotation pipeline. Gene prediction analyses and func-
tional annotations were performed in RAST with a
series of BLAST against FIG hands-curated subsystems
[29]. They were also analyzed with FIGfams collection
databases, and through comparative approaches with
Integrated Microbial Genome – Expert Review plat-
form (RPS-BLAST, BLAST, BLASTp, Hmmsearch
(HMMER)) against non-redundant databases including
COGs, Pfam [30], TIGR-fam [31], KEEG [32], IMG.
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Contig 203 – operon NAP-

Contig 105 – operon MTR

Contig 65 – operon NAP-

Contig 82 – nrfA Contig 35 – N rfBCD

Contig 166 – cymA

Fig. 3 Graphical map of 6 contigs containing ORF involved in nitrate, nitrite and metal oxides utilization. Nitrate reduction (contig #203 and #65),
dissimilative reduction of nitrite into ammonium, (contig #82 and #35) and metal reduction (contig #105 and #166). From bottom to the top:
genes on forward strand (color by COG), genes on reverse strand (color by COG), operon/gene cited (pointed red), RNA genes (tRNAs green,
rRNAs red, other RNAs black), GC content, GC skew
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Additional functional annotations were performed within
the SEED framework (RAST) [33] and the IMG/ER
(DOE-JGI) platform.

Genome properties
The assembly of non-contiguous finished draft genome
consists of 43 contigs representing overall 4,879,425 pb.
The DNA G + C content was 53.08 %. Using RAST and
IMG/ER, 5770 and 5795 genes were respectively pre-
dicted. Among them 4149 and 5660 protein-coding
genes and 108 and 135 RNAs were identified by RAST
NapC NapH

NapG

NapB

NapA

Nitrate Nitrite

QH2 QH2

Q Q
e-Periplasm

Cytoplasm

Pe

Cy

a b

Fig. 4 NAP complex functioning. The proposed electron-transfer pathway
of S. algae C6G3 (NAP-α-β) (a) and S. oneidensis MR-1T (NAP-β) (b). Colored
and IMG/ER, respectively. The properties and the statis-
tics of the genome (IMG/ER data) are summarized in
Table 3 and Fig. 3. Putative COG functions were
assigned for 39.28 % of the protein-coding genes. The
distribution of genes into COGs functional categories is
presented in Table 4.

Insights into the genome sequence
Genome of S. algae C6G3 encodes genes for complete
glycolysis and tricarboxylic acid (TCA) cycle. A focus
has been made on the enzymes involved in the reductive
NapC NapH

NapG

NapB

NapA

Nitrate Nitrite

QH2 QH2

Q Q
e-riplasm

toplasm

of periplasmic nitrate reductase and membrane bound electron donors
proteins are annotated from KEGG and putatively functional
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NrfH

NrfA

Nitrite NH3

QH2

Qe-Periplasm

Cytoplasm

NrfAH complex

NrfABCD complex

NrfD

NrfC

QH2

Q

NrfA

Nitrite Ammonium 
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NrfB e-

Periplasm
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NrfB e-
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Cytoplasm
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NrfD

a b

Fig. 5 NRF complex functioning. The proposed electron-transfer pathway of dissimilatory nitrite reduction to ammonium of S. algae C6G3 (a) and
S. oneidensis MR-1T (b). Colored proteins are annotated from KEGG and putatively functional. Streaked genes are annotated but probably not functional
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respiratory reactions of the N-cycle (NAP, NRFA) and in
extracellular electron transfer through the outer-membrane
(Metal Transfer Reducing such as Fe(III) and Mn(III/IV))
on the basis of protein system described in S. oneidensis
MR-1T.

Nitrate reduction
Nitrate respiration involves two distinct enzyme systems:
the NapAB localized in the periplasm and the membrane-
bound nitrate reductase NarGHI enzyme localized on the
cytoplasmic face of the cytoplasmic membrane. The sole
nitrate reductase of S. algae C6G3 is NapAB (Fig. 4). As
most of the Shewanella species, S. algae C6G3 genome
encodes the two NAP isoforms, each comprising three
catalytic subunits: NapA where nitrate reduction takes
place, a di-haem cytochrome NapB and a maturation
chaperone NapD. The two isoforms present different
CymA

MtrA

MtrB

MtrC

MtrD

MtrE

MtrFOmcA

(M)QH2

(M)Q

e-

Cytoplasm

Periplasm

Ion metal ox Ion meta
red

e-

e-
Omc ?

a
Fig. 6 MTR pathway functioning. The proposed MTR extracellular electron-
Colored proteins are annotated from KEGG and putatively functional
membrane-intrinsic subunits [34] named NAP-α (NapE-
DABC) and NAP-β (NapDAGHB). NAP-β (NapDAGBH)
possesses NapGH, an iron–sulfur cluster ferredoxins in-
stead of NapC. The functional differences between these
systems may be explained by differential regulation in the
composition of the available quinol pool. S. oneidensis
MR-1T encodes only Nap-β isoform in which NapC is
lacking (Fig. 4). This membrane-anchored tetrahem c-Cyt
mediates electron transport from the quinol pool to NapB.
The function of NapC in NAP-β in S. oneidensis MR-1T

may be met by CymA, an homologue of periplasmic tetra-
hem c-Cyt of the NapC/NirT family, which is also found
in S. algae C6G3 genome.

Dissimilative reduction of nitrite into ammonium
Nitrite can be reduced to ammonium (NH4) by a peri-
plasmic nitrite reduction system (NRF) [35]. As NAP
CymA

MtrA

MtrB

MtrC

MtrD

MtrE

MtrFOmcA

(M)QH2

(M)Q

e-

Cytoplasm

Periplasm

Ion metal
ox

Ion metal
red

e-

e-

l

b
transfer pathway of S. algae C6G3 (a) and S. oneidensis MR-1T (b).
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Table 5 BlastP of MTR gene of S. algae C6G3 against MTR gene
of S. oneidensis MR-1

MTR gene % identities E-value

MtrD 75 2e-172

MtrE 50 4e-125

MtrF 65 0.0

OmcA 65 0.0

OmcB/MtrC 51 3e-142

MtrA 86 0.0

MtrB 72 0.0
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systems, there are two types of NRF: NrfABCD and
NrfAH types. NrfA is the terminal reductase while
NrfBCD/NrfH are responsible for electron transfer from
menaquinol pool to NrfA. Shewanella strains are known
for encoding NrfABCD system only. Genome annota-
tions of S. algae C6G3 and S. oneidensis MR-1T identify
nrfA in both cases but nrfBCD were found in S. algae
C6G3 only (Fig. 5). As previously described for NAP
system, S. oneidensis MR-1T genome lacks genes encod-
ing for the specific compounds that deliver electrons to
the terminal reductase (nrfBCD). Indeed, nrfB is lacking
and nrfCD are present but proposed to be pseudogene
because of truncation [36]. Gao et al., [37] suggested
that the tetraheme c-Cyt CymA, a cytoplasmic mem-
brane electron transport protein, is likely to be the
functional replacement of both NapC and NrfBCD/
NrfH allowing to NrfAH-like system to be efficient in
S. oneidensis MR-1T.

Metal oxide reduction
S. algae C6G3 can utilize extracellular mineral metal
oxides of Fe(III) and Mn(III/IV) as respiratory electron
acceptors (unpublished data). Inspection of its genome
confirmed the presence of genes involved in pathway
(i.e. metal-reducing or MTR pathway) for transferring
electrons from the inner membrane through the peri-
plasm and across the outer membrane where metal
oxides are reduced [38]. In S. algae C6G3 genome, genes
that encode MtrCBA and OmcA are located in the same
region, which also includes mtrD (an mtrA homologue),
mtrE (an mtrB homologue) and mtrF (an mtrC homologue)
(Fig. 6).
Table 5 shows the BLASTP for amino acid sequences

of MTR pathway in S. algae C6G3 versus those in
metal-reducing S. oneidensis MR-1T.
The numbers of genes found in the MTR clusters of the

analyzed Shewanella strains varies from four, such as
omcA1-mtrC-mtrA-mtrB in Shewanella frigidimarina [11],
to nine, such as mtrD-mtrE-mtrF-omcA1-undB-omcA1-
mtrC-mtrA-mtrB in Shewanella halifaxensis [39, 40].
CymA identified as the entry point for electrons into the
MTR pathway [41] is not located in the MTR gene cluster
in S. algae C6G3 as described in S. oneidensis MR-1T. Fur-
thermore, S. algae C6G3 has an additional protein encod-
ing for decahem c-Cyt of the OmcA/MtrC family. The role
of this cytochrome is not defined. On RAST platform, this
ORF has been annotated as mtrH in S. algae C6G3 and S.
halifaxensis HAW-EB4T.
Conclusion
The Shewanella genus comprises a diverse group of
facultative anaerobes. Their ability to couple the oxida-
tion of various carbon sources to the reduction of a
broad range of terminal electron acceptors imparts a
respiratory flexibility that allows colonization of varied
and changeable marine and freshwater environments
[39, 42, 43]. The occurrence of the two different NAP
operons, NRF, and that of CymA in S. algae C6G3
accords with the renowned anaerobic respiratory flexi-
bility of Shewanella. S. algae C6G3 is also capable of
using solid Fe(III) and Mn(III/IV) as terminal electron
acceptors. Reduction of these particulates occurs at the
cell surface and is catalyzed by multihaem cytochromes
whose properties are beginning to emerge.
Additional files

Additional file 1: Table S1. Presentation of positives carbon sources
(Biolog GN2 microplateTM) & electron acceptors for S. algae strain C6G3
and ATCC 51192T and S. oneidensis MR-1T (differences are distinct in
bold type). Table S2. Main fatty acids composition (90.6 %) of S. algae
C6G3 and percentage of this fatty acids in S. algae ATCC 51192T (73.6 %
of total pattern) and S. oneidensis MR-1T (92.5 % of total pattern).

Additional file 2: Associated MIGS Record.
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