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Abstract. Interactive video editing and analysis has a broad impact but
it is still a very challenging task. Real-time video segmentation requires
carefully defining how to represent the image content, and hierarchical
models have shown their ability to provide efficient ways to access color
image data. Furthermore, algorithms allowing fast construction of such
representations have been introduced recently. Nevertheless, these meth-
ods are most often unable to address (potentially endless) video streams,
due to memory limitations. In this paper, we propose a buffering strategy
to build a hierarchical representation combining color, spatial, and tem-
poral information from a color video stream. We illustrate its relevance
in the context of interactive object selection.
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1 Introduction

Proliferation of high-resolution low-cost digital video recorders results in vast
amounts of video data that need to be further processed for personal or pro-
fessional use. Efficient video processing solutions are required to allow popular
management of video files and librairies on standard computers as well as mo-
bile terminals (e.g., tablets, smartphones). Indeed, real-time processing allowing
interactivity with the user greatly eases the subsequent user acceptability of the
proposed solutions. We focus in this paper on object selection (or segmentation),
that is one of the most desired tools for video editing and analysis.

Video segmentation gathers a strong research interest for more than a decade
[2–4, 8, 14, 17, 22]. To illustrate, one of the most recent techniques [23] dedicated
to fast segmentation allows a processing frame rate of 1.3-1.5 fps, far below cur-
rent video broadcast standards. Such an example is representative of the state-
of-the-art where accuracy is sought at the cost of computational complexity.
Interactive object selection from color video streams is thus hardly achievable
with existing techniques.



We address here this issue and propose a new interactive object selection
technique. Efficiency is achieved through the design of a hierarchical represen-
tation that replaces the raw (pixel) dataset in the different steps of the process.
While such an approach has already shown promising results [12], it requires stor-
ing in memory the representation of the whole video sequence. We build upon
this previous work and propose here a way to deal with (potentially endless)
video streams without facing memory limitations, inspired from recent works on
streaming or causal segmentation [5, 7, 13, 18, 25]. Furthermore, we introduce an
improved object selection scheme based on bounding box input provided by the
user. We also increase robustness to occlusions and motion w.r.t. our previous
work [12].

The rest of the paper is organized as follows. In Sec. 2, we recall the existing
work our method builds upon, namely the α-tree and its use in image/video
segmentation. Our contribution is described in Sec. 3, while Sec. 4 presents its
experimental evaluation on a standard dataset. We end the paper with conclud-
ing remarks and future directions.

2 Background

Our method builds upon a previous work [12] based on a hierarchical structure
called the α-tree. Both are recalled in this section.

2.1 The α-tree model

An α-tree is a multiscale representation of an image through its α-connected
components (or α-CCs). While it finds roots in early work in computer vision, it
has been revisited only recently by Soille and Ouzounis [15, 19]. This paradigm
is very related to the single linkage procedure used in data clustering. It pro-
vides a compact representation of the image that allows its real-time processing.
Furthermore, efficient algorithms have been recently introduced to ensure fast
computation of this representation from complex images [9].

The concept of α-CC is an extension of the connected component (or CC).
We recall that the latter is defined as a set of adjacent pixels that share the same
value (either scalar for panchromatic images, or vectorial for multi- or hyper-
spectral ones). Representing an image by its CCs allows for higher-level analysis
(similarly to computer vision techniques relying on superpixels). However, the
possibly great number of CCs in an image prevents their practical use. Indeed,
adjacent pixels may belong to the same structure but have slightly different val-
ues, thus belonging to different CCs. The concept of α-CC has been introduced
to allow such slight variations, leading to the following definition: an α-CC is a
set of adjacent pixels that share similar values i.e., values with a difference lower
or equal to a threshold α. The α-CC of a pixel p will thus contain all pixels q
that can be reached with a path over neighboring pixels pi 〈p1 = p, . . . , pn = q〉
from p to q such that d(pi, pi+1) ≤ α (d being a predefined dissimilarity mea-
sure). The complexity and number of α-CCs are directly related to α. It allows



building a hierarchical representation of an image, and performing subsequent
multiscale analysis (e.g., in an object-oriented strategy). This representation is
called an α-tree. Each level of the tree is indexed by an α value, and its nodes are
the corresponding α-CCs. A leaf in the tree is a 0-CC i.e., a standard CC in the
image. Increasing α leads to the connection of α-CCs, resulting in the creation
of higher nodes in the tree, until the root that contains the whole image.

2.2 Video segmentation based on α-tree

In a previous work [12], we have already proposed to use the α-tree to perform
video segmentation. However, the tree was computed on the complete video se-
quence assuming space-time connectivity and representing the video as a spatio-
temporal volume. More precisely, each pixel was defined by a triplet (x, y, t)
with two spatial and one temporal coordinates, and the neighborhood was us-
ing the 6-connectivity (i.e., two pixels (x, y, t) and (x′, y′, t′) are neighbors if
|x−x′|+ |y− y′|+ |t− t′| = 1). The dissimilarity measure d used to build the α-
CC is the Chebyshev distance computed between the colors c = (r, g, b) and c′ =
(r′, g′, b′) of adjacent pixels p and p′, i.e. d(p, p′) = max(|r− r′|, |g− g′|, |b− b′|).
This allows keeping the number of possible dissimilarity values as low as the
input range of each color component (e.g. 256 levels), conversely to Euclidean
distance. The height of the resulting α-tree is then bounded by this range. RGB
color channels were used directly in order to avoid the additional cost of a color
space transformation.

Once the α-tree representation of the full video sequence is computed, it is
enriched by associating some features (size, average brightness and hue) to each
node of the tree. Such features are computed incrementally, starting from the
leaves of the tree up to the root, thus limiting the computational complexity.
Averaging hue information is done in a specific manner to ensure the reliability
of this feature (see [12] for a complete description of the method). The video
representation is then ready to be analyzed for interactive segmentation. To do
so, the user picks one pixel from a video frame, i.e. a leaf in the α-tree. Object
selection is then achieved through a traversal of the tree in order to find the
most relevant node in the path from the selected leaf to the tree root. More
precisely, the size (number of pixels) of each traversed node is analyzed, and if
this measure is stable for a significant number of levels in the tree, the node is
used to define the object selection. Let us note that this process shares some
similarity with the extraction of Maximally Stable Extremal Regions (MSER)
[11].

While our previous method [12] showed promising results, it came with sev-
eral limitations: (i) the α-tree has to be computed on the full video sequence
before any further processing (such as interactive object selection); long video
sequences, as well as (potentially endless) video streams cannot be addressed; (ii)
to perform interactive object selection, user input consists of a single pixel only
(i.e., a leaf in the tree); such an initialization is very error prone, and hardly
provides an accurate description of complex objects (with heterogeneous con-
tent); (iii) the selection process ends with a single node from the tree, while the



object might be better represented by several nodes with no heritage relations;
(iv) the α-tree is computed on the spatio-temporal volume, assuming spatio-
temporal continuity of the objects; this is not the case in the presence of object
motion and occlusions, that could result in disconnected components that might
have only the root as common ancestor in the tree. These different issues are
addressed in the new method proposed in this paper.

3 Proposed method

The method we are proposing in this paper starts with a first input from the
user to define the initial contour of the object. It then propagates the selection
in the following frames in an online setting. An additional step is added to deal
with spatio-temporal discontinuities. We describe here these different steps.

3.1 User-driven object selection

The video object selection scheme is interactive. In a frame of the video sequence
(generally the second frame, see discussion below), we ask the user to delineate
the object of interest through a bounding box (A in Fig. 1). We assume the object
to be completely included in this box. We also compute two α-trees, one for the
frame where user selection occurs (Fig. 2(b)) and one for its immediate preceding
frame (Fig. 2(a)). Both α-trees are merged into a single tree (Fig. 2(c)). The goal
is then to identify, among the nodes of this merged α-tree, the ones corresponding
to the selected object. To do so, we first remove all nodes of the tree that overlap
the background, or in other words that are not completely included in the box
provided by the user (an example of such discarded node is C in Fig. 1). This
can be efficiently achieved starting from the leaves corresponding to the pixels
included in the box, and scanning their ancestors until the latter span over the
initial bounding box. The last (i.e., closest to the root) ancestors that fit in
the bounding box are kept. The selection thus results in one or several nodes.
When a node is selected, all its children are too. In other words, one or several
subtrees (i.e., a forest) are extracted from the α-tree to denote the selected
object. However, we have observed that this strategy was prone to foreground
and background mixing, since it might select nodes that are located on the
interior edges of the user box. We thus add an additional constraint, relying on
a reduced user selection (D in Fig. 1) built automatically using a given reducing
ratio (here 50%). Nodes whose centers do not belong to this reduced zone are
also discarded from the object selection (an example is E in Fig. 1). To ease
understanding, only the user input and the selected objects are shown in the left
image of Fig. 1. Figure 2(d) also provide some tree illustration.

3.2 Selection propagation in the video stream

After having refined a selection from a user input, the next step is to propa-
gate it in the following frames of the video sequence. Figure 2 illustrates the
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Fig. 1. Illustration of the selection process: user input (A, light green), nodes corre-
sponding to selected object (B, yellow), discarded nodes due to background overlapping
(C, orange/red), reduced user selection (D, dark green), and discarded nodes due to
non strong overlapping with reduced user selection (E, orange/red).

propagation process. This step is required since, as already stated, we do not
compute an α-tree for the full video sequence but we rather process the video on
a frame-by-frame basis. This allows for processing very long video sequences as
well as video streams (i.e. potentially endless). The selection process described
previously and applied on an initial frame leads to two α-trees respectively built
from this frame (a) and its preceding frame (b), that are subsequently merged
into a single unified tree (c). To do so, temporal connectivity is considered in
computing the α-CCs, possibly leading to merging two nodes at lower α values
than if considering the individual trees (useless tree edges are shown dashed).
Once a selection has been defined by the user (d), we keep only leaves corre-
sponding to the current frame. Selection propagation in the next frame requires
first computing the tree in this new frame (e), and then to merge both trees
(f) while keeping the labels for selected nodes. The temporal connectivity allows
merging spatially disconnected nodes. Again, the merged tree is filtered to keep
only leaves corresponding to current pixels (g). Furthermore, in order to limit
the memory footprint, we also prune the tree and remove the intermediary nodes
that are not on the selection branch, thus forgetting outdated information. But
storing the connectivity information (spatial from the previous frame as well as
temporal for the last couple of frames) results in a tree that could not have been
built from a single frame only, e.g. see (e) and (g). The process is repeated all
along the video sequence, with each successive frame leading to a new individual
tree (h), merged tree (i), and filtered one (j) where selection is propagated. In this
last example (g)-(i), we can observe that the selection can extend to some new
objects if their color similarity to the selection becomes higher. Duplicate nodes
(shown in grey) along the path from the selection to the root are temporarily
buffered to allow reconnection/disconnection operations.
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Fig. 2. Illustration of the buffering process: individual trees (a,b,e,h), after merging
(c,f,i) and filtering (d,g,j). Selected nodes, useless relations, and residual nodes are
shown in red, dashed, and in grey respectively.

3.3 Dealing with spatio-temporal discontinuities

Extracting the object of interest in the frame where user input has been provided
is much easier than in the following frames. Indeed, the selection is propagated
from one frame to the next using the scheme described previously, and the se-
lection accuracy might decrease along time. Model updating is required and
several strategies are available. We have explored several automatic strategies
but their performances were not satisfying, so we rather chose here to rely on a
manual strategy. It needs to identify the frames for which an updated input is
required from the user, and we use here a size criterion. More precisely, once a
selection has been propagated in an incoming frame, we compare the size of the
updated selection with the size of the last user input. If both sizes differ from
a ratio higher than T (here T = 2), we consider the selection to be inaccurate
since it corresponds to either a too small or too large component. This occurs in
the presence of spatio-temporal discontinuities, especially observed with object
motion and occlusion.



4 Experiments

We evaluate the proposed approach on a standard dataset and compare our
results with the state-of-the-art. More precisely, we use the SegTrack dataset [20]
that contains 6 video sequences, with length of 20–70 images of rather small size
(from 320×240 pixels to 414×352 pixels), together with a reference segmentation
(ground truth).

Fig. 3. Sample frames for the 3 video sequences from SegTrack used for quantitative
evaluation: Birdfall, Parachute, and Girl (Tab. 1).

For the sake of illustration, we compare our method with some recent tech-
niques based on selection propagation that have reported results on this dataset
[10, 21]. Both methods rely on probabilistic modeling with Markov Random
Fields (MRF), but while the former operates on pixels, the latter imposes a
space-time graph structure on the data. The 3 video sequences used in this pa-
per, birdfall, parachute, and girl, are illustrated in Fig. 3. An illustration



Ours [21] [10]

birdfall 313 (0.003) 405 (0.005) 189 (0.002)
parachute 1337 (0.009) 1042 (0.007) 228 (0.002)
girl 6632 (0.052) 8575 (0.067) 2883 (0.023)

time 11–27 480–600 120–180
Table 1. Comparative results for interactive object selection. Accuracy is expressed
as the average number (and ratio) of mis-segmented pixels (false positive plus false
negative) per frame. Runtime is provided in seconds. Results are reported from [10].

of the results obtained with our method is given in Fig. 4, with the error rate
per frame plotted in Fig. 5. On this parachute sequence, user selection has
been required 4 times. This is due to the complexity of the video sequence, with
some important changes in both object illumination and pose. While these user
inputs allow preventing a severe increase of the error rate, they were not suffi-
cient enough to keep it as low as on the first frames of the video sequence (for
which the tracking was less challenging).

Comparative results are provided in Tab. 1. We can see that the proposed
method performs slightly better than [21], but worse than [10]. Let us recall
that we are not using any motion information conversely to the state-of-the-
art. Furthermore, the proposed approach is still deterministic while probabilistic
models have achieved great successes in computer vision for decades. Besides,
the α-tree model considered here leads to some spatio-temporal chaining effects
that cannot be overcome without any post-processing or constraint imposed on
the connectivity between pixels. These different limitations are directions for
future work.

More interestingly, we can observe from Tab. 1 that the proposed solution
based on tree structures brings a significant gain in terms of performance. The
reported runtime of our method is 6 – 11 times less than [10], and 22 – 43
times less than [21] (let us note however that the implementation and runtime
details, e.g. coding langage, CPU speed, etc. are not provided in [10, 21]). Our
method has been benchmarked on a Java implementation and a standard laptop
configuration, thus allowing fair comparison with recent works from the state-of-
the-art. We have observed CPU time wastes due to the Java Garbage Collector
that call for further optimization.

We believe that it is possible to build upon the proposed technique to in-
troduce more complex (but still tree-based) video analysis strategies, to ensure
both high accuracy and efficiency. To illustrate, let us recall that many video
segmentation methods rely on a first segmentation into superpixels, that might
be easily produced by cutting the tree. But while extracting superpixels from a
SegTrack video requires at least 500 seconds with the most efficient techniques
from the state-of-the-art [24] (measured with a Dual Quad-core Intel Xeon CPU
E5620 2.4 GHz, 16GB RAM running Linux), our algorithm is able to provide
a set of superpixels in less than 50 seconds with a Java implementation and a



Fig. 4. Sample results for the Parachute video sequence (frames 2, 12, 30, 31, 34, 35,
39, 40, 51): manual selection is shown in green, selected regions in blue, ground truth
pixels are brighter.

standard laptop configuration (Dual-core Intel Core CPU i5-3320M 2.60GHz,
6GB RAM running Linux).

5 Conclusion

In this paper, we have explored a new way to represent video pixels through
a hierarchical representation. Such a representation has been used to derive an
efficient solution allowing interactive object selection from a color video stream.
Results obtained on the SegTrack standard dataset are promising, with accu-
racies similar to the state-of-the-art but computation times much lower. Never-
theless, experimental evaluation and comparison with state-of-the-art has to be
pursued, especially considering other streaming strategies recently introduced in
the literature [5, 7, 13, 18, 25].

While efficiency is definitely a strength of the proposed solution, segmenta-
tion accuracy could be further improved to meet user requirements. This can
be achieved following several directions. Chaining effects, a known drawback of
single-linkage representations such as the α-tree, can be alleviated using more
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Fig. 5. Evolution of the error rate (ratio of mislabelled pixels per frame). Crosses
denote frames where user input was required.

complex tree models, e.g. binary partition tree [6, 16]. Improving the way the se-
lection is propagated between two successive frames can be ensured by exploiting
the object motion that is not taken into account yet. Furthermore, the introduc-
tion of probabilistic models would strengthen the robustness of the method and
could also lead to better accuracy (as demonstrated recently with binary parti-
tion tree-based image segmentation [1].

More generally, we also consider applying the hierarchical representations
to other computer vision problems that are facing computational and memory
issues. Indeed, the proposed framework is particularly adapted to online settings.
As such, a fully automatic solution that will not require manual initialization
will be also appealing for addressing big video data.

References
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