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Interpolating sequences and Carleson measures in the
Hardy-Sobolev spaces of the ball in C".

E. Amar

September 6, 2015

Abstract

In this work we study Hardy Sobolev spaces in the ball of C" with respect to interpolating
sequences and Carleson measures.
We compare them with the classical Hardy spaces of the ball and we stress analogies and
differences.
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1 Introduction.

We shall work with the Hardy-Sobolev spaces H?. For 1 < p < oo and s € R, H? is the space of
holomorphic functions in the unit ball B in C" such that the following expression is finite

I£17 = sup / (I + R F(r2) do(2),
r<l

OB
where [ is the identity, do is the Lebesgue measure on OB and R is the radial derivative
Rf(z) = Z%‘y(z)-
<j

For s € N, this norm is equivalent to

1k
12, = m/ \Rﬂ V[P do(
This means that R/ f € H?(B), j = 0,.

We shall prove estimates only in the case s € N but the spaces H? form an interpolating scale
with respect to the parameter s, see in section 2, hence, in some cases, this allows to extend the

results to the case s € R,.

If sp > n the functions in H? are continuous up to the boundary 0B hence the results we are
interested in are essentially trivial, so we shall restrict ourselves to the case s < n/p.

For s = 0 the Hardy Sobolev spaces H{ are the classical Hardy spaces H?(B) of the unit ball B
and a natural question is to study what remains true from classical Hardy spaces H?(B) to Hardy

Sobolev H?.
An important notion is that of Carleson measure.

Definition 1.1 The measure p in B is Carleson for H?, i € Cs,, if we have the embedding

Vf € 1P, / P du < CIF I
B

Carleson measures where introduced by Carleson [12] in his work on interpolating sequences.
We have the following table concerning the known results about Carleson measures :

H(D) HP(B) = Hy(B) HI(B)

Studied by C. Cascante &
J. Ortega [13] ; characterized
forn—1<ps <n.

For p =2, any s
characterized by
A. Volberg & B. Wick [25]

Same for all p Same for all p Depending on p

Characterized Characterized
geometrically geometrically

by L. Carleson [12] by L. Hérmander [17]

Definition 1.2 The multipliers algebra M? of H? is the algebra of functions m on B such that
Vh € H?, mh € H?.
The norm of a multiplier is its norm as an operator from H? into H?.



We have the following table of already known results, where C.C. means a certain Carleson
condition:

Hr(D) H"(B) H{(B)
MV =H>*B)NC.C.
characterized for
ME(D) = H>*(D), Vp | M{(B) = H*(B), Vp n—1<ps<n
and for p = 2 by Volberg & Wick [25]
Depending on p

Now we shall deal with sequences of points in the ball B and to state results we shall need several
definitions, most of them being well known.

1 1
Let p’ be the conjugate exponent for p, — + — =1 ; the Hilbert space H? is equipped with the
p P

reproducing kernels :

Va € B, ku(z) = || kel

—_ ~ (1 —|al>)s™" 1.1
A r s Wl = (1= JaP) (1)

ie. Ya € B, Vf € H?, f(a) = (f, ko), where (-,-) is the scalar product of the Hilbert space H2. In
the case s = n/2 there is a log in k,.

Definition 1.3 The sequence S is Carleson in H?(B), if the associated measure

Vs = Z ||k:57a||;;/5a
S

aesS

is Carleson for HY(B).

Definition 1.4 Let p > 1, the sequence S of points in B is interpolating in H?(B), if there is
a C = Cy, >0 such that
2\s—n
VA € (7(S), 3f € HY(B) :Va € S, f(a) = Aallkall g = Aa(L = [a*)* ™2, || fll s < ClIAI,

/ . . ]— 1
where p' is the conjugate exponent for p, —+ — = 1.
p D
If p = 1, we take the limiting case in the above definition : S is IS for H!, if there is a C > 0

such that Y\ € €(S), 3f € HX(B) :Va € S, f(a) = \o(1 — |a|?)*™, [f 1z < ClIAl -

Definition 1.5 The sequence S of points in B is interpolating in the multipliers algebra MY of
HP(B) if there is a C > 0 such that
VA € £2(S), 3m € ME ::Va € S, m(a) = A, and ||m|| o < ClA| .

Definition 1.6 Let S be an interpolating sequence in ME ; we say that S has a bounded linear
extension operator, BLEO, if there is a a bounded linear operator E : (*(S) — ML and a
C > 0 such that

VA € £7(5), E(A) € ML, IEN) e < Cl = Vae S, E(A)(a) = Aa.



We have the table of results on interpolating sequences, where A.R.S. means Arcozzi, Rochberg
and Sawyer [9].

(D) ~(B) MI(B)
Characterized for p = 2
IS characterized No characterisation andn—1<2s<n
by L. Carleson by A.R.S. and the
Pick property
ISM = BLEO ISM = BLEO ISM = BLEO
by P. Beurling [11] by A. Bernard [10] by E. A. here

In the case of the classical Hardy spaces H? , whose multiplier algebra is H>(B), we know/( [4] the-
orem 5, p. 712 and the lines following it) that if S is interpolating for H*°(B) then S is interpolating
for HP(B) ; this is still true in the case of Hardy Sobolev spaces.

Theorem 1.7 Let S be an interpolating sequence for the multipliers algebra MP? of H?(B) then S
s also an interpolating sequence for HY, with a bounded linear extension operator.

In the classical case s = 0 i.e. M = H*(B), H) = H”(B), N. Varopoulos [24] proved that S
interpolating in H°°(B) implies that S is Carleson in B and P. Thomas [22] (see also [7]) proved
that S interpolating in H?(B) implies that S is Carleson in B. The next results generalise this fact
to MP? for p < 2 and any real values of s € [0,n/p].

Theorem 1.8 Let S be an interpolating sequence for ME with p < 2, then S is Carleson HP(B).

And

Corollary 1.9 Let S be an interpolating sequence for H? with n — 2s < 1, i.e. M? is a Pick
algebra, then S is Carleson for H?, Vr < s.

Because M? is an operators algebra in a Hilbert space, then we know [3] that the union S of
two interpolating sequences in M? is still interpolating in M? if S is separated. This generalises a
theorem of Varopoulos [23] done for uniform algebras.

We prove the analogous result but we shall have to use a more precise notion of separation, see
section 7.

Theorem 1.10 Let s € NN [0,n/p] and Sy and Sy be two completely separated interpolating se-
quences in ME then S := 51 U Sy is still an interpolating sequence in ME.

In C", n > 2 we know [2] that the union S of two interpolating sequences in H*(B) is not in
general an interpolating sequence even if S is separated, so the next result is in complete opposition
to this fact.

Corollary 1.11 If M? is a Pick algebra, i.e. if s > n?, and S, S" are two interpolating
sequences for H? such that S U S’ is separated then S U S' is still interpolating for H?.



We shall need the following notion.

Definition 1.12 The sequence S of points in B is dual bounded (or minimal, or weakly inter-
polating) in H?(B) if there is a bounded sequence {pa}acs C HY such that
Va,b € S, p,(b) = akaaHHg’-

Clearly if S is interpolating for H? then it is dual bounded in H?.

This notion characterizes interpolating sequences for the classical Hardy spaces in the unit disc
D ; the question is open for the Hardy spaces H?(B) in the ball in C" > 2. Nevertheless we know [6]
that if S C B is dual bounded for H?(B) then it is interpolating for H4(B), Vq < p.

The next results generalise only partially this result and we get an analogous result to theorem
6.1 in [5].

Definition 1.13 We shall say that S is a HY weighted interpolating sequence for the weight w =

{wa}aeS 7;f
VA€ P(S), 3f € HY =Va € S, f(a) = Aawallkal| -

1 1 1
Theorem 1.14 Let S be a sequence of points in B such that, with — = — + —, and p < 2,
q

,
e S is dual bounded in HY. Y
e S is Carleson in H!(B).
Then S is a H' weighted interpolating sequence for the weight {(1 — |a|*)*}ecs with the bounded
linear extension property.

This work was exposed in Oberwolfach workshop "Hilbert Modules and Complex Geometry " in
April 2014, and also in the conference in honor of A. Bonami in June 2014 in Orleans, France. This
is an improved version of these talks.

This work is presented the following way:.

In the next section we study the basics of Hardy Sobolev spaces H? : they make an interpolating
scale with respect to s, p ; they have the same type and cotype than L? spaces.

In section 3 we start the study of the multipliers algebra M~ of H?. We prove that M? is invariant
by the automorphisms of the ball.

In the following section we study Carleson measures and Carleson sequences.
In the following section we study links between p interpolating sequences of vectors in a general
Banach space B and Carleson measures and basic sequence in /7. We study also algebras of operators

on B which diagonalize along a sequence of vectors in B. Application to H? are done.

Then, in the next harmonic analysis section, we develop a very useful method due to S. Drury [15],
for the union of two Sidon sets, to fit Hardy Sobolev spaces.

The following section contains the results on interpolating sequences of points for the multipliers

algebra M?.



In section 8 we study the notion of dual boundedness in the framework of Hardy Sobolev spaces.
Finally in the appendix we put technical lemmas to ease the reading of section 7.

In the sequel we shall deal only with finite sequences of points S C B but with estimates not
depending of the number of points in S. The results for infinite sequences is then got by a normal
family argument.

2 Hardy Sobolev spaces.

By a result of J. Ortega and J. Fabrega [19], corollary 3.4, (see also E. Ligocka [18]), we have
that the Hardy Sobolev spaces H? form a interpolating scale with respect to s and p. This means

1 1-6 0

that for 1 < pg,p1 < 00, 0 < sp,81, 0< b <land — = ( )—i——, s = (1—0)so+ sy, we have
p Po p1

(HE, HPV)jg = HY. (2.2)

S0 ? S

We shall use this result in relation with the Banach spaces interpolation method. In particular
we shall prove results essentially when s is an integer and, by use of it, we shall get the same results
for s real.

2.1 Similarity between H? and H”.

Definition 2.1 Let S be a sequence, we set e := {¢,, a € S} € R(S), a Rademacher sequence,where
the random variables €, are Bernouwilli independent and such that P(e, = 1) = P(e, = —1) = 1/2.

Let f(e,2z) € H? for any value of the random variable € € R(.S), then :

Lemma 2.2 We have
IEON < Ef %)

Proof.
We can take as an equivalent norm in H? the sum of the H? norms of the R* derivatives, i.e. with
P < 00,

1£1% Z (R epl
Hence, because E is hnear we have

RME(f) = E(R"f).
On the other hand

[E(9)l” < (E(lg)? < E(|gl")

IE(9) / E(g)]" do < / (lgl")do / gl” do) = E(lgll%).

So applying this with ¢ = R*f we get
1R E) [ = HE(R’“(MH’}{F < E(|R*(N):

hence



and

I < EXUS 1) u

Proposition 2.3 The spaces HY have, for any s € N, the same type as H?.

Proof.
We can prove it by use of the fact that the Sobolev spaces W} have this property by [14], but because
the problem is on the boundary of the ball which is not isotropic with respect to the derivatives,
we shall prove it directly.

So let p < 2 we want to prove that H? is of type p, which means, with ¢ € R(1,...,N) a
Rademacher sequence and E the expectation,

(E( N2 T il
HP J=1

> eif;
We can take as a norm in H? the sum of the H” norms of the R* derivatives, hence, because E is

=1
linear, it suffices to have

2
N

(E( Zeij(fj) 1/2 < T Z ||f]|| 1/p'

7j=1
But H” being a subspace of LP(0B), 1t is already of type p hence

(E( Z@Rk M| )< T ZHRk Il )"

7j=1
So, because f € HY 1mphes

Vk < s BA(F) € B, || BAE) |y < 11l
we get
N 2 N
E(D R N2 < Tp(z 1517
j=1 HPp
and, adding a finite number of terms, We get
N
E(D_efi| N <(s+17T, Z 1515207
Jj=1 H?
If p > 2, then the dual space of H? is Hf with p’ < 2 hence Hf/ is of type p’ ; this implies that the
dual of H f/, namely H? is of cotype p. |

Using it we get the following theorem.

Theorem 2.4 The spaces H? have, for any s € R, the same type as H?.

Proof.
Fix N € N and consider the space (H?)" With the following /¥ norm :
Vf = (fi,.. fnv) € (HD)Y, |, - ZHfgll )P

Consider the linear operator 7' : R(1,..., N)X(Hs) — H? defined by



N

Vf=(fi,.. fnv) € (HD)N, Tn(e. f) =Y e;f; € HP.

=1
To say that H? is of type p means that, for anjy N >1,

ETn (e Niz))? < ClA,
i.e. the linear operator Ty is bounded from F, := (H?)" equipped with the norm ||- I, to L*(Q, HP),
the space L?(Q, A, P) with value in H?. Because the H? form an interpolating scale with respect
to the parameter s € R, we have the same for the spaces F, and L*($), H?).

Fix p < 2 and s € N ; by the proposition 2.3 we have that Ty is bounded from F, to L*(Q2, H?),
and from Fy to L*(Q2, HY), the constant being independent of N € N, hence by interpolation Tl is
bounded from F. to L*(£, H?P), for any 0 < r < s, with a constant independent of N € N. This
proves that H? is of type p for any real r € [0, s]. By duality as in proposition 2.3 we have that for
p > 2, H? is of cotype p. |

Up to a constant, we have the Young inequalities.

1 1 1
Proposition 2.5 We have, with — = — 4+ —,
,

poq
vfeH}, vge ], fgeH and |[fglg < Cllfllgllgllge

Proof.
We have to compute the H” norm, for j =0, ..., s, of, by Leibnitz formula,

Ri(fg)=>_ CIR*(f)RV™M(g). (2.3)
k=0

By Minkowski inequality it is enough to control the norm of
R*(f)RV(g).
But by Young inequality
[RE(NRI™ ()] < (IR IR (9] o
Now f € H? implies
vk <s, RE(f) € HY, [[RE()| g < 11l
|R*(9)]| 7o < llgl

The same g € H? implies
Vk < s, RF(g) € H?,

HY:

So

Vi =0, W <y |RECHRY ()] < ANz gl
Because we have a finite number of terms in (2.3) we get the existence of a constant Cy > 0 such
that

1790y < Cull f 1l 9l s
which proves the proposition. ]
3 The multipliers algebra of H”.

Recall that the multipliers algebra M? of H? is the algebra of functions m on B such that
Vh € H?, mh € H?, and its norm is its norm as an operator from H? into H?.



As an easy corollary of the interpolating result (2.2), we get the following theorem.

Theorem 3.1 We have the embedding :
MECM?, for 1 <p<ooand0 <r <s, with¥m e ML, [[m| o < |Im|| e

Proof.
Let m € M? then m is also in M{j = H**(B) which means that m is a bounded operator on H? and
on Hf. Hence m is bounded on H? for any r € [0, s], by Banach spaces interpolation (2.2), which
means that m € M7. Moreover we have ||m|| e < [[ml| @ hence [[m| e < [[ml] yp. |

3.1 Invariance by automorphisms.

(1 — la[*)"
Let e,(z) i= ——7"—
et eq(2) 1=a 27

in H2.
We shall show the following theorem which is true for any s € R,.

, p:=n — 2s, the normalized reproducing kernel for the point a € B

Theorem 3.2 Let ¢ be an automorphism of the ball B ; for any a € B, there is a number n(p, a)
of modulus one such that, setting U(p)eq := 1(p, a)ey@), U(p) extends as an unitary representation

of Aut(B) in L(H?).

Proof.
We shall adapt the proof of theorem 2 p. 35 in [3]. We know that Aut(B) is isomorphic to U(n, 1)
the group of isometries for the sesquilinear form of C™™! :

n
(Z, U}) = ZZJ"U_J]' — ZoWq-
j=1

Let T € U(n, 1) ; in the canonical basis of C"™! its matrix [T] can be written by blocs :
Tl — A B|
m-a 3
where A is a nxn matrix, B is nx1, C'is 1xn and D is 1x1. The automorphism associated to T’
is then

AZ + B
VZ c B, QO(Z) = m,

If o, 3 are two vectors in C", we denote by a - 3 their scalar product ; the scalar product in H? is
still denoted by (-, ).

where Z = (21, ..., z,).

We have ) )
(eoars o) = (L= le(a) )21 = |p(B)[)"?
ren (=gl 20
But _
- -1~ B (BT
1 S __
- Cat D)MKC& + D)(Cb+ D) — (Aa+ B)(Ab+ B)].

Let (X,t) and (Y,v) two elements in C"™ and set a = T(X,t), 8= T(Y,v) we get



(o, B) = (AX + Bt)(AY + Bv) — (CX + Dt)(CY + Dv) = X - Y —tw,
because T let (-,-) invariant.
Back to the inhomogeneous coordinates a = X/t, b =Y /v we get
(Ca+ D)(Cb+ D) — (Aa+ B)(Ab+ B) =1—a-b,
hence, putting it in <e¢(a), e¢(b)> we get
_ (Ca+D)» (Cb+D)?
(Ca)s Co) = |Ca + DJP X ICb+ DI
The linear combinations of {e., ¢ € B} being dense in HZ, we define on them the operator U(¢p) by
U(p)ea = n(p, a)eqa),
where 7(p, a) == % is of modulus 1.
The previous computation gives
({U(p)ea, Ulp)en) = (ea, )
hence U(yp) is unitary. Moreover U(yp) is a representation of Aut(B). To see this we have to show
that :

(€q, €p)-

Vb, p € Aut(B), Ya € B, n(vop, a) =n(y,v(a))xn(p,a).

Setting
Aa+ B Ab+ B
pla) = Ca+ D’ Vi) = Cb+ D’
the computation is easy. |

Remark 3.3 We can use equivalently the following identities (Theorem 2.2.2 p. 26 in [21])
— (A=) Q-=b-a
1 ()50 = G, 020
(1 —2M'a) (1—p-0)
1—|p[)(A —lal)
1— a)|? = (
o)’ =

where p(2) = p,(2) is the automorphism exchanging 1 and 0. In any case we get
(1—ji-a)

)

n(eu, a) = m-

Corollary 3.4 The space of multipliers M? of H? is invariant by Aut(B).

Proof.
Let m € M? then we have
Va € B, m*k, = m(a)k,

because
VYh € H2, (h,m*k,) = (mh, k) = m(a)h(a) = m(a){h, k).
Hence
. m*U(p)ea = m* (1(p, a)epa) = n(p, a)m ey = n(p, a)m(p(a))ep).-
0

U= o)ym*U(p)ea = U () (n(e, a)m(e(a))epm) = n(e, a)m(e(a))U~ (0)epw.  (3.4)

10



But from U(p)eq := (@, a)eyq), we get
ea=U'0e, = nU_leg,(a) = U_1€<p(a) =0 leq
and putting this in (3.4) we get
U™ p)m"U(p)ea = nm(p(a))n " ea = m(p(a))ea = (m o p)"ea.
So by the density of the linear combinations of the {e,, a € B} we get
(mo @) =U" e)m"U(p).
Now because U(y) is unitary on H? we have
1m0 )"l o2y = 1Ml o2y = Imo @l e = lImll v u

4 Carleson measures and Carleson sequences.

Let Q(¢,h) == {z € B, }1 — 52‘ < h} be the "pseudo ball" centered at ( € 0B and of radius
h > 0.
We shall use the following well known lemma.

Lemma 4.1 If i is a Carleson measure for H?, then u(Q(C,h)) < P = |Q(¢, h) N OB| Pn .

Proof.

Because p is a Carleson measure for H?, we have / lka(2) P du < ||kal|?
B

S7p )

recall that k,(z) = with p = n — 2s, then we get, with

(1 —az)r
a

Q. ::Q(m,l—\a\) — {zeB:|l—a-z|<h}, h:=(1-]la|),

that »
/Q A—az)y dMS/B|ka(Z)|de§ 1kall?,, ;
hence ’
1 < p 2\—pp—sp+n < pn—sp
i @a) S llRally, = (1 —lal") = W(Qa) S A" u

Let us recall the definitions of Carleson sequences.

Definition 4.2 The sequence S is Carleson in H?(B), if the associated measure

vs =3 (1—|al)"—"s,

acs
is Carleson for H?(B).

At this point we notice that the coefficients of the measure rvg depend on the parameter s.

Lemma 4.3 Let S be sequence in B which is Carleson for H? and for H) = H” then S is Carleson
for HP, 0 <r <.

Proof.
Consider the linear operator
T« HY = 0(w,), Tf:={f(a)}aes

11



with the weight w,(a) := (1 — |a|*)" . Because S is Carleson H? we have that T is bounded from
H? to (P (wy), i.e.

> A= la)" ™ | f (@) S I

acsS
The same for s = 0, i.e.

(=) [f@F S 1 o

acs
hence, because we(a) = (1 — |a|*)" #¢ is holomorphic in the strip 0 < R¢ < s and the scale of
{H?}~o forms an interpolating scale by the interpolating result (2.2), we have that 7" is bounded
from H? to ¢P(w,) which means exactly that S is Carleson for H?, 0 <r < s. |

HE:

If 11 is a Carleson measure for H?, then it is a Carleson measure for H?, Vr > s, simply because
[ £l 2 < |If || g»- For the Carleson sequences, this goes the opposite way.

Theorem 4.4 [f the sequence S is Carleson in H?(B), then S is Carleson in H? for all v, 0 <
r<s.

Proof.
We first show that the measure p := Z (1 —a|*)", is Carleson V!, i.e. that

acsS
Y. -l gam
a€SNQ(¢,h)
For this we have that vg Carleson in H?(B) implies that vg is finite, just using lemma 4.1 with
Q. O B. So we have Z (1 — |a*)"™*" < C. Now still with lemma 4.1 we get
acsS
> (—la) P = Q¢ h) ShP
a€SNQ(¢,h)
But a € Q(¢,h) = (1 — |al*) < h hence, with
(1 —al*)" = (1 = ]al*)(1 = |a]*)" =" < h*P(1 — |a|*)" =7

we get
oo a—layr<hr > (=al)" P = hPu(QC, h) < A
a€SNQ(¢,h) a€SNQ(¢,h)
This is valid for all Q(¢,h) so we get that the measure p := Z (1 —lal*)"6, is Carleson V!, or,
a€sS
equivalently Carleson H? := H{.
Now we apply lemma 4.3 to end the proof of the theorem. ]

5 General results

We shall establish a link between Carleson sequences and sequences like canonical basis of (7.
Let B be a Banach space, B’ its dual.

Definition 5.1 We say that the sequence of bounded vectors {e,}acs in B is equivalent to a canon-

tcal basis of P if

12



1
3B, > 0, YA € (S), =\l < < B,CI Al
p

Z AaCa

a€esS

B

Definition 5.2 We say that the sequence of bounded vectors {e,}aes in B is p interpolating if
A, >0, Vu e 7(5), Fhe B, ||hllg < Lllpllp : Va €S, (h,ea) = pta-

Definition 5.3 We say that the sequence of bounded vectors {e, }aes in B is dual bounded if
AC >0, Hpataes C B =Va €S, || fullg < C, (pas€b) = Oap.

Clearly if {e,}4cs is p interpolating then it is dual bounded : just interpolate the basic sequence
of /7(S).

Definition 5.4 We say that the sequence of bounded vectors {e, }qes in B is p Carleson if
3C, >0, Yhe B, Y [(hye)” < C¥|h]l%,.

a€esS

We have :

Lemma 5.5 Let {e,}acs be a sequence in B of bounded vectors, then the following assertions are
equivalent :
(i) {€as}acs is p Carleson in B.

(71) {ea}acs verifies 3C > 0, YA € (P(S),

Z AaCa

a€esS

< Cl M)

B

Proof.
Suppose that {e,}.cs verifies the (i) of the lemma, then using the duality B — B’ we have

VA€ (), VhE B, Y Aalea, h)
acsS
By the duality 7 — 7 we get then

3 lea B < O |11,

a€sS
which is the definition of {e,},cs p Carleson in B.

Suppose now that {e,}.cs verifies the (ii) of the lemma, this means

> lew WP < C7IAI7,

a€sS
which leads by the duality 7 — ¢*' to

< ClAlplP] 5

VA€ (S), Y Aafea h)| < ClIAu 1]
acs
and with the duality B — B’ to the (i) of the lemma. |

Theorem 5.6 Let {e,}acs be a p interpolating sequence for B and suppose moreover that {e,}aes
is p Carleson for B then {e,}scs makes a system equivalent to a canonical basis in (7.

13



Proof.
We have to show that

VA € P, ‘Z)\ €a

a€esS

=~ [[Allgo-

Z)\ €y

a€esS

but by Holder

S Mfen '<||A||@Z|ea )

acs acs
and because S is p Carleson we have

O e Y < Cyllh i,

a€esS

> Aaleash)

a€sS

= Sup hep, |n|I<1

hence

> atal| < Gyl

a€csS B
For the other direction we still have

Z Aa€al| = SUD e, |h||<1 ‘Z Aal€a, h)

acs B acs
but, because {e, }ees is p interpolating, we can find a h € B’ such that

Va € S, (h,eq) = pha, ”hHB/ < [pHNHZP"

So we get
Z )\aea Z T Z )\ em Z )\a,ua )
acs aes aes

and we choose 1 such that ||ul|,» =1 and Z)\aua = ||l -

a€esS
So we get

Z)\ €,

a€esS

1
— [\l - |
=

Theorem 5.7 Let {e,}acs makes a system equivalent to the canonical basis in (¥ and suppose
moreover that :

Ps : p€ B — Psp = Z(gp,pa)ea

a€sS
is bounded, then {e,}qcs is p Carleson and p interpolating with a bounded linear extension operator.

Proof.
Because {e, }qcs makes a system equivalent to a canonical basis in /¥ means

Z)\ €q

a€sS

VA e, ~ Al (5.5)

we have in particular that

14



Z Aa€a

a€esS

< Cpll Ml
B

which, by lemma 5.5 gives that {e,}.cs is p Carleson in B.

Suppose first that S is finite, then there is a dual system {p, }.cs in B’. Set

Vi € 07(S), hi=) " ftapa ;

aesS

we have (h,e,) = Z,ua(pa, ep) = fp

a€sS
hence h interpolates p. It remains to control its norm. We have

Psp = (@ pa)eas [1Ps¢llz < Cllolls,

acs
and by use of (5.5) we get

1ol > (3 Ik, o)

P aes
hence

O e, pa) )P < B,Cligll
a€sS

which means that {p, }.cs is p’ Carleson.
Now let us estimate the norm of A

”h”B' = | Z,uapa|

a€esS

Z Ha <pau 90>

a€sS

= SUpP eB, |pl<t
Bl

but

Zu“@‘“w) < ||N||gp'(z |(pa,<p>|p)1/p

a€esS aes

and by (5.7) we get

S talpn )| < lll BuClll

aceS
so we have

12l 5 < BpCllpall -
The bounded linear extension operator is then
pel — Bp):= Z,uapa, IEC) g < BypC.

acs
Hence we prove the theorem.

(5.7)

Remark 5.8 The fact that Ps is bounded implies that Eg := Span(e,, a € S) is complemented in

B. Just set :
Vo € B, ¢1:=Psp € Eg, p3:= @ — 1.

Lemma 5.9 Let {e,}aes be dual bounded and such that {py}acs is p' Carleson, then {eq}acs s p

interpolating with a bounded linear extension operator.

15



Proof.
Because {pq}acs is p’ Carleson we have

Vo e BC B, (3 [pa o))" < Cyliglp. (5.8)

a€S

Now take p € ¢ and set h := Z,uapa we have

acs
Z LaPa

a€esS

17l 5 =

> talpas 0)

aesS

= SUpP eB, |¢l<1
Bl

but

" 1alper @) < lllor (3 Ko )7

acsS a€es

and by (5.8) we get

S tadpur 0| < lillr Bl

a€S
so we have

121l 5 < BpCllpell -
The bounded linear extension operator is then
pEL — Blu) = Z/”Lapav IE e 5 < BpC

aes
Hence we prove the lemma. [ |

5.1 Diagonalizing operators algebras.

Let B be a Banach space and {e,}.cs be a sequence of bounded vectors in B ; we shall work
with operators M such that M : B — B is bounded and
Ya € S, Me, = mge,.
Let A be a commutative algebra of operators on B diagonalizing on E := Span{e,, a € S}, with
the norm inherited from £(B) ; we shall extend our definition of interpolation to this context.

Definition 5.10 We say that the sequence of bounded vectors {e,}aes in B is interpolating for A

of
JA >0, VA€ (2(S), IM € A, M|z < Al[Mljw 2 Va € S, Meq = Aqeq.

The first general result is in the special case of Hilbert spaces.

Theorem 5.11 Let H be a Hilbert space, {e,}acs be a sequence of normalized vectors in H.

If {€a}acs is interpolating for A then {e,}aes is equivalent to a basic sequence in £*(S).

If {e.}acs is equivalent to a basic sequence in (*(S), set E := Span{e,, a € S} and D the algebra
of operators in L(F) diagonalizing in {€,}qes, then {e,}aes is interpolating for D.

This theorem was proved in [3|, (Proposition 3, p. 17) en route to a characterisation of interpo-

lating sequences in the spectrum of a commutative algebra of operators in £L(H). I shall reprove it
here for the reader’s convenience.
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Proof.
Suppose that {e,}q.cs is interpolating for A, and take ¢ € R(S) a Rademacher sequence. Then
e € £>°(S) hence there is an operator M, € A such that
M.e, = €.64, HMEHE(H) < A.

Now consider h := Z hqeq € E C H we have

a€esS
Mch =" €hacq, and [ M|, < Al|b]l,
a€esS
SO
A|[RlI% > BOIMAE) = kol lleall

a€sS
because the ¢, are independent and of mean 0. So we get, the e, being normalized,

> hal* < AR,

aesS
Because €2 = 1, we get M M, = I, on E, hence by the boundedness of M.,

Vh € E, h = M.(M:h) = ||h||; < A||MAh| 4
hence taking again expectation

1Rl7 < APE(IMA|?) = A% ) |ha|.

a€sS
So we proved

1
5 D0 hal” < A < 423

aes acs
which means that {e,}.es is equivalent to a basic sequence in £%(S).

Now suppose that {e,}.cs is equivalent to a basic sequence in ¢*(S). This means (see for in-
stance [3]) that there is a bounded operator @ in £(E), with Q! also bounded, and an orthonormal
system {7, }qses in F such that

Ya €S, Qn, = eq.
Let A € £°°(S) then the diagonal operator Th\n, := A7, is bounded on E with ||T3] < [|A]l.. Now
set

Ry = QThQ ™,
then we get

Va € Sa Rye, = QT/\% = Q)‘ana = Aa€q
hence R € D and

1R ey < 19021 e 1T ey < CIN L

hence {e,}qes is interpolating for D. |
Now we shall need a definition.

Definition 5.12 We shall say that the algebra A separates the points {e,}acs if
3C >0, Ya,b#ae S, IMy € A:: Mye, = eq, Mape, =0 and || Myl 4, < C.

Then we have the following remark.

Remark 5.13 Suppose that A separates {e,}acs, this implies easily that, for any finite set S and
any A € (>°(5) thereis a M € A such thatVa € S, M(a)e, = Aseq. Hence if there is C > 0 such that
there is a M' € A with M{p = Mg and || M'||, < ClIM|| gy then, as a corollary of theorem 5.11,
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we get that if {e,}aes 15 equivalent to a basic sequence in (2(S), then {e,}acs is interpolating for A.
We say that A is a Pick algebra if this property is true for A. This is very well studied in the nice
book by Agler and McCarthy [1].

We shall generalise this result to p interpolating sequences.
Let B be a Banach space and {e,}.cs be a sequence of normalized vectors in B.
Recall that the Banach B is of type p if

2
3T, > 0N €N, € € R({1,., N}), Vhi, o Sy € B, B[S 6] )2 < TS 11517

Theorem 5.14 If {e,}acs is interpolating for A :

if B is of type p > 1 then {e, }aes is p Carleson.

if B' is of type p' > 1, then there is a dual sequence {pg}acs C B’ to {€atacs and {patacs s p'
Carleson, hence {e,}aes is p interpolating for B with a bounded linear extension operator ;

Proof.
Because {e, }qes is interpolating for A we have
Va € S, IM, € A :: Maey, = dapep, || Ml 4 < A.
Now fix a € S and take h € B’ such that (h,e,) = 1. This h exists by Hahn Banach with norm 1
and
<M;h, 6b> = <h, Ma6b> = ab(ha 6b> = 5ab-
So, setting p, := M h, we get p, € B', (pa, ) = 0o and ||pa]l 5 < A||R|| 5 < A. Doing the same
for any a € S we get that {p,}ecs C B’ exists hence {e,}qes is dual bounded.

Now as above, take € € R(S). Then € € £°°(S) hence there is an operator M, € A such that
M.e, = €,€q, ||ME||L(B) < A.
By duality, M : B — B’ is such that M p, = €pa, and || M|l 5y < A ;50 let

Yy e v b= Z,uapa.

a€S
We have
1M Bl = | €attapa
a€eS B’
Using M M, = 14, we get
10y < AIMZR] = AlS €uptapl|
a€eS B’

hence, taking expectation,
1Al 5 < AE(|| 3 c5 €attapal

B’)

Z €altaPa

a€sS

2
)2 < Ty (3 Il [lpal5) 7, hemee

B’ acs

2
Z €altaPa

)2 < Ty (37 Ltal” Nlpallip)
a€S

B a€sS

so B’ of type p’ means E(

Z €altaPa

a€sS

E( ) < E(

B/
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1hllp < ATy (Y lial” llpallp) ™ = ATy |l

acsS
which prove that {p, }aes is p’ Carleson hence applying lemma 5.9 we get that {e, }.es is p interpo-

lating for B with a bounded linear extension operator.

To get the second part, set ¢ := Z Aa€q and use again

aesS
§ Ea )\aea

p =M (Mcp) = [lpllp < Al Mep| g = A

Y

a€sS B/
hence, taking expectation,
ol < AB(|S oes atacall )
so if B is of type p then again
lells < AT, Xl lleall ) = AT, [ Al
acsS
which prove that {e,}q.cs is p Carleson. |

5.2 Application to Hardy Sobolev spaces.

Let H? be the Hardy Sobolev space and M? its multipliers algebra ; let also S C B be a finite
sequence of points in B.

Set, for a € B, e, := ——— the normalized reproducing kernel in H? for functions in Hf,.

| Kall g
Then we have that
Vm e M?, Ya € B, m*k, = m(a)k, = m e, = m(a)e,,
because

Vh € H?, (h,m*k,) = (mh,k,) = m(a)h(a) = m(a){h, k,).

So we have that the adjoint of elements in MP® make an algebra diagonalizing in {e,}.cs so we
can apply the previous results with the diagonalizing algebra A := {m*, m € MZ%} operating on
HY.

The first thing to know is that H? has the same type and cotype than L?. We prove it directly
in theorem 2.4.

So we have H?, Vs € R,, is of type min (2,p) and of cotype max (2,p), hence we can apply
theorem 5.14 to get directly, for all real values of s € [0,n/p],

Theorem 5.15 If {e,}acs is interpolating for ME then {e,}acs is dual bounded and

because HY is of type min (2,p) then {e,}acs s min (2,p) Carleson ;

because Hf, of type min (2,p")  then {ps}acs s min (2,p’) Carleson, hence {€,}acs s p interpo-
lating for HY with a bounded linear extension operator provided that p > 2.

In fact we shall prove later on a better result by use of harmonic analysis for the last case : we
shall get rid of the condition p > 2. Nevertheless we have, in the special case p = 2, as an application
of theorem 5.11, for all real values of s € [0,n/p], :

Theorem 5.16 Let {e,}acs be a sequence of normalized vectors in H? ; if {eq}acs is interpolating

for M? then {e,}acs is equivalent to a basic sequence in (*(S). If M? is a Pick algebra, i.e. if
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2(S) implies that {e,}aes is interpolating

for M2,

6 Harmonic analysis.

Let S be an interpolating sequence for the multipliers algebra M? of H?(B) and recall that the
interpolating constant for S is the smallest number C' = C(S) such that
VA €1(S), 3m e ML :Va € S, m(a) = Ay and [|m| 0 < ClA|j-
We have easily MY C H*(B) with Vm € M%, [|m|| yoe ) < [[m] v
We shall develop here a very useful feature introduced by S. Drury [15]. Consider a finite sequence
in B with interpolating constant C(S).
Set N =#S €N, §:={ay,...,any} CB and 0 := exp 57 Zr S interpolating in M? implies that
Vj=1,...,N, 38(j,2) € MP ::Vk =1,. N 5@, ap) = 67"

Let
Yl 2) =% 20 07983, 2) € M2, 7 (1, )| ue < C(S).

this is the Fourier transform, on the group of n'" roots of unity, of the function (-, 2), i.e.

v(l,2) = AL, 2),
the parameter z € B being fixed.
We have

(l CLk ZH Jlﬁ j,ak) = 5lk (69)

Hence the 7(I,-) make a dual bounded sequence for S, with a norm in M? bounded by C(S).
We have by Plancherel on this group

SRR = 5 3166, 2) (6.10)

Multiplying on both side by |h|* with h € HP(B), we get
N

>t A = L Z 180, 2)h(2)

and applymg RJ on both sides, recalhng RJ operates only on the holomorphic part,

Zv (1) L :NZ VRRI(B(L, )h)
1= =1

and again R’ on both sides

SR O] = R0 m)[ (6.11)
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Lemma 6.1 Let Qi(k, z) := - --x B(k, 2) then [|Qi(k, )|l v < C(S)" and hence ||Qi(k, Moo <

~
I times

Qi (k. ) v < C(S)"

Proof.
Let Qa(k,2) == BBk, 2) = & Z;VZI B(j,2)B(k — j, z) then, because M? is an Banach algebra, we
have
18, )8 = Es e < NBG e 1BG =k, )l pe < C(S)*

Hence by induction we get the lemma. [

Lemma 6.2 We have

SR Gk B[ = o S [ B(Ex 50 # Bk )B)
k=1

Proof.
We have

Yk ) = Bk Bk )

TV
I times

hence by Plancherel

thz NZW* B (k, 2)

and by lemma 6 1, because the ./\/li’ norm is bigger than the H*°(B) one,

vzeB, Y |k 2)'|" < C(S)% (6.12)

Multiplying by |h|* on both sides, we get

N ) 1 N
D I Rl = 5 18k Bk, A
k=1 k=1

and taking Rj derivatives, which operate only on the holomorphic part
N

ZRJ VIR = o SR Bk T IR
Now we take RJ derivatives on both sides to get the lemma. [

Let S := {aj,...,an} C B be a finite sequence in B then we have built the functions {v(l, z) };—
M? such that
Vk,l = 1, ey N, ’y(l, ak) = 5lk and ”"y(l, >HM€ < C(S)
where C'(.9) is the interpolating constant of the sequence S. Now on we shall also use the notation
Va € S, v.(z) :=7(l, 2) if a = a; and we call {7,}4cs the canonical dual sequence for S in M?.
The following proposition will be very useful for the sequel.

.....
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Proposition 6.3 Let {7,}acs be the canonical dual sequence for S in ME then we have
Vi>1, V2B, Y |r(2)]* < C(S),

a€esS
where C(S) is the interpolating constant for S.

Proof.
This is just inequality (6.12) with the new notations |

7 Interpolating sequences in the multipliers algebra.

We shall generalise theorem 5.15 valid for p > 2 to all values of p > 1, but here s must be an
integer.

Theorem 7.1 Let S be an interpolating sequence for ME and vy, its canonical dual sequence, then,
with e, the normalised reproducing kernel for the point a € B in HY,
VA EP(S), fi=) Aavhea € HIB), [I£ll,, S 1M,

acsS
This means that S is interpolating for HY with the bounded extension property.

Proof.
As usual S is finite hence the series is well defined and we have
Vb e S, f(b) = )\beb(b) = )\kab”Hf/

because by lemma 8.3 :

kb<z) kb(b) (1 — |b‘2)28—n
ep\z) = = e b = = = p’ -
= Tl ~ O Thlly ~ ey~ el
This means that f interpolates the right values. So it remains to show that f € H?(B), || fHHg <
ClIAl,-
So we have to show that
Vi< s RSl < ClMo-

Fix j < s then

() =) AR (Yhea):

a€sS
By the exclusion proposition 9.3 with [ > s, hence m := min (j,1) = j, we get

j
R(Ghen) = Y- A B (e,),
q=0
because we have at most s terms, it is enough to control sums like :
T = Z)\a/ya qR] fyaea>

a€esS
By Holder we get

T2 < (07 Nl [ R (ea) ) Fal 22 7

aes acs
Now we have by proposition 6.3, provided that (I — ¢)p’ > 2,

V2 € B, Z |%|(lfq)p’ < C(S)(l—q)p
a€eS
hence
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vz e B, [T < C(S) P (Il | R (vdea)|)-
aesS
So integrating

vr<1, /a ) Ty (r¢)[" do(¢) < C(S)¢2 /a ) ST R (yea) (rO) [P do (€),

a€eS
hence

vr <1, /a TUrQ) do(¢) < O(S)-0 S /aB!ijzea)(rg)!”da(o. (7.13)

a€sS

But we have

Ya € M =75 € MY with [|98]] e < [alliges
because M? is a Banach algebra, so

Vi < s ||B (viea) || o < 117dlaee
because e, is normalised in H?.
So replacing in (7.13) we get

<1, / TP do(€) < S 57 Myl
OB s

a€esS

Call gz < 1allg

But S being interpolating we get
Vel < C(S)°
so finally
et / T3 (rQ)[" do(¢) < C(S)C(S) = [ Al[fn(s)-
oB

Adding these s set of sums we get, because p’ > 1,
1R £]] 0 < s(max Ag)C(S)/P|[ Nl os)

and we are done. [ |

Now we shall improve theorem 5.15, for all real values of s € [0,n/p],

Theorem 7.2 Let S be interpolating for MY and suppose that p < 2, then S is Carleson in
HY Vr <s.

Proof.
We know, by theorem 5.15, that if S is interpolating for M? and if p < 2, then S is Carleson H?.
hence we apply theorem 4.4 to get the result. |

Arcozzi, Rochberg and Sawyer in [8] proved, in particular, that if S is interpolating in B = B},
where B? is a Besov space of the ball B, then we have that S is Carleson for B. In the case
p=2, B?= HZ/Q, we have a better result.

Corollary 7.3 Let S be an interpolating sequence for H? with n — 2s < 1, then S is Carleson for
H?, Vr <s.

Proof. n
We know that H? = B2 where B2 is the Besov space of the ball B and where o = 5~ 5 We

know by [1] that for ¢ < 1/2, B? has Pick kernels hence S interpolating for H? = B2 implies S
interpolating for M? so we can apply theorem 7.2 to get the result. |

23



7.1 Union of separated interpolating sequences.

In the case s = 0, M{ = H*(B), the union S of two interpolating sequences in H*(B) is still
interpolating in H*°(B) if S is separated by a theorem of Varopoulos [23]. We shall generalise this
fact in the next results.

Definition 7.4 A sequence S is separated in MY if there is a cs > 0 such that
Va,b#a €S, Imgp € ML :imgp(a) =1, mep(b) =0, ||ma,b||M€ < cs.

Definition 7.5 A sequence S is strongly separated in M if there is a cg > 0 such that
Va,b# a €S, Imgp € ML :imgp(a) =1, map(b) =0,
and

Vh e HY, Va € S, 30 € HY, ||H|[yr < cs||hllgp Vb €S, b#a, Vj < s,
|RI(H)|.
Clearly the strong separation in M? implies the separation in M?.

Rj (mmbh) ’ S

Definition 7.6 The sequences Sy, Sy are completely separated in MP if there is a c4 > 0 such that
Va € S, Vb € Sy, Imgp € ME imygp(a) =1, map(b) =0
and

Vh € H?, 3H € H?, |H|

R (maph)| < |RI(H)|.

ar < cA||h||Hg wVa € S1,b€ Sy, Vi < s,
This time the vector H does not depend on a nor on b.

Theorem 7.7 Let S; and Sy be two interpolating sequences in ME, s € NN |[0,n/p], then S :=
S1 U Sy is an interpolating sequence in M if and only if S1 and Sy are completely separated.

Proof.
Suppose first that S := 57 U S, is an interpolating sequence in M? and take Va € Sy, A\, =1, Vb €
Sa, Ap = 0. Then X € £°°(S) hence there is function m € M? such that
Va € S, m(a) = Ay, i.e. Ya € Sy, m(a) =1, Vb € Sy, m(b) = 0.
Now we choose Va € Sy, Vb € Sy, mgy := m which works and if we set Vh € H?, H := mh then we
are done with c4 := ||m|| \», proving that the complete separation is necessary to have S := S, U S,
interpolating.

Now we suppose we have the complete separation. As usual we suppose S7, .55 finite and we set
{Ya}aes, the canonical dual sequence for Sy in M® and {I'y}cs, the canonical dual sequence for Sy
in M? and we want estimates not depending on the number of points in S; and in Ss.

Take b € S5, then by hypothesis we have

Va € S1, dmgp(z) € M2 0 mgp(a) =1, meu(b) = 0.
We set, my := Z fyflma,b. Then we have Va € Sy, my(a) =1 and m,(b) = 0.
a€Sy
Because S; and Sy are finite, the functions m; are in M? and they verify
1 2 =
Va € Sy, Vb € Sy, my(z) = { if z=a

0 of z=0
Now we shall glue them by setting
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m = Z (1 —my).

beS2

We have

m(a) =01if a € S; and m(b) = 1if b € Sy,
hence if m € M? with a norm depending only on the constants of interpolation of S; and Sy and
of the complete separation, then we shall be done because then :

VAL € EOO(Sl), VA e EOO(SQ), Elmj S Mz, Ve € Sj, m]‘(C) = )\i, j=12;
now we set, with m;, j = 1,2 as above,

M = (1 —m)m; + mmy € M?
because M? is an algebra, and we get

Va € Sy, M(a) = (1 —m(a))mi(a) +m(a)ma(a) = my(a) = A}
and

Vb € Sy, M(b) = (1 —m(b))my(b) + m(b)ma(b) = ma(b) = A7,
hence M interpolates the sequence (A', A?) on S U S,.

In order to have m € M, we have to show that
Vh € H?, Vj <s, R’(mh) € H? with control of the norms.
We start the same way we did with the linear extension :

Ri(mh) = RI(Y _Ti(1—my)h) = RO T(1 =) h(z)map(2))h)

be Sy besSs a€Sy
so we have two terms

Ty =) R(T}h)

beSa

T=7% R(()_ vu(=)ma(2)h).

beSa a€Sy
For T7 we are exactly in the situation of the linear extension with A\, = 1, Vb € S5 so we get
J
Ty € ME, | Ti|l e < C(S2) max j—o... > |4l

q=0

and

Now for T this is more delicate. First we set hy, := maph € HY so we have
T=3 RO wha) = Y RTha)
beSa a€S1 a€S1, bES?
We have to exit the converging factors (7,I)" " by the exclusion proposition 9.3 :

R (Fb’ya ab ZA ’Yarb)l qRJ((’Yan)qhab)~
q=0
Because s is fixed and j < s, we have only less than s terms in the sum and the constants A, are
bounded, hence, up to a finite sum, it is enough to control terms of the forms

Toi= > el ™0™ | R (als) has)|.

a€S1,beS?
By the Leibnitz formula we get
R ((yal)h Z CFR* (7)) R (ha).

But the complete separatlon assumption gives the domination :
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|R7*(ha)| < |R7*(H)| with H € H?, [ H| g < Cs1||h|| », and H independent of a, b.
So again up to finite number of terms and bounded constants, we are lead to control terms of the
form
Tym S bl 0 R (T )| [R ()
a€S1,bESS
Let H' := R’"*(H), still independent of a and b, we have H' € H? ., so

Tyi= Y bl 0l ™[R (D) )| 1.

a€S1,bES?
Now the inclusion lemma 9 D gives
R ( ’Yal—‘b Z Akm ’Yarb)qu m(H ))

so again it is enough to deal with terms of the form

o= 0 bl D[Rl R ()|
a€S1,beSs
But H' := R'""(H) hence H" := R*™(H') = R'"™(H) with H € H?, so H" € H?
||H”||H§ . < Cy||H|| g, still independent of @ and b. So we have

Ty= Y Pl "0 R (ETH")].

a€S1,bES>
By the Leibnitz formula again we get
m

R™(yi(FRH") = Y G RE(y) R (T H")
k=0
hence by the finiteness of the number of terms, it is enough to control terms of the form

- - m—
Tsi= ) Pl TR [RHTHY).
a€S1,bES?
But the sequence S, is interpolating for M? hence, still by theorem 3.1 we have that Sy is interpo-
lating for MP®, ¥r < s so we can apply the domination lemma 9.4 from the appendix to R™ *(I'{ H")

with

Na

RN < 1 YR,

with H, € H?

s—j+m>

M:
: HH"”Hﬁle < C’(Sg)qHH"HHf_Hm and H,, independent of a and b.
Because of the N it is enough to control uniformly in x terms of the form

Toi= Yl "0 RGO R ().

a€S1,beS?
We use the inclusion lemma 9 5 to get
R (,Ya Rm k ZAIWRT Rk r(Rm k: ZAIW’RT Rm r( ))

So it remains to control terms of the form
- 1— r m—r
Tri= > |l TR (yER™T(H,))|.
a€S1,bES:
Set V), := R™"(H,) ; because H, € H{ ;.
Villgr < CellHllyy

So we have

we have that V), € H?

s—j+r With control of its norm,
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17 = Z ol =TT 7[R (42V,)]-

a€S1,bES:
Now we shall use that S; is interpolating for M? hence, still by theorem 3.1 we have that S is

interpolating for M®, Vr < s so we can apply the domination lemma 9.4 :

Ny
1
[R" (7aVu)| < N > IR (H,y,)|
v=1

with1 <v <N, ||HVM||HP7 < C(S1)!|Vullg»  and H,y, not depending on a € Sy nor on b € Ss.
s—j+r s—j+r

So, because of the — we need to control uniformly in v, terms of the form
1
- -
To:= Y |l 70| TR (Hy)l.
a€S1,bES:

But now we use proposition 6.3 which tells us for [ —q¢ > 2 :

Z |%|liq <C(5) 1

a€Sy
and the same for S,

>0 < (s
beSs
Hence porting in 7§
Ty < (C(S1)C(S2)) ™| R (Hy)| -
Now taking the H” norm we get
175l o < (C(S)C(S2) ™R (Hop) |
but recall that
|Hoplly < COSWallr = IR ol < O Vil

and

WVallge_ . < CollHullge
and

1Hullge < COH g
and

e < Call Hll e
and

[1H [ g < Callhll o,
so concatenating we get
1 T5 | yp < CaCLCHC(S1)C(S2) 11l o
and the proof is complete. |

8 Dual boundedness and interpolating sequences in H”.

The Sobolev embedding theorem gives, in R",

1 1
feWIRY) = fe LR, - = -2
Here we are on the manifold 0B which is of dimension 2n—1, and with complex tangential derivatives

of order 2s and normal conjugate derivative of order s.

27



Thanks to Folland and Stein [16], theorem 2, which we iterate and which we apply with @ = 0
or by use of Romanovskii [20], theorem 7, we have a Sobolev anisotropic embedding in Heisenberg
group, which is also a representation of the boundary of the ball B

f e H!B) = fe HY(B), é = (8.14)

=N =
:'I%

Theorem 8.1 Let S C B be a dual bounded sequence for H?(B), then S is dual bounded for H(B)

1 1
with — = — —
q D

Proof.
Saying S dual bounded in H?(B) means, with k,, the reproducing kernel for H2(B),
3C >0, Va € S, 3p, € HE(B) :: pa(b) = bupllkeall, Pall,, < C.

3w

1
But by use of anisotropic Sobolev embeddings (8.14) we have, with — =

3C >0, fe HY(B) = f e HIB), [|fll, <Clfll,,
On the other hand we have .
||k:s7a||s,p =(1- |a|2)87?>

1 s
hence with — = — — — we get
n

p
lkoally = (1 —lal*) ™5 = (1= [a]*) ™57 = (1= |a]*)" ™7 = |lksall, -
So we have a dual sequence for S in HY(B), namely {p,}qcs itself, doing
3C >0, Ya € S, 3p, € HI(B) :: pa(b) = dapllkall,s Ipall, < C,
which means that S is dual bounded in HY(B). [

9

==
S|lw

S interpolating for H?(B) means
YA€ P(S), 3f € HY(B) :Va € S, f(a) = Aallkall,
so we have f € H'(B), |f]l, < C|/f]l,, such that
Va €5, f(a) = Adllkall,
1 1
hence we interpolate [P(S) sequences in HY(B) for — = — — i, but not ¢7(S) sequences so this is

qg p n
not the H%(B) interpolation !
Corollary 8.2 Let S C B be a dual bounded sequence for HY(B), then S is Carleson for H?(B).

Proof.
This is exactly the result in [7], because S is dual bounded in H%(B) hence Carleson for all H"(B).
|

The first structural hypothesis (see [5]) is true for these spaces :

Lemma 8.3 we have
2
Vr > 1, ko(a) = [[kallz2 = [|kall o | Kall -
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Proof.
We have
2\s—n/p’
Kall gz = (1 = af*)>="
and
2\s—n /7! 2\s—n/r 2\2s—n
all gy kol g = (1= lal*)*=" (1 = [a*)* ™" = (1 = |a]")?
hence
2\s—n 2 2\2s—n
kallzz = (1 = lal*)*™2 = [lkall 2 = (1 = la*)?
which proves the lemma. ]
Recall that we shall say that S is a H? weighted interpolating sequence for the weight w = {w, }aes
if
VA€ P(S), Af € HY =Va € S, f(a) = Aawa k|

By use of lemma 8.3 we get

Theorem 8.4 Let p > 1 and suppose that S is dual bounded in HP, then S is a H! weighted
interpolating sequence for the weight {(1 — |a|2)s}a65 with the bounded linear extension property.

Proof.
Consider the dual sequence {p,}scs in H?, given by the dual boundedness, it verifies
3C >0, Va € S, ||pallgr < C, Vb € S, pa(b) = bap || kal| 1y -
Let, for A € El(S)

)\aa
=2 pmu

a€eS
we have

h(a) = Aaka(a) = Aa(L — [af")>"
which is the right value. As its norm we get

”h”H1 Zp\ | paHk H C”)\”Zla
aes
because, using proposition 2.5 we get
kq ka
puri— || < Cullpall || < Culloallar < C.C u
Hka”Hg’/ H1 ”ka”Hg/ o

E]

For the second structural hypothesis we have

1 1 1
Lemma 8.5 Letp,r € [1,00] and q such that — = — + — then we have
r P 4q
2\—s
1Kall gy > (1= al™) (| Kall pr [1Kall -

Proof.
We have
2\s—n/r
Kall g = (1 = [a]*)*="/
and
s—n 2\s—n 2\2s—n/r
kall ot all o = (1= lal*)*="/P(1 = [af*)*/% = (1 — |a|*)*~"/
hence
2\—s
1kall gy > (1= al™) (| Kall o 1Kl o
which proves the lemma. ]
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Now we are in position to get an analogous result to theorem 6.1 in [5] by an analogous proof.

1 1 1
Theorem 8.6 Let S be a sequence of points in B such that, with — = —+ —, and p < 2,
q

”
e S is dual bounded in HY. Y
e S is Carleson in H1(B).
Then S is a H' weighted interpolating sequence for the weight {(1 — |a|*)*}ecs with the bounded
linear extension property.

Proof.
Consider the dual sequence {p,}.cs in H?, given by the hypothesis, it verifies
3C >0, Va € S, ||pallgr < C, Vb € S, pa(b) = dap || kall 17 -
Now we set a(2)
z
Aapa(l = |al*)? z :
Z HkaHHg’HkaHHg

aesS

We get
ka(a)
HkaHHg’ HkaHHg
and using the first structural hypothesis, lemma 8.3, we get
2\s
h(a) = Aa(1 = |a[")*[|Kall gy,
hence h interpolates the correct values.
Clearly h is linear in A, and it remains to estimate the norm of h.

Va € S, h(a) = \(1—|al*)*pa(a)

Proof of the estimates.

In order to do this, we proceed as in [5] :
let {€s}acs € R(S) be a Rademacher sequence of random variables, we set, with Va € S, A\, =
MaVa, p € 1P, v e explicitly :

a o . r
fha '= ——=5, Vg = |A¢|” With a = —;
B | Al .

then we got Ao = ftae, € P, v € €0 and [l = W14 = 1IN = 1AL =

Now set
Z) = Z:uaeapa(z) ; g(ea Z) = Z Va(l - |a’|2)8€a ka(z)

a€s a€s ”kaHHg’”ka”Hr
We have E(fg) = h hence
1l rr = IECf ) -
By lemma 2.2 we get ||E(fg)||THST < E(||fg||rHsr) and by proposition 2.5 we get ”ngHg < CSHfHHgHQHHga
SO

IE Ny < E(f9lley) < CIE( H1)- (8.15)

(1- |a|2)s||ka||Hq
Set v, = e have g(e, 2) Va€aVa
Fall g Tl =2 I3 HHq
Because S is ¢ Carleson by assumption we get
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30> 0 Ye, [lglte <> vl .
a€esS
Let us compute v, :

2)s s s—n/q’
(= JoP)Bhllys (= JaP)y(1 = a7
||ka||H§' ||k:a||HST (1 — |a|2)5_"/1’7(1 — |a|2)s—n/r’
1 1 1

a <

because — = — + —. We see here that the weight (1 — |a|*)® compensates the second structural
r p g

hypothesis, which is given by lemma 8.5.

So we get

||g||H§ < Cq”””zq(s)'
Putting this in (8.15) we get

1Al = 1B Dy < CEASNarlglng) < Ol las)BUL ) (8.16)

Now we use that p < 2 to get, because r < p < 2,
r 2 r
E([1fl7z) < @A Nz))7?
and H? is of type p so, with f = Z,uaeapa(z), we get

ags
ENAFNY? < T Ikal” llpally)
hence, because Va € S, ||pallgr < C, we get

aesS
E(F N7 )" < T,Cllpllgo-

Putting this in (8.16) we get

Iy < CscqToClIV | gagu) 14llga-
Hence finally

1Pl iy = NECF Oy < CocaToClvllgalll o
which proves the theorem because |[A|l,» = [|||s0 ]l 4]l so- |

9 Appendix.

9.1 Technical lemmas.

With the notations of section 6 and 7, let .S = {ai,..., an}, fix a € S and set v = =, to ease the
notations. Also if f € H?, we set fU) .= RIf.

Lemma 9.1 We have, with m := min (l,j), Vj,l € N,
RI(y'h) =4 Fo;(2) + 1Y F(2) + -+ 11— 1) - - (L= m + D)y F4(2) (9.17)
where the functions Fy ;(z) do not depend on 'l for k < m.

Proof.
By induction on j. For j = 1 we have :
R(v'h) = +'htD) 4+ 15!~y W,
hence
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Vi>1, Fou =hWY, Fip=~Wh,
so (9.17) is true.
Suppose that (9.17) is true for j and let us see for j + 1.
Suppose that [ > j, we have
R = ROV (W) = o R(Fay) + 11 (0O Fs(2) + ROR)) +- -+
+I(l—1)-- (l—k;+1)7 (U Fk 1;(2) + R(Fy ;) + ..t }
=)= Dy GOy (2)+ROE )= 1) (1= )= (10 Fy ).

Hence we set

Foje1 = R(Fy ) = hUHY,

and

\V//{J, 1 S k S m, Fk,j+1 = ’)/(l)Fk_Lj(Z) + R(de)
and the last one

Fiprgen =YV F ().
If I =j : the formula (9.17) read

R](’Ylh) = ’}/lF(],j(Z) + l’}/lilF’l,j(Z) + -+ l'F}7](Z)
hence we get

Rj+1(’ylh) = R(’)/lFQJ'(Z) + l’yl_lFLj(Z) + .+ l!/yF’l—l,j) + Z'R(F}J)

So again
FO,jJrl = R<F0,j)7
and
Vi, 1<k<Il—1, Fjn=7YF1;(2) + R(Fyj)
but
Fj=7YF_1
and

Fiyij0 = R(Fy)
which is formula (9.17) with m =1 =min (j + 1,1) .
If | < j: by use of formula (9.17) with m = [ = min (j,[) we get
Rj+1(’ylh) = R(’)/IFQJ‘ + l’yl_lFLj + s + Z'EJ)
hence again
Fo 41 = R(Fo,),

and
\V//{J, 1 S k S [ — 1, Fk,j+1 = ’y(l)Fk_l,j(Z) + R(de)
and
Fje1 =7V F_; + R(Fy).
Clearly the F} ;11 do not depend on [, for k& < m, because the F} ; do not. |

Lemma 9.2 We have, with o, constants independent of v and of h :
Vk < j, Frj= apR(v*h) + ap 1y RI(vF1R) + - -+ ary" R (vh) 4 gy, (9.18)

Proof.
To get Fy; we take [ = 1in (9.17) so we get
Ri(yh) = vhY) + Fy ; = Fy; = RI(yh) — yhY
So it is true for £ =1 and any [ > 1 because F ; is independent of .
Suppose it is true up to k ; let us see for k£ + 1.
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We choose [ =k +1, j > lin (9.17), we get
RI(YHh) = M09 4 (k + D F(2) + - 4 (k4 DIy Fyy + (B + 1) Fip g,

hence

(k+ 1) Fpry = Ry h) =Y — (B + )7 Fy(2) — - = (k+ 1)y Fyy
and assuming the decomposition (9.18) for all the F,,, ;, m <k, we get that the formula is true for
k+1. |

Proposition 9.3 (Ezclusion) We have, with m := min (l, j),
Vil €N, RI(y'h) =" Ay ORI (v7h),
where the A, are constants independent of v and h.

Proof.
This is trivial if [ < 7, just take A, = 0 for ¢ <! and A; = 1. Now take [ > j + 1.
From lemma 9.1 we get
Vil €N, RI(3Hh) =7 Fog(2) + 1y B (2) oA L= 1)« (L= m+ DY B y(2)
and with lemma 9.2 we replace the functions Fj ; to get what we want

Vj,leN, Ri(y ZA V4RI (49R). ]

q=0

N be an interpolating sequence in B for HY, of

=1,

N
VieN, Vj<s, Vhe H?, Vg < N, 3H, € H? =:Va € S, |RI(+\h)] NZ |RI(H,
< (

So Hy depends on l,j and h, but not on a and we have 1 <q < N, ||H,||» )thHHp
Proof.
We have by deﬁnition of v,
Yo (2) Ze "8(q, %) € ML, 18(g, Mlpe < C(S).
By lemma 6.1 with Ql(k,z) =0 x Bk, 2) and [ Qi(k, )| e < C(S),

~
I times

N
Yon(2)! = Gilm.2) = 1 307", 2)
q=1

SO
’YGm Ze e Ql q,z
and
1 N
R(Vam Zeq Ql q,z :Nze qu] Ql q,z ) )
So

RO < % D 1R (@ia 2,
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hence setting
Vz € B, Hy(z) := Qi(q,2)h(z)
we have that H, is independent of a € S and

1H | p < 1Q(a, Mgz 1l gz < CCS) 1R -
This ends the proof of the lemma. |

Lemma 9.5 (Inclusion) Let v € MY and h € H?, then there are constants A, such that

J
Vil RI(y)h =) AR RU(R)).

q=0

Proof.
By induction on j. For j = 1 we have R(v'h) = R(y")h 4+ v'R(h) hence
R(y")h = R(v'h) —~+'R(h),
so it is true. Suppose it is true for any ¢ < 7 then we have
J Jj—1
RI(y'h) =Y CIRI(y)R'™U(h) = RI(/)h+ Y CIRI(Y ) R7(h)
q=0 q=0
hence

R = B (o) — 3 IR (1), (9.19)

q=0
Now because ¢ < j we have, with k := R'"9(h),
q

R(y)k = AumR" ('R (k)

m=0
hence . .
Rk =) AgmPR" (Y RT(RITUR)) = Y Agm R (Y R (R)).
m=0 m=0
Replacing in (9.19) we get the lemma. |
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