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The aim of this paper is to provide a simple model with a time-varying Hurst index. Such models should be both the simplest possible and t well the real Hurst index. Moreover this would avoid a numerical artefact pointed out in this article. For this, after a recall on fBm, mBm and statistical estimation of the Hurst index, including a time-varying one, we propose a tting test for a model with a time-varying Hurst index. Then an approach is given to select the most simple model.

Introduction

The most famous centered Gaussian process is the Brownian motion. One of its generalisations is the fractional Brownian motion (fBm) introduced in 1940 by Kolmogorov [START_REF] Kolmogorov | Wienersche Spiralen und einige andere interessante Kurven in Hilbertchen Raume[END_REF] as "Gaussian spirals in Hilbert space" and popularised since 1968 by Mandelbrot and Van Ness. The fBm is the unique H-self-similar Gaussian process with stationary increments up to a multiplicative constant, where 0 < H < 1 denotes the Hurst index. Case H = 1/2 corresponds to the Brownian motion. The multifractional Brownian motion (mBm) is hence dened from the fBm but with a time-varying Hurst index, which can be encountered in many dierent kinds of applications:

In turbulence, [START_REF] Papanicolaou | Wavelet based estimation of local Kolmogorov turbulence[END_REF] denote that "the power law itself [i.e. the Hurst index, . . . ] and the multiplicative constant are not constants but vary slowly" in [START_REF] Papanicolaou | Wavelet based estimation of local Kolmogorov turbulence[END_REF], whereas Lee (2003) uses mBm with a regularly time-varying Hurst index for the air velocity, see [START_REF] Lee | Characterization of turbulence stability through the identication of multifractional Brownian motions Nonlinear Processes in[END_REF]Fig. 5,p. 103].

In a statistical study on magnetospheric dynamics, [START_REF] Wanliss | Space storm as a phase transition[END_REF] point out that an abrupt change in Hurst index can be observed a few hours before a space storm in solar wind [START_REF] Wanliss | Space storm as a phase transition[END_REF].

In systems biology, [START_REF] Marquez-Lago | Anomalous diusion and multifractional Brownian motion: simulating molecular crowding and physical obstacles in systems biology[END_REF] uses mBm to simulate molecular crowding that matches the statistical properties of sample data, whereas [START_REF] Lim | Modeling Single-File Diusion by Step Fractional Brownian Motion and Generalized Fractional Langevin Equation[END_REF] use mBm with piecewise constant Hurst index to model single le diusion that is the motion of chemical, physical or biological particules in quasi-one-dimensional channel [START_REF] Lim | Modeling Single-File Diusion by Step Fractional Brownian Motion and Generalized Fractional Langevin Equation[END_REF].

On the other hand, quantitative nance has been the most important eld of application of both time series and stochastic processes for the last fty years. Actually, fBm was revived during the 1960's by Mandelbrot to also serve as a model for speculative prices, as we read in its posthumous autobiography [START_REF] Mandlebrot | The fractalist. Memoir of a Scientic Maverick[END_REF]. However, the ecient market hypothesis has lead to reject fBm as an admissible model for stock price. So, since the 1970's, the use of martingale models has become mainstream in quantitative nance. Unfortunately enough, from time to time, nancial crises highlight the fact that the martingale model is just a good approximation for nancial assets, but presents some drawbacks mainly during such crises. Each crisis reinforces the investigation of new or alternative models [START_REF] Rásonyi | Rehabilitating Fractal Models in Finance[END_REF]. But, the main objection to fBm, as an admissible model for stock prices, is the existence of an arbitrage opportunity for such a fBm with a constant and known Hurst index. To put it into a nutshell, an arbitrage opportunity means the possibility of producing a positive return from zero investment by clever trading. For a fBm with known and constant Hurst index, it is possible to make an arbitrage, with a strategy based on innitely small meshes of times and without transaction cost [START_REF] Rogers | Arbitrage with fractional Brownian motion[END_REF][START_REF] Shiryaev | On arbitrage and replication for fractal models[END_REF][START_REF] Cheridito | Arbitrage in Fractional Brownian Motion Models[END_REF], which turn to be quite nonrealistic conditions. Moreover this objection is not applicable for generalisations of fBm that allows a Hurst index varying with time or frequency, see e.g. [START_REF] Bertrand | Some generalization of fractional Brownian motion and Control[END_REF][START_REF] Bertrand | Financial Modelling by Multiscale Fractional Brownian Motion[END_REF][START_REF] Bardet | Denition, properties and wavelet analysis of multiscale fractional Brownian motion[END_REF][START_REF] Bertrand | Modelling NASDAQ series by sparse multifractional Brownian motion[END_REF] and the references therein.

An economic complementary point of view is developed in [START_REF] Bianchi | Pathwise Identication of the memory function of multifractional Brownian motion with application to nance[END_REF][START_REF] Bianchi | Modeling Stock Prices by Multifractional Brownian Motion: An Improved Estimation of the Pointwise Regularity Quantitative[END_REF][START_REF] Bianchi | Ecient Markets and Behavioral Finance: a comprehensive multifractal model[END_REF][START_REF] Bianchi | Multifractional Processes in Finance[END_REF][START_REF] Frezza | Modeling the time-changing dependence in stock markets[END_REF] Theoretical explanations are then developed by economists Bianchi, Pianese, Pantanella and

Frezza [START_REF] Bianchi | Modeling Stock Prices by Multifractional Brownian Motion: An Improved Estimation of the Pointwise Regularity Quantitative[END_REF][START_REF] Bianchi | Ecient Markets and Behavioral Finance: a comprehensive multifractal model[END_REF][START_REF] Bianchi | Multifractional Processes in Finance[END_REF][START_REF] Frezza | Modeling the time-changing dependence in stock markets[END_REF]. To sum up, arbitrage opportunities for fBm are possible when the Hurst index is constant and known in advance, but not when it is time-varying and random. Moreover, periods with a Hurst index that signicantly diers from 1/2 can be explained by behavioural economics. For periods where H(t) < 1/2 the market overreacts, which means in probabilistic term, that the increments of the (log)price process are negatively correlated (antipersistence), whereas for periods where H(t) > 1/2 the market underreacts, which means that the increments of the (log)price process are positively correlated (persistence). In behavioural nance, underreaction is due to overcondence of investitors, see e.g. [START_REF] Bianchi | Multifractional Processes in Finance[END_REF]Table 1,p. 13]. Recall that the case H = 1/2 corresponds to independence of the increments and to eciency of the market.

The next logical step is to assume that the Hurst index is itself a stochastic process, that is to say with irregular paths as the multifractional process with random exponent (MPRE) [2].

However, we will show in this paper that this choice is counterproductive as this complex model contains a statistical artefact. On the contrary, we here look for a model as simple as possible with a time-varying Hurst index, which can still be random. By using a tting test we describe a way of model selection.

In the rest of the paper our plan will be the following: In a rst section, we set the framework and explain the underlying ideas. Next in a second section, we recall the denition and main properties of fBm, mBm and statistical estimation of the Hurst index. Then in a third section we present the tting test, we apply it to reject a stochastic Hurst index, then we provide the application to select the simplest model with a time-varying Hurst index. All technical proofs are postponed in appendices. 

(s), B H (t) = σ 2 2 |s| 2H + |t| 2H -|t -s| 2H for all (s, t) ∈ R 2 .
(

) 1 
The fBm has stationary increments, it admits dierent representations and can be also viewed as a Gaussian eld depending both on the time t and the Hurst index H. For instance, the harmonisable representation of the fBm considered as a Gaussian eld is given by [2,[START_REF] Benassi | Elliptic Gaussian random processes[END_REF]. In order to allow very general probabilistic models, new generalisations of fBm or mBm have been introduced with a Hurst index which can be very irregular and even be itself a stochastic process, namely multifractional process with random exponent (MPRE) or generalised multifractional process (GMP) [2,3].

B(t, H) = ˆR e itξ -1 |ξ| H+1/2 dW (ξ), for all t ∈ R, (2) 
Actually, we cannot know whether uctuations reect reality or are just artefacts byproducts of statistics. This phenomenon is brought to light by the estimation of a time-varying Hurst index for a process X being a fBm with a constant Hurst index H = 0.7. Indeed Fig. 1 

H = 0.7.
feeling that the Hurst index is itself a stochastic process. In fact, the theoretical Hurst index is constant. But if we assume that this theoretical Hurst index is a time-varying function, namely t → H(t), then at each time t the Hurst index is estimated on a small vicinity around the time t. Consequently, the sampling uctuation induces that the time-varying estimator H(t) becomes a stochastic process. The same statistical artefact, providing the feeling that the estimated Hurst index behaves as a stochastic process, would occur for any time-varying Hurst index H(t) which is a C 1 function or a piecewise C 1 function. To sum up, the estimated Hurst index is a stochastic process, while the theoretical Hurst index is a deterministic function regularly varying with time.

The same phenomenon appears in the article of Bardet This remark led us to introduce a sparse mBm in [START_REF] Bertrand | Modelling NASDAQ series by sparse multifractional Brownian motion[END_REF] for application to nancial processes.

The guiding idea is to choose a simple function H(t) which describes the real dataset as well as a more complicated one.

Let us stress that in this section, we have chosen to provide the underlying ideas, avoiding any technicality. 

X(t) = B(t, H(t)). (3) 

Estimation of the Hurst index for fBm and mBm

Let X be a fBm or a mBm. We observe one path of size n of the process X with mesh h n , namely X(0), X(h n ), . . . , X(nh n ) . For simplicity and without real restriction, we can assume that h n = 1/n. We use quadratic variations to estimate the Hurst index. Let us rst give the underlying idea: for a fBm with Hurst index H, we have

E |X (t + h n ) -X(t)| 2 = |h n | 2H . (4) 
On the one hand, the stationarity of the increments of fBm allows us to estimate the variance by the empirical variance and to get a central limit theorem (CLT). On the other hand, we can estimate the variance at M dierent meshes of time, that is h n , 2h n , . . . , M h n ; then linear regression of the logarithm of the empirical variance at those dierent meshes provides us an estimator of the Hurst index H. Moreover, a CLT is in force. Eventually, by a freezing argument, we can shift the technique from fBm to mBm.

More precisely, let a = (a 0 , . . . , a ) be a lter of order p, (t k ) k=1,...,n a family of observation times, and X a fBm or a mBm. We dene the associated increment by

∆ a X(t k ) = q=0 a q X(t k-q ). (5) 
Saying that a is a lter of order p ≥ 1 means that q=0 a q q k = 0 for all k < p and q=0 a q q p = 0.

For example, a = (1, -1) is of order 1, whereas a = (1, -2, 1) is of order 2. Next, for a lter a = (a 0 , . . . , a ) and any integer j ∈ N, we dene its j th dilatation a (j) = (a

(j) 0 , . . . , a (j) j ) by a (j) ij = a i and a (j) k = 0 if k / ∈ jN.
Since X is a zero mean Gaussian process, ∆ a (j) X(t k ) is also a zero mean Gaussian variable for any time t k and any dilatation j. For a fBm, that is when

X = B H , its variance is Var [∆ a (j) B H (t k )] = C a × j n 2H .
This variance can be estimated by the empirical variance. However, our aim is the estimation of the Hurst index for a mBm. The guiding idea is that a mBm behaves locally as a fBm. Therefore, we localise the estimation and we compute the empirical variance on a small vicinity of each time t, namely on

V(t, ε n ) = t k such that |t k -t| ≤ ε n ,
where ε n → 0 and ε n /h n → ∞ as n → ∞. To sum up, given a lter a and a real number t ∈ (0, 1), we set

V n (t, a) = 1 v n t k ∈V(t,εn) ∆ a X(t k ) 2 (7) 
where v n = 2ε n /h n = 2ε n × n is asymptotically equivalent to the number of times t k belonging to V(t, ε n ). Eventually, we calculate the empirical variance at M dierent scales j/n for j = 1, . . . , M . Then we set

H n (t) = A t 2AA t ln(V n (t, a (j) ) j=1,...,M (8) 
where A is the row vector dened by

A j = ln(j) - 1 M M ν=1 ln(ν) for j = 1, . . . , M (9) 
and A t the transpose vector (column vector).

Actually the number v n of terms in sum [START_REF] Benassi | Identication of the Hurst index of a step fractional Brownian motion[END_REF] converges to innity when n → ∞, thus a CLT is in force with a Gaussian limit. Then, the estimator of the Hurst parameter is also asymptotically Gaussian. More precisely, we can state the following proposition:

Proposition 2.1 (Coeurjolly, 20052006) Let a = (1, -2, 1) be a lter of order 2 as dened by ( 6), (t k = k/n) k=1,...,n a family of observation times, X = B H(t) a mBm with Hurst index H(t) and ∆ a X the associate increments dened by [START_REF] Bardet | Nonparametric estimation of the local Hurst function of multifractional processes[END_REF]. Then H n (t) a.s.

-→ n→∞ H and

√ 2ε n • n × H n (t) -H(t) D -→ n→∞ G (t) (10) 
where G (t) is a zero mean Gaussian process with covariance structure given by

Var(G (t)) = 1 2 A 4 1 π a H(t) (0) 2 k∈Z π a H(t) (k) 2 × A t (U U t )A (11) 
f or all t ∈ (0, 1), and cov(G (t 1 ), G (t 2 )) = 0 f or all (t 1 , t 2 ) ∈ (0, 1)

2 with t 1 = t 2 (12) 
where the row vector A is dened by ( 9) and U = (1, . . . , 1). Moreover, for a lter a, and an integer k, the quantity π a H (k) is dened by

π a H (k) := - 1 2 q=0 q =0 a q a q |q -q + k| 2H . ( 13 
)
To sum up, we set

γ H(t) := Var(G (t)) = Λ H (t) × (B.U.U t .B t )
with

Λ H (t) = 2 π a H(t) (0) 2 k∈Z π a H(t) (k) 2 (14) 
and

B = A t 2 A 2 .
Proof. The proof can be obtained by combining [START_REF] Coeurjolly | Identication of multifractional Brownian motion[END_REF][START_REF] Coeurjolly | Erratum: Identication of Multifractional Brownian Motion[END_REF]. However, a more direct and natural proof is provided in Appendix A. 2 3

Statement of our main results

We propose a tting test for a time-varying Hurst index and apply it to a model selection approach, leading to the simplest model.

Fitting test

As the selection of a good probabilistic model is the guideline of this article, the idea is now to give an adequacy test to select admissible estimators and reject others. For this, we use the previous convergence result. Actually, the CLT given in Proposition 2.1 leads to the following convergence in law: 

√ 2ε n • n × H n (t) -H(t) D -→ n→∞ G ( 
H n (t) -H(t) 2 L 2 (]0;1[) := 1 n n k=1 | H n (t k ) -H(t k )| 2 with (t k = k n ) k=1,.
..,n a family of observation times. Applying the previous CLT, we get the convergence in law

2nε n H n (t) -H(t) 2 L 2 (]0;1[) D -→ n→∞ 1 n n k=1 |G (t k )| 2 . ( 15 
)
Set

V n := 1 n n k=1 |G (t k )| 2 . (16) 
We can deduce a CLT on V n as stated in the following proposition Proposition 3.1 Under the same assumptions than in Proposition 2.1. Let V n be dened by [START_REF] Breuer | Central Limit Theorems for Non-Linear Functionals of Gaussian Fields[END_REF]. We can rewrite V n as follows

V n = µ n + S n × ξ n (17) 
with µ n = E(V n ) its mean, S n = Var(V n ) its standard deviation. Then we get the convergence in distribution to a standard normal deviate

ξ n D -→ n→∞ N (0; 1). (18) 
Proof. The proof is given in Appendix B. 2

As n converges to innity, we have

E(V n ) -→ ˆ1 0 γ H(t) dt and n 2 × Var(V n ) -→ ˆ1 0 (γ H(t) ) 2 dt.
By replacing these quantities by their limits, we can formulate the tting test:

Theorem 3.1 Under the same assumptions as in Proposition 2.1 and Proposition 3.1, we can test the eligibility of a function H(t) with the theoretical Hurst index. Namely set :

(H 0 ) : H(t) = H(t) (19) 
versus (H 1 ) :

H(t) = H(t).
Then H(t) is an eligible model if, for a given risk α,

|T n ( H(t))| ≤ u α
where T n ( H(t)) is dened by

T n ( H n (t)) = 2nε n H n (t) -H(t) 2 L 2 (]0;1[) -´1 0 γ H(t) dt 2 n ´1 0 (γ H(t) ) 2 dt 1/2 (20) 
where γ H(t) := Var G (t) is given by Formula ( 11) and u α denotes the fractile of order

(1 -α 2 )
of the standard normal law.

Proof. The proof is given in Appendix B. 2

For instance, given a risk α = 0.05, we accept the null hypothesis if T n ( H(t)) ∈ [-1.96, 1.96].

Application to model selection

As a by-product, the naive time-varying estimator H(t) of the Hurst index could not be chosen as a valid model. Namely, it is not an admissible one. Nevertheless, the assumption

H(t) = H(t)
in the null hypothesis ( 19) is asymptotically rejected, as stated in the following corollary

Corollary 3.1 if H(t) = H n (t) we get T n ( H(t)) = -´1 0 γ H(t) dt 2 n ´1 0 (γ H(t) ) 2 dt 1/2 = - n 2 × γ H(t) L 1 (]0;1[) γ H(t) L 2 (]0;1[) -→ ∞ as n → ∞
and then, as we are in the critical region, the null hypothesis (H 0 ) is rejected.

Proof. This result also better ts the interpretations proposed by scholars from applied elds: it is simpler to interpret a slowly varying function taking values larger or smaller than the nominal value [START_REF] Papanicolaou | Wavelet based estimation of local Kolmogorov turbulence[END_REF][START_REF] Lee | Characterization of turbulence stability through the identication of multifractional Brownian motions Nonlinear Processes in[END_REF][START_REF] Wanliss | Space storm as a phase transition[END_REF][START_REF] Bianchi | Ecient Markets and Behavioral Finance: a comprehensive multifractal model[END_REF][START_REF] Frezza | Modeling the time-changing dependence in stock markets[END_REF].

Let us add that the selected model is both simpler and ts better the theoretical value of the Hurst index H(t). Consequently, this study opens the way to further research like online detection of change of slope of the Hurst index or study of the dierent kinds of families of model.

Remark A.1 Formula ( 22) implies that Var [∆ a X(t k )] = Ctte × h 2H n , with h n = 1/n. This proves and generalises formula (4).

Proof. 1) and 2) Since X = B H is a zero mean Gaussian process, we deduce that ∆ a X(t k ) is a zero mean Gaussian vector, with covariance structure given by cov

[∆ a X(t k ), ∆ a X(t k )] = q=0 q =0 a q a q cov B H (t k-q ), B H (t k -q ) = σ 2 2 q=0 q =0 a q a q |t k-q | 2H + |t k -q | 2H -|t k-q -t k -q | 2H = - σ 2 2 q=0 q =0 a q a q |t k-q -t k -q | 2H ,
where the last equality follows from Eq.( 6). Next, by setting t k = k/n, we can deduce Formula [START_REF] Guyon | Convergence en loi des H-variations d'un processus gaussien fractionnaire[END_REF]. As pointed in Lemma A.1, Formula ( 22) follows from Formula (21).

3) See Coeurjolly (2001, lemma 1). 2

Step 1: CLT for quadratic variations of fBm.

For a fBm X = B H , the variance of the increments does not depend on the time t k , see Lemma A.1 Formula (22). Thus from [START_REF] Benassi | Identication of the Hurst index of a step fractional Brownian motion[END_REF] we get

V n (t, a) = Var [∆ a X(t k )] ×    1 + 1 v n t k ∈V(t,εn)) ∆ a X(t k ) 2 E ∆ a X(t k ) 2 -1    = σ 2 1 n 2H π a H (0) × 1 + V n (t, a) (24) 
where

V n (t, a) := 1 v n t k ∈V(t,εn)) Z (a) k 2 -1 and 
Z (a) k := ∆ a X(t k ) E ∆ a X(t k ) 2 . (25) 
For notational convenience, we drop the index (a) in the sequel, and we note that for k = 1, . . . , n, Z k forms a stationary family of zero mean standard Gaussian variables with correlation

r(k) = corr(Z j , Z j+k ) = π a H (k) π a H (0) (26) 
where π a H is dened by [START_REF] Bianchi | Modeling Stock Prices by Multifractional Brownian Motion: An Improved Estimation of the Pointwise Regularity Quantitative[END_REF]. Actually,

Z 2 k -1 = H 2 (Z k ) where H 2 (x) = x 2 -1
is the Hermite polynomial of order 2. By using Breuer-Major Theorem [START_REF] Breuer | Central Limit Theorems for Non-Linear Functionals of Gaussian Fields[END_REF], a CLT with a Gaussian limit is in force as soon as k∈Z r(k) 2 < ∞. Combining Formula (26) and Bound [START_REF] Kolmogorov | Wienersche Spiralen und einige andere interessante Kurven in Hilbertchen Raume[END_REF] in Lemma A.1, we deduce that r(k) 2 = O(k 4H-4p ). The series k∈Z k 4H-4p converges if and only if 4H -4p < -1 or equivalently i H < p -1/4. So, for p = 1 which corresponds to the case a = (1, -1) and quadratic variations, we get a CLT i H < 3/4; whereas for p = 2 with a = (1, -2, 1), and the socalled generalised quadratic variations (GQV), the CLT is in force for all Hurst index H ∈ (0, 1).

For these reasons we do prefer the use of GQV rather than simple quadratic variations, see also Istas-Lang or Guyon-Leon.

Note that for a = (1, -2, 1), we get π a H (0

) = 4 -2 2H . The rate of convergence is √ v n = √ 2nε n . Moreover, E H 2 (Z k ) • H 2 (Z k ) = 2 E Z k • Z k 2 .
This relation combined with [START_REF] Mandlebrot | The fractalist. Memoir of a Scientic Maverick[END_REF] involves the following calculation of the variance

E √ v n • V n (t, a) 2 = 1 v n × k,t k ∈V(t,εn) k ,t k ∈V(t,εn) E(H 2 (Z k ) • H 2 (Z k )) = 2 v n × k,t k ∈V(t,εn) k ,t k ∈V(t,εn) E(Z k • Z k ) 2 = 2 v n × |k|<vn v n -|k| × π a H (k) 2 π a H (0) 2 = 2 π a H (0) 2 × |k|<vn 1 - |k| v n × π a H (k) 2 But, k∈Z π a H (k) 2 < ∞ since p = 2, therefore lim n→∞ E √ v n • V n (t, a) 2 = 2 π a H (0) 2 × k∈Z π a H (k) 2 .
To sum up, Breuer-Major Theorem induces that

√ v n • V n (t, a) D -→ n→∞ G(t)
where G(t) is a zero mean Gaussian process with variance (see formula [START_REF] Bianchi | Ecient Markets and Behavioral Finance: a comprehensive multifractal model[END_REF])

Var(G(t)) = 2 π a H (0) 2 × k∈Z π a H (k) 2 := Λ H (t)
for all t ∈ (0, 1) and covariance cov(G(t 1 ), G(t 2 )) = 0 for all pair (t 1 , t 2 ) ∈ (0, 1) 2 with t 1 = t 2 .

Step 2: CLT for estimation of the Hurst index of fBm.

The estimator of Hurst index as dened in ( 8) is obtained by linear regression of the log-variance with the j-dilated lters a (j) . Stress that the j-dilated lters a (j) behave like the a lter with mesh h (j) n = j/n instead of 1/n. Then, Eq.( 24) is replaced by

V n (t, a (j) ) = σ 2 j n 2H π a H (0) × 1 + V n (t, a (j) ) (27) 
with

√ 2ε n × n • V n (t, a (j) ) D -→ n→∞ G j (t). (28) 
By taking the logarithm of Eq. ( 27), we have

ln V n (t, a (j) ) = 2H ln(j/n) + ln σ 2 π a H (0) + ln 1 + V n (t, a (j) ) .
Next, by Eq. ( 28), we get

ln V n (t, a (j) ) 2H ln(j/n) + ln σ 2 π a H (0) + 1 √ 2ε n × n ln G j (t).
Therefore the Hurst index H can be estimated as the slope by linear regression of the family {ln V n (t, a (j) ), j = 1, . . . , M } onto the predictor ln(j/n) j=1,...,M . Thus

H n (t) = A t 2AA t ln V n (t, a (j) ) j=1,...,M . (29) 
The right Hurst index is obtained by canceling the stochastic part. By doing so, it comes

H = A t 2AA t ln σ 2 (j/n) 2H π a H (0) j=1,...,M then H n (t) -H = A t 2AA t ln V n (t, a (j) ) -ln σ 2 (j/n) 2H π a H (0) j=1,...,M = A t 2AA t ln P j n (t) j=1,...,M
where we have set

P j n (t) = n j 2H × V n (t, a (j) ) σ 2 π a H (0) 
.

On the other hand, Eq. ( 27) implies

P j n (t) = 1 + V n (t, a (j) ) .
Moreover Eq. ( 28) implies that V n (t, a (j) ) converges to 0 as n → ∞. Therefore ln P j n (t) V n (t, a (j) ).

Next, in order to get the covariance of G stated in Prop. 2.1, we look at the following covariance structure:

cov √ 2ε n n H n (t 1 ) -H , √ 2ε n n H n (t 2 ) -H = cov √ 2ε n n A t 2AA t ln P j n (t 1 ) j=1,...,M , √ 2ε n n A t 2AA t ln P j n (t 2 ) j=1,...,M cov √ 2ε n n A t 2AA t V n (t 1 , a (j) ) j=1,...,M , √ 2ε n n A t 2AA t V n (t 2 , a (j) ) j=1,...,M = cov A t 2AA t √ 2ε n n V n (t 1 , a (j) ) j=1,...,M , A t 2AA t √ 2ε n n V n (t 2 , a (j) ) j=1,...,M cov A t 2AA t G j (t 1 ) j=1,...,M , A t 2AA t G j (t 2 ) j=1,...,M
where we have successively used Eq. ( 30) and Eq. ( 28). Since cov(G(t 1 ), G(t 2 )) = 0 for all pair (t 1 , t 2 ) ∈ (0, 1) 2 with t 1 = t 2 (see Step 1), we get

lim n→∞ cov √ 2ε n n H n (t 1 ) -H , √ 2ε n n H n (t 2 ) -H = 0
for all pair (t 1 , t 2 ) ∈ (0, 1) 2 with t 1 = t 2 , which induces [START_REF] Bianchi | Modeling Stock Prices by Multifractional Brownian Motion: An Improved Estimation of the Pointwise Regularity[END_REF]. Similarly, when t 1 = t 2 , we get [START_REF] Bianchi | Pathwise Identication of the memory function of multifractional Brownian motion with application to nance[END_REF].

Step 3: Freezing

The freezing technics insure that mBm behaves almost as a fBm of Hurst index H(t 0 ) in a small enough vicinity of time t 0 . Therefore our strategy is to show that the freezing error is negligible with respect to the rate of convergence of the estimator of the Hurst index for fBm. We recall the Ayache-Taqqu Theorem and its corollary Theorem A.1 (Ayache, Taqqu (2005)) Let B(t, H) be the eld dened by Eq. ( 3). There exists an event Ω * with P(Ω * ) = 1 on which B(t, H) is C ∞ with respect to the variable H, uniformly for all (t, H) in any compact subset

[-T, T ] × [a, b] ⊂ R × (0, 1).
Proof. Corollary A.1 Let X be a mBm as dened by Eq. (3). Assume that t → H(t) is an η-Hölder continuous function, then there exists a random variable C 1 (ω) with nite moment of every order such that for all t 0 ∈ (0, 1) and ε > 0, we have

X(t) -B H(t 0 ) (t) ≤ C 1 (ω) × ε η , f or all t ∈ V(t 0 , ε).
We can easily deduce from [START_REF] Rogers | Arbitrage with fractional Brownian motion[END_REF] and condition [START_REF] Samorodnitsky | Stable non-Gaussian Random Processes[END_REF], that

  2 v n t k ∈V(t 0 ,εn) ∆ a B H 0 (t k ) • ∆ a ξ(t k )   + V n (ξ, t 0 , a (j) )
is innitely smaller than V n (B H 0 , t 0 , a (j) ). Next Taylor expansion induces

ln V n (X, t, a (j) ) = ln V n (B H 0 , t, a (j) ) + 2 vn t k ∈V(t 0 ,εn) ∆ a B H 0 (t k ) • ∆ a ξ(t k ) + V n (ξ, t 0 , a (j) ) V n (B H 0 , t 0 , a (j) )
By Cauchy-Schwarz inequality, we get

1 v n t k ∈V(t 0 ,εn) ∆ a B H 0 (t k ) • ∆ a ξ(t k )V n (B H 0 , t 0 , a (j) ) ≤ V n (B H 0 , t, a (j) ) 1/2 × V n (ξ, t 0 , a (j) ) 1/2 which implies ln V n (X, t, a (j) ) = ln V n (B H 0 , t 0 , a (j) ) + 2µ θ 1/2 n + θ n (34) 
where µ ∈ [-1, 1] and θ n = V n (ξ, t 0 , a (j) )

V n (B H 0 , t, a (j) ) .

Lemma A.2 Under the same assumptions as previously,

θ n ≤ C 3 (ω) × ε 2η n ( 35 
)
where the variable C 3 has nite moment of every order and η = η -H 0 α .

Proof. Cor. A.1 implies the bound [START_REF] Rogers | Arbitrage with fractional Brownian motion[END_REF], which induces V n (ξ, t 0 , a (j) ) ≤ 2 C 1 (ω) n -2αη . Indeed,

V n (ξ, t 0 , a (j) ) is the average of the quantities ∆ a ξ(t k ) 2 for t k ∈ V(t 0 , ε n ), which are uniformly bounded by 2 C 1 (ω) n -2αη . Next, by using formula [START_REF] Lim | Modeling Single-File Diusion by Step Fractional Brownian Motion and Generalized Fractional Langevin Equation[END_REF] we get

θ n ≤ 2 C 1 (ω) j 2H 0 σ 2 π a H (0) × 1 + V n (t 0 , a (j) ) × n -2(αη-2H 0 ) ≤ 2 j 2H 0 σ 2 π a H (0) × C 1 (ω) 1 + V n (t 0 , a (j) ) × ε 2η n
This proves the bound [START_REF] Wanliss | Space storm as a phase transition[END_REF] with

C 3 (ω) = 2 j 2H 0 σ 2 π a H (0) × C 1 (ω) 1 + V n (t 0 , a (j) )
.

Then, it remains to prove that C 3 has nite moments, namely that

E    1 1 + V n (t 0 , a (j) ) l    < ∞,
for all l ∈ N. For this, by Hölder inequality, we get

∀l ∈ N, E |C 3 (ω)| l ≤ E C lq 1 (ω) 1 q × E 1 (1 + V n (t 0 , a (j) )) lp 1 p
where 1 p + 1 q = 1. We deduce from Corollary A.1 that

E C lq 1 (ω) < +∞.
Thus it remains to prove that the other part as nite moments of any order :

E 1 (1 + V n (t 0 , a (j) )) lp < +∞.
But from Formula (24) (see Step 1) we get

1 + V n (t 0 , a (j) ) = 1 v n t k ∈V(t,εn)) ∆ a B H 0 (t k ) 2 Var ∆ a B H 0
where ∆ a B H 0 (t k ) is a centered Gaussian random variable. Therefore we get

1 + V n (t 0 , a (j) ) = 1 v n t k ∈V(t,εn)) Z k 2 
where Z k is a standard random variable dened by [START_REF] Lee | Characterization of turbulence stability through the identication of multifractional Brownian motions Nonlinear Processes in[END_REF] as

Z k := ∆B H 0 (t k ) Var ∆B H 0 (t k ) . Moreover random variables Z k are weakly dependent, which implies that 1 + V n (t 0 , a (j) ) D -→ n→∞ χ 2 
dn , see e.g. Istas-Lang 1997 [START_REF] Istas | Quadratic variation and estimation of the local Hölder index of a Gaussian process[END_REF] or Ayache-Bertrand-Lévy-Vehel 2007 [1], with d n → +∞ as n → +∞. We can deduce that

E 1 (1 + V n (t 0 , a (j) )) lp E 1 (χ 2 dn ) lp = ˆ∞ 0 1 t lp t dn 2 -1 e -t/2 dt = ˆ∞ 0 t dn 2 -lp-1 e -t/2 dt < ∞.
This nishes the proof of Lemma A.2. 2

Next using (29) combined with (34) and Lemma A.2, we get

H n (X, t) = A t 2AA t ln V n (X, t 0 , a (j) ) j=1,...,M = A t 2AA t ln V n (B H 0 , t 0 , a (j) ) + 2µ θ 1/2 n + θ n j=1,...,M = H n (B H 0 , t) + O(ε η n ).
But for each xed Hurst index H 0 , the following CLT, given by ( 10), holds

√ 2ε n • n × H n (B H 0 , t 0 ) -H 0 D -→ n→∞ G (t).
This CLT remains in force for mBm X as soon as the freezing error is negligible with respect to the rate of convergence of the estimator of the Hurst index for fBm, namely Using CLT given in Proposition (2.1), by Formula (10) we get this convergence in law: so this condition is satised and CLT (Th.3.1 in [1]) holds. We hence have proved that CLT [START_REF] Cheridito | Arbitrage in Fractional Brownian Motion Models[END_REF] holds. Then, by denition of V n , we have

√ 2ε n • n × H n (t
E(V n ) = 1 n n k=1 Var G (t k ) = 1 n n k=1 E G (t k ) 2 = 1 n n k=1 γ H(t k ) (40) 
and 

Var(V n ) = 1 n 2 Var( V n ) = 2 

  : Firstly, by analysing dierent nancial time series (Standard & Poor's 500 between 1982 and 2002, and Japanese Nikkei Index N225 between 1984 and 2004) [11, Fig.9 and Fig.10, p.275] Bianchi (2005) pointed out that the Hurst index estimated on sliding windows is varying with time between 0.45 and 0.65. Then Bianchi and Pianese (2008) [12, Fig.6 p. 583 and Fig.7, p.584] checked that the same empirical evidence is veried for the US Dow Jones Index (daily observed from 1928 to 2004) and for the UK FTSE 100 Index (daily observed from 1984 to 2005) with a Hurst index H(t) varying between 0.3 and 0.6 in both cases.

  -Surgailis [5, Fig. 2 and Fig. 3, pages 1023-1024]. Similarly, simulations presented in [13, Fig. 3, p.6] and [20, Fig. 1, p.1514] show a path of a mBm with a sine functional Hurst index H(t) with mean 1/2 and the corresponding time-varying Hurst index H(t). Clearly, the theoretical Hurst index H(t) is a C ∞ function [20, Fig. 1 (c), p.1514], whereas the estimated Hurst index H(t) looks like a continuous Hölder function with regularity α < 1, see [20, Fig. 1 (d), p.1514].

√

  2ε n • n.By taking ε n = n -α we get the following conditionn -α ε := φ(η ).This nishes the proof of Step 3 (freezing) and consequently the proof of Proposition 2.1.BProof of our main result -Theorem 3.1

  Recall that for the fBm, the pointwise Hölder exponent and Hurst index are equal. Therefore, a natural idea is to replace the Hurst index H by a function of time t → H(t) in one of the representations of the fBm. Simultaneously, Peltier, Lévy-Véhel (1995) proposed to replace the Hurst index H by a time-varying one in the moving average representation, whereas Benassi et al.(1997) replaced it by a time-varying one in the harmonisable representation. Actually, both constructions correspond to the same process. Then, to be self-contained, we rely on the work of Ayache and Taqqu

2

Recalls on fBM, mBm, and statistical estimation of Hurst index 2.1 Recalls on fBm and mBm One of the most famous Gaussian random processes is the Brownian motion. At the beginning of the 20th century, this process was developed by Louis Bachelier for stock options in nance and next by Albert Einstein in order to describe successive movements of atomic particules independent one from another. Then the mathematical theory is mainly due to Robert Wiener in the 1920's; he proved results on the non dierentiability of the paths and the one-dimentional version is kwown as the Wiener process. The fractional Brownian motion (fBm) can hence appear as a generalisation of the Brownian motion. After the paper of Mandelbrot and Van Ness (1968), modeling by a fBm became more and more widespread, and the statistical study of fBm was developed during the decades 1970's and 1980's. Nevertheless, in many applications the real data do not perfectly t with fBm. More precisely, statistical tests reject the null hypothesis H = 1/2 as it should be for Brownian motion or diusion processes, but any alternative hypothesis would also be rejected when the Hurst index is varying with time. In fact, access to larger and larger datasets has shown that real time series look locally like a fBm, but with a time-varying Hurst index t → H(t) rather than a constant one. This intuition was translated in mathematical modelling, by the introduction of multifractional Brownian motion (mBm) by Peltier, Lévy-Véhel (1995), and Benassi et al. (1997). Indeed, mBm is a continuous Gaussian process whose pointwise Hölder exponent evolves with time t. in [2] so we dene the multifractional Brownian motion (mBm) as follows: Denition 2.1 Let (t, H) -→ B(t, H) be the Gaussian eld dened by (2). The multi-fractional Brownian motion is dened by

  t) for all t ∈ (0; 1) where (G (t), t ∈]0; 1[) is a zero mean Gaussian process which covariance structure is known. If H(.) is the theoretical index, then this means that we can explain the L 2 risk function, namely the MISE (Mean Integrated Squared Error) by E H n (t) -H(t) 2 L 2 (]0;1[) , where

  Note that such a model is in the same time simpler and ts better the theoretical value of the Hurst index as it does not contain the statistical artefact. We are hence able to look for a suitable model; the aim is to determine the most simple model that is eligible

	for test (19). This model selection is a kind of Portemanteau test. Thus, for this, set
	M 0 the family of constant models H(t) = H
	M 1 the family of ane models H(t)
	M 2 the family of piecewise ane models H(t)
	M 3 the family of quadratic models H(t)
	In a certain way, our work conrms and enhances the multifractional process with random
	Hurst exponent (MPRE) introduced by Ayache and Taqqu (2005) [2]. Indeed, the Hurst exponent
	could be random without being itself a stochastic process. For instance a piecewise ane (or
	quadratic function) with change of slope at random times is still a random exponent, without
	having to oscillate roughly, see e.g. [10, Fig. 6, p. 15]. So, we have disentangled a random time-
	varying Hurst exponent from a roughly oscillating exponent resulting from a statistical artefact.

The proof is deduced from Theorem 3.1. 2

The next idea is to determine the simplest possible function H(t) that will describe the theoretical Hurst index H(t).

M 4 the family of piecewise quadratic models H(t).

We successively test models extracted from the previous families. Those families of models are classied by order of complexity of function H(t). We stop and use the rst eligible model, namely for family M i with the lowest i. By construction of these families, the selected model is thus the simplest one.

Conclusion

To sum up, the naive multifractional estimator H n (t) is too complicated and has too many uctuations that appear as a statistical artefact as shown in Fig.

1

. Moreover, we have built a tting test which asymptotically rejects H n (t) as an appropriate estimator of the time-varying theoretical Hurst index H(t). Next, this tting test is used to select the simplest time-varying Hurst index H(t) from a given families of models, by a Portemanteau procedure. We have proposed in Sect. 3.2 a family of piecewise polynomial functions. However dierent choices are possible such as logistic functions, see e.g.

[START_REF] Lee | Characterization of turbulence stability through the identication of multifractional Brownian motions Nonlinear Processes in[END_REF] Fig. 2, p.101

].

  for all t ∈ (0; 1) where (G (t), t ∈]0; 1[) is a zero mean Gaussian process which covariance structure is known. If H(.) is the real index, then this means that we can explain the L 2 risk function, Then, as G (t k ) are Gaussian random variables with zero mean, we just keepn j=1 cov G (t k ); G (t j ) = Var G (t k ) = E G (t k ) 2 .Var G (t k ) .From Proposition (2.1), formula[START_REF] Bianchi | Pathwise Identication of the memory function of multifractional Brownian motion with application to nance[END_REF] gives us the expression of Var G (t k )Var G (t k ) = γ H(t k ) .

	since			
	max k∈{1,...,n} γ H(t k )	max k∈{1,...,n} γ H(t k )
				≤	2
	Next, it comes that	n k=1 2 × (γ H(t k ) ) 2	2n × min k∈{1,...,n}	γ H(t k )
			n	
	max k∈{1,...,n}	j=1	cov G (t k ); G (t j )	= max k∈{1,...,n}
	On 2
	and it comes that			
					2
			Var G (t k ) 2 = 2 × γ H(t k )	.	(39)
	Then sucient condition (36) becomes
			lim n-→∞	= 0

) -H(t) D -→ n→∞ G (t) namely the MISE (Mean Integrated Squared Error) by E H n (t) -H(t) 2 L 2 (]0;1[) ,

where

H n (t) -H(t) 2 L 2 (]0;1[) := 1 n n k=1 | H n (t k ) -H(t k )| 2 the

other hand, by denition of V n and by assumption (37) of independence of Gaussian random variables G (t k ), we can write that

Var( V n ) = n k=1 Var G (t k ) 2 . (

38

)

As G (t k ) is Gaussian, the variance of G (t k ) 2 can be explained in the following way

Var G (t k ) 2 = E G (t k ) 2 -E(G (t k ) 2 ) 2 = E G (t k ) 4 -(E[G (t k ) 2 ]) 2 = 2 × Var(G (t k ))

max k∈{1,...,n} γ H(t k ) n k=1 2 × (γ H(t k ) ) 2

* This research is partially supported by grant ANR-12-BS01-0016-01 entitled Do Well B . The third author acknowledges also support from Grant CNRS/DGRS 10/R15-01 entitled "Statistique des processus de type fractal".

Proof. Indeed, from Th. A.1 and Hölder continuity, we get:

for all t such that |t -t 0 | ≤ ε. By setting C 1 (ω) = M 1 • C 2 (ω), this nishes the proof of Cor. A.1.

2

From Cor. A.1, we then get

η is the Holder regularity of map t → H(t), for t in the vicinity of t 0 , and | ξ(t)| ≤ C 1 (ω) ε η n where the random variable C 1 has nite moment of every order.

We deduce from [START_REF] Rásonyi | Rehabilitating Fractal Models in Finance[END_REF] that

Our strategy, in the rest of the proof of Step 3, is to make an expansion in the vicinity of time t 0 , then around B H 0 . Indeed, since ε n = n -α , for all t ∈ V(t 0 , ε), we have

The condition

insures that ∆ a ξ(t) is innitely smaller than ∆ a B H 0 (t), uniformly for all t ∈ V(t 0 , ε). Then V n , as dened by [START_REF] Benassi | Identication of the Hurst index of a step fractional Brownian motion[END_REF], becomes

with (t k = k n ) k=1,...,n a family of observation times. Applying the previous CLT, we get (15):

We can hence use it under the following form

Set V n dened by ( 16)

We here aim at proving that V n satises a CTL.

Proof. Up to a multiplicative factor, it sucies to prove the CLT for V n dened by

For this, we can apply the CLT proved in [1, Th

V n = µ n + S n × ξ n and consequently Formula (17)