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Analysis for the fast vector penalty-projection solver of incompressible multiphase Navier-Stokes/Brinkman problems

1 Introduction to the mathematical models Notations. We use below the usual functionnal setting for the unsteady Navier-Stokes equations, see [START_REF] Leray | Essai sur les mouvements plans d'un liquide visqueux que limitent des parois[END_REF][START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF][START_REF] Ladyzhenskaya | The mathematical theory of viscous incompressible flow, Gordon and Breach[END_REF][START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF][START_REF] Temam | Navier-Stokes Equations; Theory and Numerical Analysis[END_REF][START_REF] Raviart | Finite Element Methods for the Navier-Stokes Equations[END_REF][START_REF] Boyer | Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models[END_REF]. Let Ω ⊂ R d (d = 2 or 3 in practice) be an open bounded and connected set with a Lipschitz continuous boundary Γ = ∂ Ω and n be the outward unit normal vector on Γ . Due to some further technicalities, we also assume that either Γ is of class C 1,1 or Ω is a convex domain.

In particular, we use . 0 for the L 2 (Ω )-norm, . 1 for the H 1 (Ω )-norm, .

-1 for the H -1 (Ω )-norm, (., .) 0 for the L 2 (Ω ) inner product and ., . -1 for the duality pairing between H -1 (Ω ) and H 1 0 (Ω ). We define below some Hilbert spaces with their usual respective inner products and associated norms:

H div (Ω ) = u ∈ L 2 (Ω ) d ; ∇ • u ∈ L 2 (Ω ) H div,0 (Ω ) = u ∈ L 2 (Ω ) d ; ∇ • u ∈ L 2 (Ω ), u • n = 0 on Γ H = u ∈ L 2 (Ω ) d ; ∇ • u = 0, u • n = 0 on Γ H rot (Ω ) = u ∈ L 2 (Ω ) d ; ∇ × u ∈ L 2 (Ω ) d H 1 n (Ω ) = u ∈ H 1 (Ω ) d ; u • n = 0 on Γ L 2 0 (Ω ) = q ∈ L 2 (Ω ); Ω q dx = 0 .
For T > 0, we consider the following unsteady Navier-Stokes/Brinkman problem [START_REF] Khadra | Fictitious domain approach for numerical modelling of Navier-Stokes equations[END_REF][START_REF] Caltagirone | Physique des Écoulements Continus[END_REF] governing incompressible non-homogeneous or multiphase flows with Dirichlet boundary conditions for the velocity v |Γ = 0 on Γ . The force term f ∈ L 2 (0, T ; H -1 (Ω ) d ) and initial data v(t = 0) = v 0 ∈ H, ϕ(t = 0) = ϕ 0 ∈ L ∞ (Ω ) with ϕ 0 ≥ 0 a.e. in Ω , are given. We focus on the model problem [START_REF] Fabrie | L p -Integrability of the second order derivatives for the Neumann problem in convex domains[END_REF][START_REF] Ahusborde | A primal formulation for the Helmholtz decomposition[END_REF][START_REF] Amrouche | Vector potentials in three-dimensional non smooth domains[END_REF], as a part of more complex fluid mechanics problems, e.g. [START_REF] Lifshitz | Fluid Mechanics[END_REF][START_REF] Lions | Incompressible models[END_REF], written below for isothermal configurations:

ρ (∂ t v + (v • ∇)v) -2 ∇ • (µ d(v)) + µ K -1 v + ∇p = f in Ω × (0, T ) (1) 
∇ • v = 0 in Ω × (0, T ) (2) 
∂ t ϕ + v • ∇ϕ = 0 in Ω × (0, T ) (3) 
where d(v) denotes the strain rate tensor:

d(v) = 1 2 ∇v + (∇v) T .
The permeability tensor K in the Darcy's drag term is supposed to be symmetric, uniformly positive definite and bounded in Ω . We refer to [START_REF] Khadra | Fictitious domain approach for numerical modelling of Navier-Stokes equations[END_REF][START_REF] Ph | A direction splitting algorithm for incompressible flow in complex geometries[END_REF][START_REF] Kadoch | A volume penalization method for Navier-Stokes flows and scalar advection-diffusion with moving obstacles[END_REF][START_REF] Caltagirone | Physique des Écoulements Continus[END_REF][START_REF] Caltagirone | Discrete Mechanics, Fluid Mechanics Series[END_REF] and the references therein for the mathematical or numerical modelling of flows inside complex fluid-poroussolid heterogeneous systems with the Navier-Stokes/Brinkman or Darcy equations. Let us mention [START_REF] Caltagirone | On the fluid-porous interaction; application to the calculation of efforts exerted on an obstacle by a viscous fluid[END_REF][START_REF] Ph | Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows[END_REF][START_REF] Ph | A penalization method to take into account obstacles in incompressible viscous flows[END_REF][START_REF] Ritz | A numerical continuous model for the hydrodynamics of fluid particule systems[END_REF][START_REF] Khadra | Fictitious domain approach for numerical modelling of Navier-Stokes equations[END_REF][START_REF] Ph | A fictitious domain model for the Stokes/Brinkman problem with jump embedded boundary conditions[END_REF] for the mathematical analysis and numerical validations of the fictitious domain model using the so-called L 2 or H 1 volume penalty methods to take account of porous or solid obstacles in flow problems with the Navier-Stokes/Brinkman equations.

The equation [START_REF] Amrouche | Vector potentials in three-dimensional non smooth domains[END_REF] for the positive phase function ϕ governs the transport by the flow of the interface Σ , either between two fluid phases, or between fluid and solid phases, respectively in the case of two-phase fluid flows or fluid-structure interaction problems. A level-set function can be used as well. The previous set of equations must be supplemented by some given state laws of the form: ρ = ρ(ϕ) and µ = µ(ϕ) which are given for both the density and viscosity fields. For example, we use in the numerical results for non-miscible two-phase flows the following laws with a volume (VOF) or discrete phase function ϕ ∈ [0, 1], the iso-surface ϕ = 0.5 denoting the sharp interface Σ separating the two phases:

ρ(ϕ) = ρ 1 (1 -H(ϕ -0.5)) + ρ 2 H(ϕ -0.5) µ(ϕ) = µ 1 (1 -H(ϕ -0.5)) + µ 2 H(ϕ -0.5)
where H(X) denotes the value of the Heaviside function equal to 0 for X < 0 and 1 for X ≥ 1. The function ϕ can be practically a volume of fluid (VOF) function, e.g. VOF-PLIC [START_REF] Youngs | Time-dependent multimaterial flow with large fluid distortion[END_REF] or SVOF [START_REF] Pianet | Simulating compressible gas bubbles with a smooth volume tracking 1-Fluid method[END_REF], or also a level-set function [START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF]; see [START_REF] Sarthou | The Sub-Mesh Penalty method[END_REF][START_REF] Sarthou | Eulerian-Lagrangian grid coupling and penalty methods for the simulation of multiphase flows interacting with complex objects[END_REF][START_REF] Trontin | Detailed comparisons of front-capturing methods for turbulent two-phase flow simulations[END_REF] for some improvements and comparisons.

The force f may include some volumic forces like the gravity force ρ g as well as the surface tension force f st to describe the capillarity effects at the phase interfaces. Thus we have:

f = ρ g + f st = ρ g + σ κ n |Σ δ Σ
where σ is the surface tension coefficient, κ the local curvature of the interface, n |Σ the outward unit normal to the interface (associated with one of the fluids) and δ Σ the Dirac measure supported by the interface Σ . Hence, our approach is essentially Eulerian using a non boundary/interface-fitted background mesh with a Lagrangian front-tracking of the sharp interfaces accurately reconstructed on the fixed Eulerian cartesian mesh, see e.g. [START_REF] Khadra | Fictitious domain approach for numerical modelling of Navier-Stokes equations[END_REF][START_REF] Vincent | Local penalty methods for flows interacting with moving solids at high Reynolds numbers[END_REF][START_REF] Trontin | Detailed comparisons of front-capturing methods for turbulent two-phase flow simulations[END_REF][START_REF] Sarthou | The Sub-Mesh Penalty method[END_REF][START_REF] Sarthou | Eulerian-Lagrangian grid coupling and penalty methods for the simulation of multiphase flows interacting with complex objects[END_REF][START_REF] Pianet | Simulating compressible gas bubbles with a smooth volume tracking 1-Fluid method[END_REF][START_REF] Vincent | Augmented Lagrangian and penalty methods for the simulation of two-phase flows interacting with moving solids. Application to hydroplaning flows interacting with real tire tread patterns[END_REF][START_REF] Ph | A direction splitting algorithm for incompressible flow in complex geometries[END_REF][START_REF] Kadoch | A volume penalization method for Navier-Stokes flows and scalar advection-diffusion with moving obstacles[END_REF] and the references therein. When non-isothermal configurations are considered, the advection-diffusion equation for the temperature θ must be added:

(ρc p ) (∂ t θ + v • ∇θ ) -∇ • (λ ∇θ ) = S θ in Ω × (0, T ) (4) 
supplemented by adequate initial and boundary conditions for the temperature or the heat flux which will be precised in the numerical results. In those cases, we also assume some given state laws: ρ = ρ(ϕ, θ ) and µ = µ(ϕ, θ ) for each phase, where the functions are continuous and positive, e.g. the state law of an ideal gas. Besides, we assume for sake of simplicity that: µ = µ(ϕ, θ ) ≥ µ 0 > 0. The case of nonhomegeneous velocity Dirichlet boundary conditions, for example with

v |Γ = v D ∈ L 2 (0, T ; H 1 2 (Γ ) d ) on Γ ,
also requires some given boundary conditions for ϕ on the inflow part Γ -of Γ where v D • n |Γ < 0. For homogeneous flows with constant density, the initial velocity v 0 can be taken in L 2 (Ω ) d . We refer to [START_REF] Simon | Nonhomogeneous viscous incompressible fluids: existence of velocity, density and pressure[END_REF][START_REF] Lions | Incompressible models[END_REF][START_REF] Boyer | Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models[END_REF] for the study of global existence of weak solutions to density-dependent Navier-Stokes problems.

The article is organized as follows. In the next Section 2, we describe in detail the (VPP ε ) method for the solution of non-homogeneous viscous flow problems (1-3), and we discuss the main differences and/or connections with other usual methods. We also justify that the method can be very fast if the penalty parameter ε is chosen sufficiently small by the asymptotic expansion of the discrete solution to the velocity penalty-projection step. The Section 3 is devoted to the basic construction of the method where we state the theoretical foundations and proves the theorems 1 and 2 justifying the name "vector (or velocity) penalty-projection" of the method. The last Section 4 before the conclusion deals with the theoretical analysis of the (VPP ε ) method for incompressible and unsteady homogeneous flow problems governed by the Navier-Stokes equations. More precisely, we prove in Theorem 3 the global solvability of the method as well as optimal and unconditional stability results in the case of Navier-Stokes problems with constant density.

The (VPP ε ) methods, analysed in the sequel to solve Darcy or Navier-Stokes problems, are briefly presented in the recent Conference paper [START_REF] Ph | A spectacular vector penalty-projection method for Darcy and Navier-Stokes problems[END_REF] and in the short Letter [START_REF] Ph | A fast vector penalty-projection method for incompressible non-homogeneous or multiphase Navier-Stokes problems[END_REF].

2 The fast vector-penalty projection method (VPP ε )

Description of the method

We present hereafter the two-step vector (or velocity) penalty-projection (VPP ε ) method with a penalty parameter 0 < ε 1. For

ϕ 0 = ϕ 0 ∈ L ∞ (Ω ) with ϕ 0 ≥ 0 a.e. in Ω , v 0 = v 0 ∈ L 2 (Ω ) d and p 0 ∈ L 2 0 (Ω )
given, the method reads as below with usual notations for the semi-discrete setting in time, δt > 0 being the time step.

For all n ∈ N such that (n + 1) δt ≤ T , find v n+1 , v n+1 and v n+1 , p n+1 ∈ L 2 0 (Ω ), ϕ n+1 ∈ L ∞ (Ω ), such that:

ρ n v n+1 -v n δt + (v n • ∇) v n+1 -2 ∇ • µ n d( v n+1 ) + µ n K -1 v n+1 + ∇p n = f n in Ω (5) with v n+1 = 0 on Γ ε ρ n δt v n+1 -∇ ∇ • v n+1 = ∇ ∇ • v n+1 in Ω (6) with v n+1 • n = 0 on Γ v n+1 = v n+1 + v n+1 , and ∇(p n+1 -p n ) = - ρ n δt v n+1
in Ω (7)

ϕ n+1 -ϕ n δt + v n+1 • ∇ϕ n = 0 in Ω . ( 8 
)
For non homogeneous Dirichlet conditions, we have:

v n+1 |Γ = v n+1 D and v n+1 • n |Γ = 0.
Here v n , p n are desired to be first-order approximations of the exact velocity and pressure solutions v(t n ), p(t n ) at time t n = n δt. Since the end-of-step velocity divergence is not exactly zero, the additional spherical part λ ∇ • v I with = -2µ/3 of the Newtonian stress tensor is included within the dynamical pressure gradient ∇p. Once the equations (5-8) have been solved, the advection-diffusion equation of temperature can be solved too for θ n+1 , e.g. with a standard linearly implicit Euler scheme, and we can find: ρ n+1 = ρ(ϕ n+1 , θ n+1 ) and µ n+1 = µ(ϕ n+1 , θ n+1 ).

For the sake of simplicity in the numerical procedure, a semi-implicit scheme where the nonlinear term is linearized by the first term is here chosen since it does not suffer from stability conditions. It can be also treated fully explicitly with a CFL-like stability condition. In any case, a CFL condition must be verified due to the explicit scheme [START_REF] Ph | A spectacular vector penalty-projection method for Darcy and Navier-Stokes problems[END_REF] generally used to solve the advection equation for the phase function ϕ. The error analysis of the fully implicit scheme is generally simpler but it also requires to use a quasi-Newton algorithm to solve the corresponding non linear system at each time step in the practical computations.

Remark 1 (Vector correction for Navier-Stokes/Brinkman problems.)

In order to get a method with a better consistency, specially in the case of variable permeability, the velocity correction [START_REF] Ph | A penalization method to take into account obstacles in incompressible viscous flows[END_REF] and pressure gradient correction [START_REF] Ph | Vector penalty-projection methods for the solution of unsteady incompressible flows[END_REF] steps are respectively replaced by:

ε ρ n δt + µ n K -1 v n+1 -∇ ∇ • v n+1 = ∇ ∇ • v n+1 in Ω (9) with v n+1 • n = 0 on Γ v n+1 = v n+1 + v n+1 , and ∇(p n+1 -p n ) = - ρ n δt + µ n K -1 v n+1 in Ω (10)
This actually corresponds to the (VPP ε ) method proposed in [START_REF] Ph | A spectacular vector penalty-projection method for Darcy and Navier-Stokes problems[END_REF][START_REF] Ph | A fast vector penalty-projection method for incompressible non-homogeneous or multiphase Navier-Stokes problems[END_REF] which is also analyzed and studied to solve anisotropic and heterogeneous Darcy problems in [START_REF] Ph | Convergence analysis of the fast vector penaltyprojection method for anisotropic heterogeneous Darcy problems[END_REF].

The consistency of the (VPP ε ) method is ensured with (7) since we have using the fact that v n+1 = v n+1 -v n+1 :

ρ n v n+1 -v n+1 δt + ∇(p n+1 -p n ) = 0 with v n+1 -v n+1 = v n+1 . (11) 
Then, summing this last equation with the prediction step (5), we get the evolution equation satisfied by the velocity field v n+1 in Ω with the first-order linear implicit Euler scheme:

ρ n v n+1 -v n δt + (v n • ∇) v n+1 -2 ∇ • µ n d( v n+1 ) + µ n K -1 v n+1 + ∇p n+1 = f n . ( 12 
)
The key feature of our method is to calculate an accurate and curl-free approximation of the momentum vector correction ρ n v n+1 in [START_REF] Ph | A penalization method to take into account obstacles in incompressible viscous flows[END_REF]. Indeed (6-7) ensures that ρ n v n+1 is exactly a gradient which justifies the choice for ∇φ n+1 = ∇(p n+1p n ) since we have:

ρ n δt v n+1 = 1 ε ∇ ∇ • v n+1 ⇒ ∇(p n+1 -p n ) = - 1 ε ∇ ∇ • v n+1 . ( 13 
)
From the mathematical point of view, since the domain Ω is connected and p 0 and ∇ • v n+1 (with v n+1 • n = 0 on Γ ) have a null average in Ω with the divergence formula, p n+1 ∈ L 2 0 (Ω ) for all n ∈ N such that (n + 1)δt ≤ T and the equivalence below holds:

∇(p n+1 -p n ) = - 1 ε ∇ ∇ • v n+1 ⇔ p n+1 -p n = - 1 ε ∇ • v n+1 . (14) 
However, we generally do not use the above result for practical algorithms to avoid round-off errors when ε is too small; see Remark 5. The (VPP ε ) method really takes advantage of the splitting method proposed in [START_REF] Ph | A new fast method to compute saddle-points in constrained optimization and applications[END_REF] for augmented Lagrangian systems or general saddle-point computations to get a very fast solution of [START_REF] Ph | A penalization method to take into account obstacles in incompressible viscous flows[END_REF]; see [9, Theorem 1.1 and Corollary 1.2, 1.3].

When we need the pressure field itself p n+1 , e.g. to compute stress vectors at each time step, it is calculated in an incremental way as an auxiliary step. We propose to reconstruct φ n+1 = p n+1p n from its gradient ∇φ n+1 given in [START_REF] Ph | Vector penalty-projection methods for the solution of unsteady incompressible flows[END_REF] as follows:

Auxiliary step: p n+1 = p n + φ n+1 with φ n+1 reconstructed from its gradient ∇φ n+1 = -

ρ n δt v n+1 in Ω . ( 15 
)
Since this reconstruction is not at all necessary to run the numerical process, it is described below in Remark 2.

Remark 2 (Reconstruction of φ n+1 = (p n+1p n ) from its gradient if necessary.) It is possible to reconstruct the discrete pressure field from its gradient calculated by the (VPP ε ) method with (15) on the meshed domain.

By circulating on a suitable path starting from a point on the boundary where φ n+1 = 0 is fixed and going through all the pressure nodes in the mesh, we get with the gradient formula between two neighbour points A and B using the mid-point quadrature:

φ n+1 (B) -φ n+1 (A) = B A ∇φ n+1 • dl = - B A ρ n δt v n+1 • dl ≈ - ρ n δt | v n+1 | h AB , (16) 
where h AB = distance(A, B). The field φ n+1 is calculated point by point from the boundary and then passing successively by all the pressure nodes. Hence, this fast algorithm is performed at each time step to get the pressure field p n+1 from the known field p n , if it is necessary.

The prediction step (5) being standard within splitting methods and its solution v n+1 belonging to H 1 0 (Ω ) d , we now state below that the original vector (or velocity) penaltyprojection step (6) is well-posed at each time step t n . For that, we need the hypothesis below, assuming that the density remains uniformly bounded and that no vacuum appears:

(H ) ρ n ∈ L ∞ (Ω ) and ∃ρ min > 0, ρ n (x) ≥ ρ min > 0 a.e. in Ω , ∀n ∈ N, n δt ≤ T. [START_REF] Ph | Convergence results for the vector penalty-projection and two-step artificial compressibility methods[END_REF] Lemma 1 (Well-posedness of the velocity correction step [START_REF] Ph | A penalization method to take into account obstacles in incompressible viscous flows[END_REF].)

For all v n+1 given in H div (Ω ), ρ n ∈ L ∞ (Ω ) satisfying the hypothesis (H ) in ( 17) and all ε > 0, δt > 0, there exists at each time step a unique solution v n+1 in H div,0 (Ω ) to the velocity correction step [START_REF] Ph | A penalization method to take into account obstacles in incompressible viscous flows[END_REF]. Moreover, √ ρ n v n+1 ∈ L 2 (Ω ) d and ρ n v n+1 is curl-free: ∇ × (ρ n v n+1 ) = 0 a.e. in Ω . Then ρ n v n+1 belongs to H rot (Ω ) and ∇ • ( v n+1 + v n+1 ) belongs to H 1 (Ω ) at each time step.

PROOF.

For all u ∈ H div (Ω ), we recall the Green's formula defining the continuous normal trace 

u • n |Γ in H -1 2 (Γ ),
Ω u • ∇φ dx + Ω ∇ • u φ dx = u • n, φ -1/2,Γ , for all φ ∈ H 1 (Ω ) u • n -1 2 ,Γ ≤ u Hdiv , where u 2 Hdiv = u 2 0 + ∇ • u 2 0 .
With ε = η δt, we define the bilinear form a(., .) in H div,0 (Ω ) × H div,0 (Ω ) and the linear form l(.) in H div,0 (Ω ) (for all v n+1 ∈ H div (Ω )) respectively by:

a(v, w) = η Ω ρ n v • w dx + Ω ∇ • v ∇ • w dx, ∀v, w ∈ H div,0 (Ω ) l(w) = Ω ∇ • v n+1 ∇ • w dx, ∀w ∈ H div,0 (Ω ).
Then, with the previous Green's formula and the boundary condition v n+1 • n = 0 on Γ , it is clear that the weak form of (6) reads at each time step:

a( v n+1 , w) = l(w), ∀w ∈ H div,0 (Ω ).
With the assumption (H ) in [START_REF] Ph | Convergence results for the vector penalty-projection and two-step artificial compressibility methods[END_REF], it is an easy matter to prove with the Lax-Milgram theorem, e.g. [START_REF] Čas | Les méthodes directes en théorie des équations elliptiques[END_REF][START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF], that the weak problem above admits a unique solution v n+1 in the Hilbert space H div,0 (Ω ) (as a closed subspace of H div (Ω )). Since ρ n is bounded, ρ n v n+1 belongs to L 2 (Ω ) d at each time step.

Conversely, we now interpret the weak form to show that v n+1 is the strong solution of (6) in some sense. By taking a smooth and compactly supported test function

w = ϕ in C ∞ c (Ω ) d = D(Ω ) d , we get for all η > 0 in the distribution sense η ρ n v n+1 -∇ ∇ • ( v n+1 + v n+1 ) , ϕ D ,D = 0, ∀ϕ ∈ D(Ω ) d .
Since both ∇• v n+1 and ∇• v n+1 belong to L 2 (Ω ) and thus having their gradients in

H -1 (Ω ) d , this implies that η ρ n v n+1 -∇ ∇ • v n+1 = ∇ ∇ • v n+1 in H -1 (Ω ) d ,
which means that v n+1 ∈ H div,0 (Ω ) is the strong solution to the velocity correction step [START_REF] Ph | A penalization method to take into account obstacles in incompressible viscous flows[END_REF] in the sense of

H -1 (Ω ) d . Since ρ n v n+1 belongs to L 2 (Ω ) d
, this equation is also satisfied in the sense of L 2 (Ω ) d in the form below:

η ρ n v n+1 -∇ ∇ • ( v n+1 + v n+1 ) = 0 a.e. in Ω .
Moreover, this implies that ∇ • ( v n+1 + v n+1 ) belongs to H 1 (Ω ) and since ρ n v n+1 is exactly a gradient, ρ n v n+1 is curl-free. Thus, ∇ × (ρ n v n+1 ) = 0 in the sense of H -1 (Ω ) d , and also in the sense of L 2 (Ω ) d , which completes the proof.

2 Remark 3 (Regularization property of the penalty method.)

From Lemma 1, it comes that the velocity divergence ∇

• ( v n+1 + v n+1 ) = ∇ • v n+1 be- longs to H 1 (Ω ) ∩ L 2 0
(Ω ) at each time step. From the pressure correction [START_REF] Cheaytou | Vector penalty-projection methods for incompressible fluid flows with open boundary conditions[END_REF], this implies that the pressure increment in time φ n+1 = p n+1p n belongs to H 1 (Ω ) ∩ L 2 0 (Ω ) too, and thus gets an extra regularity. This is due to the regularizing effect of the penalty method which will be observed several times further in the paper.

Remark 4 (Connection with the original idea of Caltagirone.)

Taking formally the limit of the vector penalty-projection step (6) when ε/δt tends to zero yields for a constant density ρ:

∇(∇ • v n+1 ) = -∇(∇ • v n+1 ) with v n+1 = v n+1 + v n+1 ∈ H 1 n (Ω )
. which corresponds to the original idea introduced in [START_REF] Caltagirone | Sur une méthode de projection vectorielle pour la résolution des équations de Navier-Stokes[END_REF]. However, such a vector projection with ε = 0 is ill-posed since the div operator has not a null kernel and the grad(div) operator has many zero eigenvalues; see the numerical computation of grad(div) spectrum in e.g. [START_REF] Ahusborde | A primal formulation for the Helmholtz decomposition[END_REF] with spectral methods. This has led to the introduction of the vector penaltyprojection methods proposed in [START_REF] Ph | Vector penalty-projection methods for the solution of unsteady incompressible flows[END_REF]. Indeed, the singular vector correction step has a unique solution only with an additional constraint for v n+1 , such that for example: ∇× v n+1 = 0 with v n+1 • n |Γ = 0. This is what the present (VPP ε ) method effectively carries out by calculating, with a penalty method, a curl-free vector correction ρ n v n+1 of the momentum; see Lemma 1.

Analogy and difference with other usual or less classical methods

Velocity penalty-projection and pressure gradient update versus projection methods

The (VPP ε ) splitting method uses a standard prediction step (5) which does not take the divergence-free constraint into account. The vector correction step (6-7) carries out an approximate divergence-free projection of the velocity, see Section 3, with the penalty parameter ε > 0 chosen as small as desired. The time increment of pressure p n+1p n is never used to calculate v n+1 -v n+1 . Moreover, the pressure field p n+1 is thus only updated by its gradient [START_REF] Ph | Vector penalty-projection methods for the solution of unsteady incompressible flows[END_REF], and it can be reconstructed very fast from its gradient or simply calculated with ( 14) for ε not too small, only as a post-processing step. Besides, the method gets completely rid of explicit pressure boundary conditions. Those are fundamental differences from all projection or penalty-projection methods, both for incompressible flows [START_REF] Chorin | Numerical solution of the Navier-Stokes equations[END_REF][START_REF] Temam | Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires I[END_REF][START_REF] Temam | Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires II[END_REF][START_REF] Taylor | Computational Methods for Fluid Flow[END_REF][START_REF] Temam | Navier-Stokes Equations; Theory and Numerical Analysis[END_REF][START_REF] Rannacher | On Chorin's projection method for the incompressible Navier-Stokes equations[END_REF][START_REF] Timmermans | An approximate projection scheme for incompressible flow using spectral elements[END_REF][START_REF] Prohl | Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations[END_REF][START_REF] Guermond | A projection FEM for variable density incompressible flows[END_REF][START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF][START_REF] Jobelin | A finite element penaltyprojection method for incompressible flows[END_REF][START_REF] Pyo | Gauge-Uzawa methods for incompressible flows with variable density[END_REF] or low Mach number dilatable flows [START_REF] Cor É | A multilevel FIC projection method for low Mach natural convection flows[END_REF][START_REF] Cor É | A multilevel local mesh refinement projection method for low Mach number flows[END_REF][START_REF] Jobelin | Une méthode de pénalité-projection pour les écoulements dilatables[END_REF], where a scalar correction step is performed by solving the homogeneous Neumann Poisson-like problem below for the pressure increment φ n+1 := p n+1p n :

∇ • δt ρ n ∇φ n+1 = ∇ • v n+1 in Ω , with ∇φ n+1 • n |Γ = 0. (18) 
Indeed, the corresponding pressure update for the (VPP ε ) method amounts, at each time step, to the Neumann-Poisson problem below with the known velocity correction v n+1 (obtained by taking the divergence in Eq. ( 7)):

-∆ φ n+1 = ∇ • ρ n δt v n+1 in Ω , with ∇φ n+1 • n |Γ = 0, φ n+1 = p n+1 -p n . ( 19 
)
However, the (VPP ε ) method does not require to solve [START_REF] Ph | A direction splitting algorithm for incompressible flow in complex geometries[END_REF] since the velocity and pressure gradient corrections are completely defined by the vector equations (6,7), despite it is always a pure Poisson problem even with variable density, which is not the case for the scalar projection methods. Very recently, a new scalar projection method was proposed in [START_REF] Guermond | A splitting method for incompressible flows with variable density based on a pressure Poisson equation[END_REF] for the variable density flow. However, this method seems restricted to weak mass density variations since only the case with a density ratio equal to 7 is computed. Besides, this method does not seem to be able to correctly compute the hydrostatic non-miscible diphasic case. Furthermore, we would like to point out that the pressure correction [START_REF] Ph | Error analysis of the penalty-projection method for the time-dependent Stokes equations[END_REF] with the scalar projection methods involves a spatial derivative of the mass density. Conversely, the vector form of equations [START_REF] Ph | A penalization method to take into account obstacles in incompressible viscous flows[END_REF][START_REF] Ph | Vector penalty-projection methods for the solution of unsteady incompressible flows[END_REF] for the (VPP ε ) method does not include any density spatial derivative, which is far more in agreement with the continuous equations (1,2).

Fast-(V PP) method versus scalar penalty-projection (SPP) method

In the scalar penalty-projection methods introduced in [START_REF] Jobelin | A finite element penaltyprojection method for incompressible flows[END_REF], an augmented Lagrangian term [START_REF] Fortin | Augmented Lagrangians: Application to the numerical solution of boundary value problems[END_REF][START_REF] Glowinski | Numerical Methods for Non-linear Variational problems[END_REF] with a parameter r ≥ 0 is added in the prediction step whereas a consistent exact divergence-free projection is carried out; see also [START_REF] Shen | On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations[END_REF] where the case r = 1/δt 2 is analysed. In the first versions of V PP method [START_REF] Ph | Vector penalty-projection methods for the solution of unsteady incompressible flows[END_REF], the main part of this augmentation term is splitted within the velocity correction step, which performs only an approximate divergence-free projection, since we have in fact:

r = r 0 + 1 ε
where r 0 ≥ 10 -4 ; see [START_REF] Ph | A new fast method to compute saddle-points in constrained optimization and applications[END_REF] and Remark 5. In the present V PP method, we have now completely eliminated the augmentation term from the prediction step, i.e. the method works well also with r 0 = 0. Indeed, we use the splitting augmented Lagrangian method recently proposed in [START_REF] Ph | A new fast method to compute saddle-points in constrained optimization and applications[END_REF] to get a fast solver for ε = 1/r small enough where the right-hand side is adapted to the left-hand side operator in the correction step. Hence, although the correction step in the V PP is completely different than in the SPP where a consistent incremental projection method is used, see Section 2.2.1, the results of both methods can be compared. In particular, we refer to the SPP methods with sufficiently large values of r for vanishing the splitting errors [START_REF] Jobelin | A finite element penaltyprojection method for incompressible flows[END_REF][START_REF] Jobelin | Une méthode de pénalité-projection pour les écoulements dilatables[END_REF], with theoretical analysis in [START_REF] Shen | On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations[END_REF][START_REF] Ph | Error analysis of the penalty-projection method for the time-dependent Stokes equations[END_REF][START_REF] Évri Ère | On the penalty-projection method for the Navier-Stokes equations with the MAC mesh[END_REF], and for drastically reducing the spurious pressure boundary layer or yielding good convergence results in the case of open or outflow boundary conditions; see [START_REF] Jobelin | A finite element penaltyprojection method for incompressible flows[END_REF][START_REF] Jobelin | Une méthode de pénalité-projection pour les écoulements dilatables[END_REF] for details.

Fast-(V PP) versus the first (V PP) method

By comparing the present fast-V PP with our first version of the V PP method [START_REF] Ph | Vector penalty-projection methods for the solution of unsteady incompressible flows[END_REF], we notice that we have now completely eliminated both the diffusion and convection term in the vector correction step [START_REF] Ph | A penalization method to take into account obstacles in incompressible viscous flows[END_REF]. This was in fact already suggested in [START_REF] Ph | Vector penalty-projection methods for the solution of unsteady incompressible flows[END_REF] from the numerical point of view, but we can now justify it by the theoretical considerations in Section 3. By this way, we lose a little consistency, e.g. the fact that v n+1 ∧ n |Γ = 0, but we gain back two crucial properties: ρ n v n+1 is exactly a gradient which is thus directly used for the pressure gradient update and the new correction step is far more faster and cheaper. Indeed, the fast discrete solution to the present (VPP ε ) method is confirmed by the numerical results given in [START_REF] Ph | A new fast method to compute saddle-points in constrained optimization and applications[END_REF][START_REF] Ph | A fast vector penalty-projection method for incompressible non-homogeneous or multiphase Navier-Stokes problems[END_REF][START_REF] Ph | Fast discrete Helmholtz-Hodge decompositions in bounded domains[END_REF]; see also Section 2.3.

Remark 5 (Pressure update.) From the mathematical point of view, we can simply calculate the pressure with ( 14) as made in the first version of the V PP method [START_REF] Ph | Vector penalty-projection methods for the solution of unsteady incompressible flows[END_REF]. However, we have observed that it is numerically far better to run the method by updating directly the pressure gradient [START_REF] Ph | Vector penalty-projection methods for the solution of unsteady incompressible flows[END_REF] to avoid the effect of round-off errors when ε is very small. Indeed, the first V PP method requires an augmentation parameter r 0 > 0 in the prediction step to act as a preconditioner in order to get the first-order convergence of the pressure with the time step when the penalty parameter ε is very small.

High-order accuracy in time and open boundary conditions

The method can be written by using the Crank-Nicolson or 2nd-order backward finite difference (BDF2) schemes, instead of the Euler scheme, with suitable Richardson's extrapolations to get the second-order accuracy in time as it is usually made for other methods: preconditioned fully coupled solver [START_REF] Ph | On the discretization and iterative solvers for viscous incompressible flow[END_REF][START_REF] Ph | Numerical solution of Navier-Stokes systems[END_REF], Uzawa augmented Lagrangian [START_REF] Fortin | Augmented Lagrangians: Application to the numerical solution of boundary value problems[END_REF][START_REF] Glowinski | Numerical Methods for Non-linear Variational problems[END_REF][START_REF] Glowinski | Finite element methods for incompressible viscous flow[END_REF] with finite elements or [START_REF] Caltagirone | On a local multigrid mesh refinement method for solving Navier-Stokes Equations[END_REF][START_REF] Khadra | Fictitious domain approach for numerical modelling of Navier-Stokes equations[END_REF] with finite volumes on the MAC staggered mesh, scalar incremental projection [START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF] or scalar penalty-projection [START_REF] Jobelin | A finite element penaltyprojection method for incompressible flows[END_REF][START_REF] Jobelin | Une méthode de pénalité-projection pour les écoulements dilatables[END_REF][START_REF] Évri Ère | On the penalty-projection method for the Navier-Stokes equations with the MAC mesh[END_REF] methods. In order to naturally increase the time accuracy, the following evolution version of the (VPP ε ) method is also considered [START_REF] Cheaytou | Vector penalty-projection methods for incompressible fluid flows with open boundary conditions[END_REF][START_REF] Handlovičová | Vector penalty-projection methods for outflow boundary conditions with optimal second-order accuracy[END_REF], where v 0 = v 0 and v 0 = 0 are given:

ρ n v n+1 -v n δt + (v n • ∇) v n+1 -2 ∇ • µ n d( v n+1 ) + µ n K -1 v n+1 + ∇p n = f n in Ω (20) with v n+1 = 0 on Γ ε ρ n v n+1 -v n δt -∇ ∇ • v n+1 = ∇ ∇ • v n+1 in Ω (21) with v n+1 • n = 0 on Γ v n+1 = v n+1 + v n+1 , and ∇(p n+1 -p n ) = -ρ n v n+1 -v n δt in Ω .( 22 
)
By summing the prediction ( 20) and V PP-correction (21) steps using [START_REF] Caltagirone | On the fluid-porous interaction; application to the calculation of efforts exerted on an obstacle by a viscous fluid[END_REF], it yields the same evolution equation ( 12) of the velocity field v n+1 as for the V PP version (5,6,7). It is shown in [START_REF] Cheaytou | Vector penalty-projection methods for incompressible fluid flows with open boundary conditions[END_REF][START_REF] Handlovičová | Vector penalty-projection methods for outflow boundary conditions with optimal second-order accuracy[END_REF] and see also [START_REF] Cheaytou | Etude des méthodes de pénalité-projection vectorielle pour les équations de Navier-Stokes avec conditions aux limites ouvertes[END_REF] that the suitable second-order versions of the (VPP ε ) method effectively reach the second-order accuracy in time for both velocity and pressure, not only with a Dirichlet boundary condition for the velocity, but also for an open boundary condition with a given traction on a part of the border Γ . It is well-known, see e.g. [START_REF] Guermond | Error analysis of pressure-correction schemes for the timedependent Stokes equations with open boundary conditions[END_REF][START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF] and the references therein, that this not at all the case with the scalar projection methods, even for the linear Stokes problem, except with the scalar penalty-projection method introduced and studied in [START_REF] Jobelin | A finite element penaltyprojection method for incompressible flows[END_REF][START_REF] Jobelin | Une méthode de pénalité-projection pour les écoulements dilatables[END_REF][START_REF] Évri Ère | On the penalty-projection method for the Navier-Stokes equations with the MAC mesh[END_REF][START_REF] Ph | Error analysis of the penalty-projection method for the time-dependent Stokes equations[END_REF].

A new two-step artificial compressibility method

By summing the prediction and correction steps (5-7), we get below the problem which is effectively satisfied by the discrete velocity v n+1 and pressure p n+1 and resulting from the proposed (VPP ε ) splitting method: see also the equations ( 12) and [START_REF] Cheaytou | Vector penalty-projection methods for incompressible fluid flows with open boundary conditions[END_REF].

ρ n v n+1 -v n δt + (v n • ∇) v n+1 -2 ∇ • µ n d( v n+1 ) + µ n K -1 v n+1 + ∇p n+1 = f n (23) (ε δt) ∇(p n+1 -p n ) δt + ∇ ∇ • v n+1 = 0 ⇔ (ε δt) p n+1 -p n δt + ∇ • v n+1 = 0. ( 24 
)
These equations are never solved in this form in the computational process. Nevertheless, they can be also viewed as defining a new two-step artificial or pseudo-compressibility method. Indeed, the previous method [START_REF] Caltagirone | Physique des Écoulements Continus[END_REF][START_REF] Caltagirone | Discrete Mechanics, Fluid Mechanics Series[END_REF] differs from the original artificial compressibility method of Chorin-Temam [START_REF] Chorin | A numerical method for solving incompressible viscous flow problems[END_REF][START_REF] Temam | Une méthode d'approximation de la solution des équations de Navier-Stokes[END_REF] by three important features. This is a splitting method with a prediction-correction scheme which also works for non-homogeneous flows and the analogous continuous pressure equation reads here with an additional parameter ξ > 0:

(ε ξ ) ∂ t ∇p + ∇ (∇ • v) = 0 in Ω × (0, T ), (25) 
or

(ε ξ ) ∂ t p + ∇ • v = 0 in Ω × (0, T ),
where we have ξ = δt in the practical (VPP ε ) splitting method and ξ = 1 corresponds to the standard artificial compressibility method. The method [START_REF] Caltagirone | Physique des Écoulements Continus[END_REF][START_REF] Caltagirone | Discrete Mechanics, Fluid Mechanics Series[END_REF] is also different from the pseudo-compressibility methods issued from projection methods; see [START_REF] Shen | On a new pseudocompressibility method for the incompressible Navier-Stokes equations[END_REF][START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF] and Section 2.2.1 above. The convergence analysis of such a continuous version of two-step artificial compressibility method in the case of a constant density is theoretically performed in [START_REF] Ph | Convergence results for the vector penalty-projection and two-step artificial compressibility methods[END_REF] when ε → 0. More precisely, by performing a compactness method using the Fourier transform, it is proved that the weak solutions of the compressibility method converge to weak solutions of the Navier-Stokes equations when ε → 0 and whatever the fixed parameter ξ > 0.

In the case of low Mach number flows, typically when M < 0.2, it is possible to connect the parameter ε with the Mach number M := V /c, V being a given reference velocity and c the velocity of acoustic waves; e.g. [START_REF] Caltagirone | Physique des Écoulements Continus[END_REF][START_REF] Caltagirone | Discrete Mechanics, Fluid Mechanics Series[END_REF] :

c := ∂ p ∂ ρ S = 1 ρ χ S = γ ρ χ θ
,

where γ := c p c v ≥ 1, χ S := 1 ρ ∂ ρ ∂ p S > 0, χ θ := 1 ρ ∂ ρ ∂ p θ = γ χ S > 0,
χ S , χ θ being respectively the isentropic and isothermal compressibility coefficients of the fluid. Now, from one hand we have with the continuity equation :

dρ dt = ∂ ρ ∂t + v • ∇ρ = -ρ ∇ • v.
With a state law of the fluid like ρ = ρ(p, θ ), a function of pressure and temperature, we have from another hand :

dρ dt = ∂ ρ ∂ p θ dp dt + ∂ ρ ∂ θ p dθ dt = ρ χ θ dp dt -ρ β dθ dt , where β := - 1 ρ ∂ ρ ∂ θ p > 0
is the coefficient of thermal volume expansion of the fluid. By combining the previous equalities, it yields the pressure equation below :

χ θ ∂ p ∂t + ∇ • v = β dθ dt -χ θ v • ∇p.
Comparing this equation with [START_REF] Caltagirone | Sur une méthode de projection vectorielle pour la résolution des équations de Navier-Stokes[END_REF] for the (VPP ε ) method, i.e. ξ = δt, in the case of a barotropic fluid (β ≈ 0) or an isothermal flow at a constant temperature, and neglecting the last term in the right-hand side, we get

ε δt = χ θ = γ χ S .
Hence, we find

M 2 := V 2 c 2 = ρ V 2 χ θ γ = ρ V 2 ε δt γ , or also γ M 2 = ρ V 2 ε δt 1. ( 26 
)
2.3 On the fast discrete solution to the (VPP ε ) method

Let us now consider any space discretization of our problem. We denote by B = -div h the m × n matrix corresponding to the discrete divergence operator, B T = grad h the n × m matrix corresponding to the discrete gradient operator, whereas I denotes the n × n identity matrix with n > m and D the n × n diagonal nonsingular matrix containing all the discrete density values of ρ n > 0 a.e. in Ω . Here n is the number of velocity unknowns whereas m is the number of pressure unknowns. Then, the discrete vector penalty-projection problem corresponding to [START_REF] Ph | A penalization method to take into account obstacles in incompressible viscous flows[END_REF] with ε = η δt or [START_REF] Guermond | Error analysis of pressure-correction schemes for the timedependent Stokes equations with open boundary conditions[END_REF] with D = I reads:

D + 1 η B T B v η = - 1 η B T B v, with v η = v + v η . (27) 
We proved in [START_REF] Ph | A new fast method to compute saddle-points in constrained optimization and applications[END_REF] a crucial result due to the adapted right-hand side in the correction step [START_REF] Cheaytou | Etude des méthodes de pénalité-projection vectorielle pour les équations de Navier-Stokes avec conditions aux limites ouvertes[END_REF] which lies in the range of the limit operator B T B. Indeed, ( 27) can be viewed as a singular perturbation problem with well-suited data in the right-hand side. More precisely, we state in [9, Theorem 1.1 and Corollary 1.3] the asymptotic expansion of the solution v η to [START_REF] Cheaytou | Etude des méthodes de pénalité-projection vectorielle pour les équations de Navier-Stokes avec conditions aux limites ouvertes[END_REF]:

v η = - 1 η D + 1 η B T B -1 B T B v (28) 
when the penalty parameter η is chosen sufficiently small. We also refer to [9, Corollary 1.2] for the very good effective conditioning of the whole linear system (27) when η is sufficiently small. This explains why the solution can be obtained only within a few iterations of a suitable preconditioned conjugate gradient whatever the size of the mesh step or the dimension n. This is confirmed by the numerical results obtained in [START_REF] Ph | A new fast method to compute saddle-points in constrained optimization and applications[END_REF][START_REF] Ph | A fast vector penalty-projection method for incompressible non-homogeneous or multiphase Navier-Stokes problems[END_REF][START_REF] Ph | Fast discrete Helmholtz-Hodge decompositions in bounded domains[END_REF] with the ILU(0)-BiCGStab2 preconditioned Krylov iterations or in [START_REF] Cheaytou | Vector penalty-projection methods for incompressible fluid flows with open boundary conditions[END_REF][START_REF] Handlovičová | Vector penalty-projection methods for outflow boundary conditions with optimal second-order accuracy[END_REF] with the IC(0)-PCG preconditioned iterative solver.

Theoretical foundations of the vector penalty-projection

We present and analyze an approximate divergence-free projection problem and its solution using the splitting method proposed in [START_REF] Ph | A new fast method to compute saddle-points in constrained optimization and applications[END_REF] for general saddle-point problems. We also refer to [START_REF] Ph | Fast discrete Helmholtz-Hodge decompositions in bounded domains[END_REF] where fast Helmholtz-Hodge decompositions are proposed in bounded domains.

We first recall the Helmholtz-Hodge orthogonal decomposition of L 2 (Ω ) d for a bounded domain, see [START_REF] Leray | Essai sur les mouvements plans d'un liquide visqueux que limitent des parois[END_REF][START_REF] Ladyzhenskaya | The mathematical theory of viscous incompressible flow, Gordon and Breach[END_REF][START_REF] Temam | Navier-Stokes Equations; Theory and Numerical Analysis[END_REF]:

L 2 (Ω ) d = H⊕ H ⊥ with: H = {u ∈ L 2 (Ω ) d ; ∇ • u = 0, u • n = 0 on Γ }, H ⊥ = {∇φ , φ ∈ H 1 (Ω )}.
Thus, for all v ∈ L 2 (Ω ) d , there exists a unique (v, q) ∈ H × H 1 (Ω )/R solution to the L 2 divergence-free projection:

v + ∇q = v with ∇ • v = 0 in Ω , and v • n = 0 on Γ . ( 29 
)
This gives immediately the following bounds with Pythagore and the mean Poincaré inequality since Ω q dx = 0:

v 2 0 + ∇q 2 0 = v 2 0 and thus q 0 ≤ c 0 (Ω ) ∇q 0 ≤ c 0 (Ω ) v 0 . (30) 
If v belongs to H div,0 (Ω ), by writing ∆ q = ∇ • v with ∇q • n |Γ = 0, it is easy to show that the solution q ∈ H 1 (Ω )/R of this homogeneous Neumann-Poisson problem satisfies: ∇q 0 ≤ v 0 . Moreover, if the domain Ω is convex, then q belongs to H 2 (Ω )/R, see e.g. [START_REF] Fabrie | L p -Integrability of the second order derivatives for the Neumann problem in convex domains[END_REF][START_REF] Fabes | Boundary Layers on Sobolev-Besov Spaces and Poisson's Equation for the Laplacian in Lipschitz Domains[END_REF]. That leads to the very popular Chorin-Temam projection methods [START_REF] Chorin | Numerical solution of the Navier-Stokes equations[END_REF][START_REF] Temam | Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires I[END_REF][START_REF] Temam | Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires II[END_REF][START_REF] Taylor | Computational Methods for Fluid Flow[END_REF][START_REF] Temam | Navier-Stokes Equations; Theory and Numerical Analysis[END_REF] and their many variants; see [START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF][START_REF] Cor É | A multilevel FIC projection method for low Mach natural convection flows[END_REF][START_REF] Cor É | A multilevel local mesh refinement projection method for low Mach number flows[END_REF][START_REF] Jobelin | A finite element penaltyprojection method for incompressible flows[END_REF][START_REF] Jobelin | Une méthode de pénalité-projection pour les écoulements dilatables[END_REF]. This decomposition is also at the basis of the family of SIMPLER methods introduced by Patankar and Spalding [START_REF] Patankar | Numerical Heat Transfer and Fluid Flow[END_REF] which are very often used in computational fluid dynamics and heat or mass transfer.

The approximate penalty-projection (APP)

Now, we adopt a completely different point of view. The key idea of our method is to directly calculate an accurate curl-free approximation of the pressure gradient ∇q (the force inducing the motion) instead of determining the pressure itself (the Lagrange multiplier) to satisfy the exact velocity free-divergence constraint. We consider the solution of this problem with the penalty method, originally introduced by Courant [START_REF] Courant | Variational methods for the solution of problems of equilibrium and vibrations[END_REF] in a different context of constrained optimization to get problems with no constraint.

Let us study the following approximate penalty-projection (APP) problem for all η > 0 and all v given in L 2 (Ω ) d , where we are looking for (v η , q η ) ∈ H div,0 (Ω ) × H 1 (Ω )/R:

(APP) v η + ∇q η = v with q η = - 1 η ∇ • v η in Ω , and v η • n = 0 on Γ ⇒ v η - 1 η ∇ (∇ • v η ) = v in Ω and v η • n = 0 on Γ . (31) 
We prove the following optimal error estimates.

Theorem 1 (Approximate divergence-free penalty-projection.) For all v given in L 2 (Ω ) d and η > 0, there exists a unique solution v η in H div,0 (Ω ) and q η in H 1 (Ω ) ∩ L 2 0 (Ω ) to the approximate penalty-projection problem (31) and we have: ∇ × (v η -v) = 0 and then (v η -v) ∈ H 1 n (Ω ) and (q ηq) ∈ H 2 (Ω ), where (v, q) ∈ H × H 1 (Ω )/R is the solution to [START_REF] Chorin | Numerical solution of the Navier-Stokes equations[END_REF] and satisfies [START_REF] Ph | Numerical solution of Navier-Stokes systems[END_REF]. Moreover, there exists c(Ω ) > 0 such that the error estimate below holds:

v η -v 1 + ∇ • v η 0 + q η -q 2 ≤ c(Ω ) q 0 η. (32) 
PROOF. First, it is an easy matter to prove with the Lax-Milgram theorem that (31) admits a unique solution v η in H div,0 (Ω ): see for details the proof of Lemma 1 which considers a problem of the same type. Then we have q η = -1

η ∇ • v η in L 2 0 (Ω ) since v η • n |Γ = 0 and because ∇q η = v -v η in L 2 (Ω ) d , we have also both q η and ∇ • v η in H 1 (Ω ).
Second, from the difference between ( 31) and ( 29), we get since ∇ • v = 0:

v η -v + ∇(q η -q) = 0 with q η = - 1 η ∇ • v η = - 1 η ∇ • (v η -v), (v η -v) • n |Γ = 0
and it yields the problem below satisfied by v η -v for all η > 0:

v η -v - 1 η ∇ (∇ • (v η -v)) = ∇q in Ω and (v η -v) • n = 0 on Γ . ( 33 
)
Since v η -v = -∇(q ηq), we have: ∇ × (v η -v) = 0, and as ∇ [START_REF] Lions | Les inéquations variationnelles en Mécanique et en Physique[END_REF][START_REF] Foias | Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation[END_REF][START_REF] Lions | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF]. Indeed, the space H div,0 (Ω ) ∩ H rot (Ω ) is continuously imbedded in H 1 n (Ω ), see also [START_REF] Raviart | Finite Element Methods for the Navier-Stokes Equations[END_REF][START_REF] Amrouche | Vector potentials in three-dimensional non smooth domains[END_REF]. Then q ηq belongs to H 2 (Ω ) with q ∈ H 1 (Ω )/R and thus q η ∈ H 1 (Ω )/R. The fact that (q η -q) ∈ H 2 (Ω ) is due to the regularization effect of the penalty method, see [START_REF] Raviart | Finite Element Methods for the Navier-Stokes Equations[END_REF] and Remark 3.

• (v η -v) ∈ L 2 (Ω ) with (v η -v) • n |Γ = 0, then v η -v belongs to H 1 n (Ω ), see
Taking the L 2 -inner product of ( 33) with v η -v, we get using the Green's formula with (v η -v) • n |Γ = 0, and then the Cauchy-Schwarz and Young inequalities:

v η -v 2 0 + 1 η ∇ • (v η -v) 2 0 = -(q, ∇ • (v η -v)) 0 ≤ 1 2η ∇ • (v η -v) 2 0 + η 2 q 2 0
and thus:

v η -v 2 0 + 1 2η ∇ • (v η -v) 2 0 ≤ η 2 q 2 0 hence ∇ • (v η -v) 0 ≤ q 0 η. (34) 
Then, taking the L 2 -inner product of (33) with ∇(q ηq), we get since (v η -v) • n |Γ = 0 and using the mean Poincaré inequality [START_REF] Čas | Les méthodes directes en théorie des équations elliptiques[END_REF][START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF] with Ω (q ηq) dx = 0: [START_REF] Lions | Les inéquations variationnelles en Mécanique et en Physique[END_REF][START_REF] Foias | Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation[END_REF][START_REF] Raviart | Finite Element Methods for the Navier-Stokes Equations[END_REF] or [START_REF] Amrouche | Vector potentials in three-dimensional non smooth domains[END_REF] for a complete review. Thus with ( 34) and ( 35), since ∇ × (v η -v) = 0, there exists c 1 (Ω ) > 0 such that:

v η -v 0 = ∇(q η -q) 0 ≤ c 0 (Ω ) q 0 η (35) q η -q 0 ≤ c 0 (Ω ) ∇(q η -q) 0 ≤ c 0 (Ω ) 2 q 0 η. Since (v η -v) • n |Γ = 0, we now observe that the H 1 -norm v η -v 1 is equivalent to the norm ( v η -v 0 + div(v η -v) 0 + curl(v η -v) 0 ), see
∇(q η -q) 1 = v η -v 1 ≤ c 1 (Ω ) ( v η -v 0 + ∇ • (v η -v) 0 ) ≤ c 1 (Ω ) (1 + c 0 (Ω )) q 0 η = c(Ω ) q 0 η. ( 36 
)
This concludes the proof of [START_REF] Cor É | A multilevel local mesh refinement projection method for low Mach number flows[END_REF] with the previous estimates [START_REF] Lions | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF][START_REF] Lions | Les inéquations variationnelles en Mécanique et en Physique[END_REF][START_REF] Fabes | Boundary Layers on Sobolev-Besov Spaces and Poisson's Equation for the Laplacian in Lipschitz Domains[END_REF].
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Then, using a similar idea of Temam [START_REF] Temam | Navier-Stokes Equations; Theory and Numerical Analysis[END_REF] for the Stokes problem, we can refine the previous result with an asymptotic expansion of (v η , q η ) in powers of η. More precisely, we define by induction a sequence (v k , q k ) ∈ H div,0 (Ω ) × H 1 (Ω )/R as the solution of the following problem for any integer k ≥ 1:

v k + ∇q k = 0 and ∇ • v k = -q k-1 , where v 0 = v, q 0 = q (37) ⇒ ∆ q k = q k-1 with ∇q k • n |Γ = 0.
It is easy to show, knowing q k-1 , that (37) defines a unique pair (v k , q k ) ∈ H div,0 (Ω ) × H 1 (Ω )/R for all k ∈ N. Then, we have the following result by defining below the errors of (v η , q η ) from the asymptotic series at any order N ∈ N:

w N η = v η -v - N ∑ k=1 v k η k and λ N η = q η -q - N ∑ k=1 q k η k , ∀N ∈ N. ( 38 
)
Theorem 2 (Error estimates with asymptotic expansion.)

The sequence (v k , q k ) solution to [START_REF] Évri Ère | On the penalty-projection method for the Navier-Stokes equations with the MAC mesh[END_REF] for k ≥ 1 verifies: ∇ × v k = 0 and (v k , q k ) belongs to H 1 n (Ω ) × H 2 (Ω )/R. Moreover, for any N ∈ N, there exists c 0 (Ω ), c(Ω ) > 0 such that, ∀ v ∈ L 2 (Ω ) d and ∀η > 0, the error [START_REF] Foias | Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation[END_REF] of the approximate penalty-projection solution to [START_REF] Cor É | A multilevel FIC projection method for low Mach natural convection flows[END_REF] satisfies:

w N η 1 = ∇λ N η 1 ≤ c(Ω ) c 0 (Ω ) 2N q 0 η N+1 λ N η 0 ≤ c 0 (Ω ) 2N+2 q 0 η N+1 ∇ • w N η 0 ≤ c 0 (Ω ) 2N q 0 η N+1 . ( 39 
)
PROOF.

The proof is similar to that of Theorem 1 where the estimates [START_REF] Lions | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF][START_REF] Lions | Les inéquations variationnelles en Mécanique et en Physique[END_REF][START_REF] Fabes | Boundary Layers on Sobolev-Besov Spaces and Poisson's Equation for the Laplacian in Lipschitz Domains[END_REF] correspond to the case N = 0.

First from (37), we have for all k ≥ 1:

∇ × v k = 0, and, since ∇ • v k ∈ L 2 (Ω ) with v k • n |Γ = 0, then v k belongs to H 1 n (Ω )
and thus q k belongs to H 2 (Ω )/R. We also get by an easy induction using the mean Poincaré inequality that:

q k 0 ≤ c 0 (Ω ) 2k q 0 and ∇q k 0 ≤ c 0 (Ω ) 2k ∇q 0 , ∀k ∈ N.
Now, an easy calculation from (31,29) with ( 38) and ( 37) yields that (w N η , λ N η ) is the solution to the problem below:

w N η +∇λ N η = 0 and ∇•w N η = -q N η N+1 ⇒ ∆ λ N η = q N η N+1 with ∇λ N η • n |Γ = 0.
Then, we get with the previous bound:

∇ • w N η 0 ≤ q N 0 η N+1 ≤ c 0 (Ω ) 2N q 0 η N+1 . ( 40 
)
Since w N η = -∇λ N η , we have: ∇ × w N η = 0, and as

∇ • w N η ∈ L 2 (Ω ) with w N η • n |Γ = 0, then w N
η belongs to H 1 n (Ω ), see [START_REF] Foias | Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation[END_REF]. Then λ N η belongs to H 2 (Ω )/R. Moreover, using the mean Poincaré inequality, we get similarly to [START_REF] Lions | Les inéquations variationnelles en Mécanique et en Physique[END_REF]:

w N η 0 = ∇λ N η 0 ≤ c 0 (Ω ) 2N+1 q 0 η N+1 λ N η 0 ≤ c 0 (Ω ) ∇λ N η 0 ≤ c 0 (Ω ) 2N+2 q 0 η N+1 . (41) 
Besides, similarly to [START_REF] Fabes | Boundary Layers on Sobolev-Besov Spaces and Poisson's Equation for the Laplacian in Lipschitz Domains[END_REF] with the equivalent H 1 norm of w N η since w N η • n |Γ = 0 and ∇ × w N η = 0, we have:

∇λ N η 1 = w N η 1 ≤ c 1 (Ω ) w N η 0 + ∇ • w N η 0 ≤ c(Ω ) c 0 (Ω ) 2N q 0 η N+1 . ( 42 
)
This completes the proof with the previous estimates. 

The vector penalty-projection (VPP)

Since the (APP) problem ( 31) is ill-conditioned when η is small, we now study an efficient splitting method to solve [START_REF] Cor É | A multilevel FIC projection method for low Mach natural convection flows[END_REF] as proposed in [START_REF] Ph | A new fast method to compute saddle-points in constrained optimization and applications[END_REF] for general saddle-point problems. Here, it amounts to directly seek the curl-free vector correction v η = -∇q η such that v η = v + v η be the solution of [START_REF] Cor É | A multilevel FIC projection method for low Mach natural convection flows[END_REF], which requires a more regular data v. Thus, for any v given in H div (Ω ), we consider the so-called vector penalty-projection (VPP) problem below for all η > 0:

(V PP) v η - 1 η ∇ (∇ • v η ) = 1 η ∇ (∇ • v) with v η = v + v η , q η = - 1 η ∇ • v η (43) ⇒ v η = 1 η ∇ (∇ • v η ) , for all η > 0.
This problem is well-posed in H div,0 (Ω ), see Lemma 2 below. Moreover, for all v ∈ H div,0 (Ω ), the problems ( 31) and ( 43) are equivalent and thus the error estimates in Theorems 1 and 2 hold. This actually gives the proof of [START_REF] Ph | Fast discrete Helmholtz-Hodge decompositions in bounded domains[END_REF]Theorem 3.3] which was just stated there without proof for sake of shortness. Let us also notice that (43) corresponds to the vector correction step (6) performed at each time step in the proposed (VPP ε ) method with ε = η δt, whereas v is calculated by a prediction step which does not take the divergence-free constraint into account.

Lemma 2 (Well-posedness of the vector penalty-projection (VPP).) For any v given in H div (Ω ) and all η > 0, there exists at each time step a unique solution v η in H div,0 (Ω ) to the vector penalty-projection [START_REF] Guermond | Error analysis of pressure-correction schemes for the timedependent Stokes equations with open boundary conditions[END_REF], i.e. also to the velocity correction step ( 6) with ε = η δt for a constant density ρ > 0. Moreover, v η is curl-free:

∇ × v η = 0 and since v η • n |Γ = 0, then we have v η ∈ H 1 n (Ω )
and satisfies the bound below with c 1 (Ω ) > 0:

v η 1 = ∇q η 1 ≤ c 1 (Ω ) ( v η 0 + ∇ • v η 0 ) ≤ c 1 (Ω ) (2 v 0 + ∇ • v 0 ) , ∀η > 0.
PROOF. By using the previous Lemma 1, there exists a unique solution v η in H div,0 (Ω ) to (43) and we have: ∇ × v η = 0 since v η = v + v η and thus v η is exactly a gradient for all η > 0. Since v η in H div (Ω ) is curl-free with v η • n |Γ = 0, then v η belongs to H 1 n (Ω ), see [START_REF] Foias | Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation[END_REF]. Besides, with the equivalence of the H 1 -norm to the norm ( . 0 + div. 0 + curl. 0 ) for functions in H 1 n (Ω ), see [START_REF] Lions | Les inéquations variationnelles en Mécanique et en Physique[END_REF][START_REF] Foias | Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation[END_REF][START_REF] Raviart | Finite Element Methods for the Navier-Stokes Equations[END_REF], there exists c 1 (Ω ) such that:

v η 1 ≤ c 1 (Ω ) ( v η 0 + ∇ • v η 0 )
. Then, a simple energy estimate with [START_REF] Guermond | Error analysis of pressure-correction schemes for the timedependent Stokes equations with open boundary conditions[END_REF] gives:

v η 2 0 + 1 2 η ∇ • v η 2 0 ≤ 1 2 η ∇ • v 2 0 .
This implies that:

∇ • v η 0 ≤ ∇ • v 0 , for all η > 0.
Furthermore, by a simple energy estimate with (31), we get:

1 2 v η 2 0 + 1 η ∇ • v η 2 0 ≤ 1 2 v 2 0 .
Thus we have v η 0 ≤ v 0 , and it also gives with the triangular inequality:

v η 0 ≤ v 0 + v η 0 ≤ 2 v 0 , for all η > 0.
This finally yields the desired bound for v η 1 with the previous estimates.
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The great interest of solving (43) instead of ( 31) is explained in Section 2.3 issued from [START_REF] Ph | A spectacular vector penalty-projection method for Darcy and Navier-Stokes problems[END_REF][START_REF] Ph | A new fast method to compute saddle-points in constrained optimization and applications[END_REF] which shows that the method can be ultra-fast and very cheap if η is sufficiently small since (43) includes a right-hand side which is adapted to the left-hand side operator. This is also confirmed by the numerical results given in [START_REF] Ph | A fast vector penalty-projection method for incompressible non-homogeneous or multiphase Navier-Stokes problems[END_REF][START_REF] Ph | Fast discrete Helmholtz-Hodge decompositions in bounded domains[END_REF].

The present section fully justifies the name of the method as a vector penalty-projection. Moreover, we have shown that the velocity correction step [START_REF] Ph | A penalization method to take into account obstacles in incompressible viscous flows[END_REF] in the (VPP ε ) splitting method carries out an approximate divergence-free projection with a penalty method which yields at each time step t n a divergence error for the velocity of order O(ε/δt) at least. 4 Analysis of the (VPP ε ) method for homogeneous flows

Preliminary on the nonlinear convection term

To deal with the nonlinear convection term, we use the trilinear skew-symmetric form b(., ., .) introduced by Temam [START_REF] Temam | Une méthode d'approximation de la solution des équations de Navier-Stokes[END_REF][START_REF] Temam | Navier-Stokes Equations; Theory and Numerical Analysis[END_REF] and defined by: for all u ∈ H 1 n (Ω ) and v, w

∈ H 1 (Ω ) d , b(u, v, w) = Ω ((u • ∇)v) • w dx + 1 2 Ω (∇ • u) v • w dx = 1 2 Ω ((u • ∇)v) • w dx - 1 2 Ω ((u • ∇)w) • v dx. (44) 
The corresponding bilinear operator B(., .) is defined on

H 1 n (Ω ) × H 1 (Ω ) d as below: B(u, v) = (u • ∇)v + 1 2 (∇ • u) v. (45) 
Moreover, the following proposition holds.

Proposition 1 (Skew-symmetry property.)

The trilinear form b(., ., .) defined in [START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF] satisfies for all u, v, w in H

1 (Ω ) d : b(u, v, w) = -b(u, w, v) + d ∑ i, j=1 Γ (u i n i ) v j w j ds.

PROOF.

Using the usual convention of implicit summation on the repeated index, we have:

b(u, v, w) = Ω u i ∂ v j ∂ x i w j dx + 1 2 Ω ∂ u i ∂ x i v j w j dx = Ω ∂ (u i v j ) ∂ x i w j dx - Ω ∂ u i ∂ x i v j w j dx + 1 2 Ω ∂ u i ∂ x i v j w j dx = Ω ∂ (u i v j ) ∂ x i w j dx - 1 2 Ω ∂ u i ∂ x i v j w j dx.
Then, applying the Green formula on the first term in the right-hand side, we get the desired result:

b(u, v, w) = - Ω u i v j ∂ w j ∂ x i dx - 1 2 Ω ∂ u i ∂ x i v j w j dx + Γ (u i n i ) v j w j ds.
2 Thus, we have from the previous Proposition 1 the following skew-symmetry property of b(., ., .) with respect to the two last arguments:

b(u, v, w) = -b(u, w, v), b(u, v, v) = 0, ∀u ∈ H 1 n (Ω ), ∀v, w ∈ H 1 (Ω ) d . (46) 
4.2 Stability analysis of the (VPP ε ) method for homogeneous Navier-Stokes flows

In the case of Navier-Stokes problems for incompressible flows with a constant density ρ > 0 and viscosity µ > 0, we use the dimensionless equations with Re := ρV L /µ denoting the Reynolds number and Da := K /L 2 the Darcy number, where the quantities with a star index are some chosen reference values; see [START_REF] Khadra | Fictitious domain approach for numerical modelling of Navier-Stokes equations[END_REF]. Hence, the prediction (5) and correction steps (6,7) now read:

v n+1 -v n δt + B v n , v n+1 - 1 Re ∆ v n+1 + 1 Re Da K -1 v n+1 + ∇p n = f n+1 in Ω (47) ε δt v n+1 -∇ ∇ • v n+1 = ∇ ∇ • v n+1
in Ω (48)

v n+1 = v n+1 + v n+1 , and v n+1 -v n+1 δt + ∇(p n+1 -p n ) = 0 in Ω (49)
with v n+1 |Γ = 0 and v n+1 • n |Γ = 0. Then, we prove the well-posedness of the (VPP ε ) method [START_REF] Jobelin | A finite element penaltyprojection method for incompressible flows[END_REF][START_REF] Jobelin | Une méthode de pénalité-projection pour les écoulements dilatables[END_REF][START_REF] Kadoch | A volume penalization method for Navier-Stokes flows and scalar advection-diffusion with moving obstacles[END_REF].

Lemma 3 (Global solvability of (VPP ε ) method for homogeneous Navier-Stokes.)

For f ∈ L 2 (0, T ; H -1 (Ω ) d ), v 0 ∈ L 2 (Ω ) d and p 0 ∈ L 2 0 (Ω )
given, the (VPP ε ) method is well-posed for all 0 < δt ≤ T and ε > 0, i.e. for all n ∈ N such that (n + 1) δt ≤ T , there exists a unique solution

( v n+1 , v n+1 , p n+1 ) ∈ H 1 0 (Ω ) d × H 1 n (Ω ) × L 2 0 (Ω )
to the (VPP ε ) scheme [START_REF] Jobelin | A finite element penaltyprojection method for incompressible flows[END_REF][START_REF] Jobelin | Une méthode de pénalité-projection pour les écoulements dilatables[END_REF][START_REF] Kadoch | A volume penalization method for Navier-Stokes flows and scalar advection-diffusion with moving obstacles[END_REF] such that:

v n+1 -v n δt + B v n , v n+1 - 1 Re ∆ v n+1 + 1 Re Da K -1 v n+1 + ∇p n+1 = f n+1 in Ω (50) (ε δt) p n+1 -p n δt + ∇ • v n+1 = 0 in Ω (51)
which is the discrete problem effectively solved by this two-step artificial compressibility splitting scheme. Moreover, we have both ∇ • v n+1 and φ n+1 := p n+1p n belonging to H 2 (Ω ) ∩ L 2 0 (Ω ) and hence p n+1 ∈ H 2 (Ω ) ∩ L 2 0 (Ω ) if the initial pressure p 0 is chosen in H 2 (Ω ) ∩ L 2 0 (Ω ).

PROOF.

The proof is made by induction for all n ∈ N such that (n + 1) δt ≤ T from the given initial conditions v 0 ∈ L 2 (Ω ) d and p 0 ∈ L 2 0 (Ω ). At each time step t n+1 , there exists a unique solution v n+1 ∈ H 1 0 (Ω ) d to the prediction step [START_REF] Jobelin | A finite element penaltyprojection method for incompressible flows[END_REF]. Indeed, it is an easy application of the Lax-Milgram theorem for this linear advection-diffusion problem where b(v n , v n+1 , w) = 0 for all w ∈ H 1 0 (Ω ) d from Proposition 1, which ensures the coercivity of this problem in H 1 0 (Ω ) d . Moreover, from Lemma 2, there exists a unique solution v n+1 ∈ H 1 n (Ω ) to the velocity correction step [START_REF] Jobelin | Une méthode de pénalité-projection pour les écoulements dilatables[END_REF]. Thus, we have v n+1 = v n+1 + v n+1 which belongs to H 1 n (Ω ). From another hand with ( 14), since both p 0 and ∇ • v n+1 belong to L 2 0 (Ω ) and the domain Ω is connected, then p n+1 belongs to L 2 0 (Ω ) and satisfies [START_REF] Ladyzhenskaya | The mathematical theory of viscous incompressible flow, Gordon and Breach[END_REF]. Hence, the well-posedness of the whole (VPP ε ) scheme [START_REF] Jobelin | A finite element penaltyprojection method for incompressible flows[END_REF][START_REF] Jobelin | Une méthode de pénalité-projection pour les écoulements dilatables[END_REF][START_REF] Kadoch | A volume penalization method for Navier-Stokes flows and scalar advection-diffusion with moving obstacles[END_REF] follows by an immediate induction.

Furthermore, the additional regularity of the velocity divergence and pressure is brought by the regularizing effect of the penalty method, see Remark 3, and with (48) by the continuous imbedding of the space H div,0 (Ω ) ∩ H rot (Ω ) in H 1 n (Ω ), see e.g. [START_REF] Raviart | Finite Element Methods for the Navier-Stokes Equations[END_REF][START_REF] Amrouche | Vector potentials in three-dimensional non smooth domains[END_REF], and thus v n+1 ∈ H 1 n (Ω ) from Lemma 2. This concludes the proof.

We now prove below the unconditional stability of the (VPP ε ) method. Here we omit the Darcy's drag term in [START_REF] Jobelin | A finite element penaltyprojection method for incompressible flows[END_REF] since it brings no additional complication; see [START_REF] Ph | Convergence analysis of the fast vector penaltyprojection method for anisotropic heterogeneous Darcy problems[END_REF] for the study of Darcy problems.

Theorem 3 (Stability of (VPP ε ) method for homogeneous Navier-Stokes problems.)

For f ∈ L 2 (0, T ; H -1 (Ω ) d ), v 0 ∈ L 2 (Ω ) d and p 0 ∈ L 2 0 (Ω ) ∩ H 1 (Ω )
, there exists C j > 0 for j = 0, 2 with C j = C j Ω , T, Re, f L 2 (0,T ;H -1 ) , v 0 0 , p 0 1 such that, for all 0 < ε ≤ 1 and 0 < δt ≤ T , the solution ( v n+1 , v n+1 , p n+1 ) of the (VPP ε ) method [START_REF] Jobelin | A finite element penaltyprojection method for incompressible flows[END_REF][START_REF] Jobelin | Une méthode de pénalité-projection pour les écoulements dilatables[END_REF][START_REF] Kadoch | A volume penalization method for Navier-Stokes flows and scalar advection-diffusion with moving obstacles[END_REF] satisfies for all n ∈ N with (n + 1) δt ≤ T the following estimates where c 0 (Ω ) denotes the mean Poincaré constant:

(i) v n+1 2 0 + n ∑ k=0 v k+1 -v k 2 0 + 1 Re n ∑ k=0 δt ∇ v k+1 2 0 +δt 2 ∇p n+1 2 0 + ε δt p n+1 2 0 + ε n ∑ k=0 δt p k+1 -p k 2 0 ≤ C 0 (ii) n ∑ k=0 δt ∇ • v k+1 2 0 ≤ C 0 ε (iii) π n+1 2 1 ≤ 1 + c 0 (Ω ) 2 C 0 with π n+1 = δt p n+1 (iv a ) n ∑ k=0 δt ∇v k+1 2 0 + n ∑ k=0 δt ∇(v k+1 -v k+1 ) 2 0 ≤ C 1 , if Ω simply connected.
Moreover, if we assume that: ε = λ δt with a given constant λ > 0, we have the additional bounds below including the time increments of velocity which hold without the assumption that Ω is simply connected:

(iv b ) n ∑ k=0 δt ∇v k+1 2 0 + n ∑ k=0 δt ∇(v k+1 -v k+1 ) 2 0 ≤ C 2 δt ε , (v) n ∑ k=0 v k+1 -v k+1 2 -1 + v k+1 -v k 2 -1 ≤ 2C 0 1 + λ λ = 2C 0 1 + δt ε .

PROOF.

Proof of (i). With [START_REF] Jobelin | A finite element penaltyprojection method for incompressible flows[END_REF][START_REF] Kadoch | A volume penalization method for Navier-Stokes flows and scalar advection-diffusion with moving obstacles[END_REF][START_REF] Ladyzhenskaya | The mathematical theory of viscous incompressible flow, Gordon and Breach[END_REF], we get the energy equations below since the solution of ( 47) [START_REF] Guermond | A splitting method for incompressible flows with variable density based on a pressure Poisson equation[END_REF]. Moreover, with p 0 ∈ H 1 (Ω )/R, we have p n+1 ∈ H 1 (Ω )/R for all n ∈ N such that (n + 1)δt ≤ T , since ∇(p n+1p n ) belongs to H 1 n (Ω ) with ( 49) or [START_REF] Ph | A spectacular solver of low-Mach multiphase Navier-Stokes problems under strong stresses[END_REF]. Let us also notice that if p 0 ∈ H 2 (Ω )/R, then we have p n+1 ∈ H 2 (Ω )/R. This is due to the regularization effect of the penalty method, already encountered in Section 3. Then, using the Green formula by taking respectively the duality product of (47) with 2δt v n+1 , the L 2 inner product of [START_REF] Kadoch | A volume penalization method for Navier-Stokes flows and scalar advection-diffusion with moving obstacles[END_REF] with 2δt v n+1 , the L 2 inner product of (51) with 2δt p n+1 and the L 2 inner product of [START_REF] Kadoch | A volume penalization method for Navier-Stokes flows and scalar advection-diffusion with moving obstacles[END_REF] with 2δt 2 ∇p n+1 , we get for all n ∈ N such that (n + 1)δt ≤ T :

is v n+1 ∈ H 1 0 (Ω ) d with v D = 0, v n+1 ∈ H 1 n (Ω ) with Lemma 2, then v n+1 ∈ H 1 n (Ω ) and b(v n , v n+1 , v n+1 ) = 0 from
v n+1 2 0 -v n 2 0 + v n+1 -v n 2 0 + 2δt Re ∇ v n+1 2 0 -2δt p n , ∇ • v n+1 0 = 2δt f n+1 , v n+1 -1 v n+1 2 0 -v n+1 2 0 + v n+1 -v n+1 2 0 -2δt p n+1 -p n , ∇ • v n+1 0 = 0 ε δt p n+1 2 0 -p n 2 0 + p n+1 -p n 2 0 + 2δt p n+1 , ∇ • v n+1 0 = 0 δt 2 ∇p n+1 2 0 -∇p n 2 0 + ∇(p n+1 -p n ) 2 0 -2δt p n+1 , ∇ • (v n+1 -v n+1
) 0 = 0. Then, by summing the four previous equations, we get the following energy equality:

v n+1 2 0 -v n 2 0 + v n+1 -v n 2 0 + v n+1 -v n+1 2 0 + 2δt Re ∇ v n+1 2 0 + δt 2 ∇p n+1 2 0 -∇p n 2 0 + ∇(p n+1 -p n ) 2 0 + ε δt p n+1 2 0 -p n 2 0 + p n+1 -p n 2 0 -2δt p n+1 -p n , ∇ • (v n+1 -v n+1 ) 0 = 2δt f n+1 , v n+1 -1 . (52) 
Moreover, with the Green formula and using [START_REF] Kadoch | A volume penalization method for Navier-Stokes flows and scalar advection-diffusion with moving obstacles[END_REF], we have the equality:

2δt p n+1 -p n , ∇ • (v n+1 -v n+1 ) 0 = -2δt ∇(p n+1 -p n ), v n+1 -v n+1 0 = 2 v n+1 -v n+1 2 0 = 2δt 2 ∇(p n+1 -p n ) 2 0 = v n+1 -v n+1 2 0 + δt 2 ∇(p n+1 -p n ) 2 0 . (53) 
Let us now give some bound of the right-hand side term in [START_REF] Lifshitz | Fluid Mechanics[END_REF]. With the duality pairing, the Poincaré inequality and using a b ≤ (a 2 + b 2 )/2, we have:

2δt f n+1 , v n+1 -1 ≤ 2c(Ω ) δt f n+1 -1 ∇ v n+1 0 ≤ δt Re ∇ v n+1 2 0 + c(Ω ) 2 Re δt f n+1 2 -1 .
By using this bound in [START_REF] Lifshitz | Fluid Mechanics[END_REF] and summing with (53), we get:

v n+1 2 0 -v n 2 0 + v n+1 -v n 2 0 + δt Re ∇ v n+1 2 0 + δt 2 ∇p n+1 2 0 -∇p n 2 0 + ε δt p n+1 2 0 -p n 2 0 + p n+1 -p n 2 0 ≤ c(Ω ) 2 Re δt f n+1 2 -1
. We now write the previous inequality with the index k instead of n, and then sum it for k = 0, . . . , n. This yields the following energy estimate for all n ∈ N such that (n + 1)δt ≤ T :

v n+1 2 0 + n ∑ k=0 v k+1 -v k 2 0 + 1 Re n ∑ k=0 δt ∇ v k+1 2 0 + δt 2 ∇p n+1 2 0 + ε δt p n+1 2 0 + ε n ∑ k=0 δt p k+1 -p k 2 0 ≤ v 0 2 0 + ε δt p 0 2 0 + δt 2 ∇p 0 2 0 + c(Ω ) 2 Re n ∑ k=0 δt f k+1 2 -1 ≤ C 0 ( 54 
)
which concludes the proof of (i) with ε ≤ 1 and δt ≤ T .

Proof of (ii). From ( 14) or (51), we have: ∇ • v n+1 = -ε (p n+1p n ). Hence, using the bound in [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF] or (i), this immediately yields (ii) with:

n ∑ k=0 δt ∇ • v k+1 2 0 = n ∑ k=0 δt p k+1 -p k 2 0 ε 2 ≤ C 0 ε. (55) 
Proof of (iii). The previous estimate (i) immediately gives: ∇π n+1 2 0 ≤ C 0 by denoting π n+1 = δt p n+1 . Then, the bound (iii) is obtained by using the mean Poincaré inequality:

π n+1 0 ≤ c 0 (Ω ) ∇π n+1 0 since π n+1 belongs to L 2 0 (Ω ) ∩ H 1 (Ω ).
Proof of (iv a ) for a simply connected domain Ω . We recall from Lemma 2 that

v n+1 = (v n+1 -v n+1 ) ∈ H 1 n (Ω ) with zero curl since the space H div,0 (Ω ) ∩ H rot (Ω ) is continuously imbedded in H 1 n (Ω )
, see [START_REF] Raviart | Finite Element Methods for the Navier-Stokes Equations[END_REF][START_REF] Amrouche | Vector potentials in three-dimensional non smooth domains[END_REF]. Then, with the H 1 -norm . 1 equivalence to the norm div. 2 0 + curl. 2 0 1 2 for functions in H 1 n (Ω ) when the domain Ω is simply connected, see [START_REF] Lions | Les inéquations variationnelles en Mécanique et en Physique[END_REF][START_REF] Foias | Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation[END_REF], there exists c 1 (Ω ) > 0 such that:

v n+1 -v n+1 1 = v n+1 1 ≤ c 1 (Ω ) ∇ • v n+1 0 ≤ c 1 (Ω ) ∇ • v n+1 0 + ∇ • v n+1 0 .
Then, using the fact that:

∇ • v n+1 0 ≤ ∇ v n+1 0 since v n+1 ∈ H 1 0 (Ω ) d and the inequality (a + b) 2 ≤ 2 (a 2 + b 2 )
, we get with the previous bounds in [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF][START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF]:

n ∑ k=0 δt v k+1 -v k+1 2 1 ≤ 2c 1 (Ω ) 2 n ∑ k=0 δt ∇ • v k+1 2 0 + n ∑ k=0 δt ∇ v k+1 2 0 ≤ 2c 1 (Ω ) 2 C 0 (ε + Re) . (56) 
Finally, using the triangular inequality: ∇v k+1 0 ≤ ∇(v k+1 -v k+1 ) 0 + ∇ v k+1 0 , and the bounds in [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF][START_REF] Lions | Incompressible models[END_REF], yields (iv a ) with:

n ∑ k=0 δt ∇v k+1 2 0 + n ∑ k=0 δt ∇(v k+1 -v k+1 ) 2 0 ≤ C 1 Ω , T, Re, f L 2 (0,T ;H -1 ) , v 0 0 , p 0 1 . (57) 
Proof of (iv b ). When the domain Ω is not simply connected, the H 1 -norm . 1 is equivalent to the norm . 2 0 + div. 2 0 + curl. 2 0 1/2 . By a simple energy estimate with (48), we have :

v n+1 2 0 + δt 2ε ∇ • v n+1 2 0 ≤ δt 2ε ∇ • v n+1 2 0 .
Thus we have with ∇

• v n+1 0 ≤ ∇ v n+1 0 : v n+1 2 1 := v n+1 -v n+1 2 1 ≤ c 1 (Ω ) 1 + δt 2ε ∇ v n+1 2 0 .
Hence, we get (iv b ) using the bound (i):

n ∑ k=0 δt ∇v k+1 2 0 + n ∑ k=0 δt ∇(v k+1 -v k+1 ) 2 0 ≤ C 2 δt ε .
Proof of (v). With (48), we have:

v n+1 = v n+1 -v n+1 = δt ε ∇ ∇ • v n+1
and using the definition of the H -1 norm, we get:

v n+1 -v n+1 -1 = δt ε ∇ ∇ • v n+1 -1 ≤ δt ε ∇ • v n+1 0 .
Hence, using the divergence bound in (ii) and assuming that ε = λ δt for a given constant λ > 0, it yields:

n ∑ k=0 v k+1 -v k+1 2 -1 ≤ δt ε 2 n ∑ k=0 δt ∇ • v k+1 2 0 ≤ C 0 δt ε = C 0 λ . (58) 
Then, writing v k+1 -v k = (v k+1 -v k+1 ) + ( v k+1 -v k ) and using the triangular inequality, we get the bound (v) with the canonical injection of L 2 (Ω ) d inside H -1 (Ω ) d and the bound in (i):

n ∑ k=0 v k+1 -v k 2 -1 ≤ n ∑ k=0 v k+1 -v k+1 -1 + v k+1 -v k -1 2 ≤ 2 n ∑ k=0 v k+1 -v k+1 2 -1 + v k+1 -v k 2 -1 ≤ 2C 0 1 + λ λ = 2C 0 1 + δt ε . (59) 
This completes the proof of the theorem.

2 Remark 6 (Unconditional stability of the fully implicit (VPP ε ) method.) If we consider the non-linear implicit (VPP ε ) method by replacing the linearized implicit convection term B v n , v n+1 in the prediction step [START_REF] Jobelin | A finite element penaltyprojection method for incompressible flows[END_REF] either by B v n+1 , v n+1 or B v n+1 , v n+1 , the previous Theorem 3 of unconditional stability still holds. Indeed, with [START_REF] Guermond | A splitting method for incompressible flows with variable density based on a pressure Poisson equation[END_REF] we have both b( v n+1 , v n+1 , v n+1 ) = 0 and b(v n+1 , v n+1 , v n+1 ) = 0, and hence the stability proof is exactly the same as in Theorem 3.

Remark 7 (Convergence to Navier-Stokes solutions.)

By using compactness arguments from Aubin-Lions-Simon [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF][START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF] or with Kolmogorov's theorem [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF][START_REF] Boyer | Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models[END_REF], since we have a bound of the dissipation with the time translates in (v), Theorem 3 allows us to prove the convergence of the (VPP ε ) solution to Navier-Stokes solutions when ε = δt tends to zero, without additional regularity assumption. Moreover, the convergence can be also carried out when δt → 0 for a fixed value of ε > 0. These convergence analyses will deserve a further study.

Remark 8 (Splitting error of the (VPP ε ) method.)

We prove in Theorem 3 (ii) that the L 2 -norm of the velocity divergence at least vanishes as O( √ ε). Besides, the previous works on first versions of the V PP method [7, 9] suggest that the l 2 (0, T ; L 2 (Ω )) norm of the velocity divergence vanishes as O(ε δt), i.e. as O(γ M 2 /ρ V 2 ) with ( 26). This will be rigourously proved in a further paper, but it is already confirmed by the numerical results in [START_REF] Ph | A fast vector penalty-projection method for incompressible non-homogeneous or multiphase Navier-Stokes problems[END_REF]. It also suggests that the l 2 (0, T ; L 2 (Ω ) d ) norm of the velocity splitting error vanishes as O(ε δt), and that the l ∞ (0, T ; L 2 (Ω ) d ) and l 2 (0, T ; H 1 (Ω ) d ) norms of the velocity splitting error vanish as O(ε δt 3 4 ) whereas the norm in l 2 (0, T ; L 2 (Ω )) of the pressure splitting error vanishes as O(ε δt 1 2 ); see [START_REF] Ph | A new fast method to compute saddle-points in constrained optimization and applications[END_REF]Theorem 2.4] for more details. This is also in agreement with the estimates proved in [START_REF] Ph | Error analysis of the penalty-projection method for the time-dependent Stokes equations[END_REF]Theorem 4.5] for the scalar penalty-projection method [START_REF] Jobelin | A finite element penaltyprojection method for incompressible flows[END_REF][START_REF] Jobelin | Une méthode de pénalité-projection pour les écoulements dilatables[END_REF][START_REF] Évri Ère | On the penalty-projection method for the Navier-Stokes equations with the MAC mesh[END_REF] where the augmentation parameter r, playing here the role of 1/ε, takes large values. By choosing only ε = δt, these splitting errors are thus already of the same order of those known for the best incremental projection methods. Up to our knowledge, the splitting errors of the incremental projection method in the case of the Stokes problem with Dirichlet boundary conditions scale as O(δt 2 ) for the pressure in l 2 (0, T ; L 2 (Ω )) norm; see [START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF] and the references therein for the details.

However, the splitting errors of the (VPP ε ) method can be made as small as desired until the machine precision, and thus completely negligible with respect to the time consistency error of the scheme, i.e. O(δt) in the present case or O(δt 2 ) for second-order (VPP ε ) methods [START_REF] Cheaytou | Vector penalty-projection methods for incompressible fluid flows with open boundary conditions[END_REF][START_REF] Handlovičová | Vector penalty-projection methods for outflow boundary conditions with optimal second-order accuracy[END_REF], by choosing ε = δt 2 or ε = δt 3 . This is also another nice advantage of our method.

Conclusion and perspectives

We have described in detail and analysed the fast vector penalty-projection method (VPP ε ) for the solution of both homogeneous or non-homogeneous or also multiphase incompressible Navier-Stokes/Brinkman problems.

The method is also numerically validated in [START_REF] Ph | A fast vector penalty-projection method for incompressible non-homogeneous or multiphase Navier-Stokes problems[END_REF] where several benchmark problems concerning homogeneous, dilatable, non-homogeneous or multiphase flows are investigated and where we compare it to the Uzawa augmented Lagrangian and scalar incremental projection methods. More recently, a severe multiphase benchmark with strong stresses has been computed where the mass density ratio is equal to 8000 with a large capillarity constant and corresponding to air bubble dynamics in a melted liquid steel [START_REF] Ph | A spectacular solver of low-Mach multiphase Navier-Stokes problems under strong stresses[END_REF]. Nevertheless for dispersed bubbly flows, it is difficult to compare our numerical method with others since most of them have difficulties to compute results with a suitable mesh convergence when the mass density ratio exceeds several hundreds. However, to evaluate and validate the robustness of the (VPP ε ) method with respect to large density or viscosity ratios, we have computed the motion of an heavy solid ball of constant density ρ s = 10 6 which freely falls vertically in air with the gravity force f = ρ s g, and corresponding to a low-Mach number flow with ε = 10 -6 and δt = 2 10 -4 . The rigid motion of the body is obtained by letting the viscosity µ s tend to infinity inside the ball in order to penalize the tensor of deformation rate d(v). We refer to [START_REF] Ph | A spectacular vector penalty-projection method for Darcy and Navier-Stokes problems[END_REF][START_REF] Ph | A fast vector penalty-projection method for incompressible non-homogeneous or multiphase Navier-Stokes problems[END_REF] for the numerical results of this test case where the mass density ratio equals 10 6 and the viscosity ratio equals 10 17 . Hence, this benchmark for fluid-structure interaction problems allows us to assess the robustness and versatility of the method for large density or viscosity ratios. Indeed, a very nice and important feature of the (VPP ε ) method is that, contrary to all other splitting methods, its robustness is not sensitive to large mass density ratios since the velocity penalty-projection step does not include any spatial derivative of the density. The method is also validated to compute anisotropic and heterogeneous Darcy problems with large permeability ratios in [START_REF] Ph | Convergence analysis of the fast vector penaltyprojection method for anisotropic heterogeneous Darcy problems[END_REF].

The (VPP ε ) method finally proves to be really promising since it is fast, cheap, and robust whatever the density, viscosity or anisotropic permeability jumps. Indeed, our method can efficiently and accurately compute some severe test cases, whereas other famous methods either fail or cannot reach the suitable mesh convergence and run slower.
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